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Networks of Firing-Rate Neurons

We now consider the effects of connecting neurons together into networks. To do this,
we make use of a description of neural responses that dispenses with individual action
potentials and instead describes the inputs and outputs of neurons solely in terms
of firing rates. A neuron firing at a rate r will produce an action potential during a
short interval of duration ∆t with probability r∆t. Because neuronal firing is often
erratic and variable, there may be cases for which this probability provides the most
detailed prediction of a neuronal response that we can give. More importantly, for
our purposes, describing neuronal responses in terms of rates greatly simplifies the
mathematical analysis of neural networks.

A firing rate network is specified by two critical elements. The first is the relationship
between the total synaptic current that a neuron receives, which we denote by Itot,
and its firing rate r. For constant currents, this relationship is given in terms of a
firing-rate function, r = F (Itot). F (Itot) is a function with the general shape of the
curve in Figure 3b, although it may include saturation effects at higher rates than are
shown in that figure. When the current varies with time, we assume that the firing
rate lags behind but approaches this function exponentially with time constant τ , so
that

τ
dr

dt
= −r + F (Itot) . (1)

The time constant τ incorporates the influences of both the membrane time constant
and synaptic time constants. For a constant external current, τ determines how
rapidly r approaches its steady-state value r = F (Itot). Note that this steady-state
firing rate is obtained by setting the right side of Equation 1 to zero and solving for
r, a procedure that we will follow repeatedly below.

The second element we need is the relationship between Itot and the activity of other
neurons in the network. The rule is simple: each presynaptic neuron contributes
an amount to Itot given by the product of its firing rate and a weight factor that
characterizes the strength and type of the synapse through which it acts. Excitatory
synapses have positive weights and inhibitory synaptic weights are negative. The
total current for each neuron is the sum of all such terms. If the network we are
studying receives input from other areas, this is included as an additional term in Itot

that we denote by h.

A network model of N neurons consists of N equations of the form 1, plus equations
giving the total current for each neuron in terms of external sources and the firing
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rates of other network neurons. Specifying the weights multiplying the different firing
rates in these sums and the form of the firing-rate function F completely defines the
network model.

Network models are complex and difficult to analyze for two reasons: the firing-rate
function is typically nonlinear and the activities of all the neurons interact through the
effects of each neuron’s activity on the total currents of the other neurons. The second
of these complications is intimately linked to the first. If the firing-rate function of
a network model is linear, methods of linear algebra involving eigenfunctions and
eigenvalues can be used to unscramble the interactions between the network neurons,
yielding a fairly simple and understandable description. For this reason, modelers
often approximate nonlinear firing-rate functions with linear approximations, valid
over a certain range. We will do this below, taking F (Itot) ≈ gItot, where g is a
constant known as the gain of the neuronal response. For simplicity, we will assume
that the total current is normalized so that we can set g = 1. Thus, when we make
the linear approximation we will simply replace F (Itot) by Itot.

Although this firing-rate network model, and especially its linear approximation, is
extremely simplistic, it can provide deep and important insights into the properties
of neuronal circuits, some of which we now discuss. We begin by considering uni-
form populations of either excitatory or inhibitory neurons. These populations can
be characterized by a single firing rate, either rE for the excitatory population or
rI for the inhibitory population. We then expand to consider non-uniform networks
with different firing rates for each neuron, introducing the eigenvector and eigenvalue
techniques that allow such networks to be analyzed. These methods show that, al-
though our initial approach, in which all members of a neural population of a given
type fire at the same rate, may seem overly simplistic, it nevertheless illustrates basic
features found in more complex models. However, when recurrent inhibition largely
cancels the effects of recurrent excitation, the results of eigenvector analysis can be
insufficient, as we illustrate in a simple case in which a uniform excitatory and a uni-
form inhibitory population interact. Such networks can have a hidden feedforward
structure within what appears to be a fully connected recurrent network, and also
show quite nonintuitive effects when excitation is added to the inhibitory popula-
tion. These effects, again, can be generalized to non-uniform networks. To illustrate
networks that model decision making, we finally consider models that include two
uniform excitatory populations as well as a uniform inhibitory population.

Many of the ideas we discuss are basic insights from linear algebra applied in a neural
context. They serve as examples of the intuitions that can arise from formulating
and analyzing even the simplest of models. These intuitions should be a part of every
systems neuroscientist’s toolkit much as understanding cable and channel properties
are essential tools for a cellular neurophysiologist.
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Purely Excitatory or Inhibitory Networks

We begin by considering a population of excitatory neurons with recurrent connec-
tions between them. To keep the network as simple as possible, we connect every pair
of neurons in the network with the same synaptic weight and provide them all with
the same external input. Because all the neurons are the same, we can characterize
the entire network with a single firing rate rE. The total current for each neuron
can then be written as the product of a synaptic weight factor wEE (for excitatory-
excitatory) and the rate rE. We also include an externally generated term labeled hE

in the total current. If we use the linear approximation F (Itot) ≈ Itot the equation
governing this network is

τ
drE

dt
= −rE + Itot = −rE + wEErE + hE = −(1− wEE)rE + hE (2)

If wEE > 1, the factor multiplying rE on the right side of this equation is positive,
which causes rE to grow exponentially away from zero. This means that the linear
system is unstable. In the full nonlinear network model, bounds on the neuronal
firing rate will eventually halt this growth, but at that point the firing rate is likely
to be quite far from zero. If we want a network model with low firing rates and for
which the linear approximation is valid, we must for the moment restrict ourselves to
the case wEE < 1, which keeps the linear system stable.

When wEE < 1, it is convenient to rewrite the above equation as(
τ

1− wEE

)
drE

dt
= −rE +

hE

1− wEE

. (3)

This leads us to our first lesson in network dynamics: excitatory feedback has two
effects. First, it amplifies the input, as can be seen because hE is multiplied by the
factor 1/(1 − wEE), which is greater than 1. Second, it slows the dynamics because
rE approaches hE/(1 − wEE) with a time constant τ/(1 − wEE). When recurrent
excitation is used to amplify input signals in a network, the price is a slowing down of
the response dynamics (Figure 4a). Responses in primary visual cortex typically last
considerably longer than the responses of the inputs from lateral geniculate nucleus
(LGN). Recurrent excitation provides one possible explanation for this slowing.

One may worry that these results depend on the very simple model used, but instead
the simple model yields an insight that is much more general. Without recurrent
connections, the steady-state response to a constant input hE would be rE = hE. If
we now add in the effect that this non-recurrent response has when it is fed back
monosynaptically, we find rE = hE + wEEhE. Continuing to add in terms that are
disynaptic, trisynaptic and so on, we obtain rE = hE +wEEhE +w2

EEhE +w3
EEhE + . . .,

a series that sums to hE/(1 − wEE). Furthermore each term in this series takes a
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Figure 1: Uniform excitatory and inhibitory networks. a) Response of a recurrent excitatory
network to a constant input hE = 10 Hz, activated at time t = 0. Increasing the strength of the
recurrent excitation from 0 to 0.5 increases the response but makes it rise more slowly. b) Response
of a recurrent inhibitory network to a constant input hI = 10 Hz, activated at time t = 0. Increasing
the strength of the recurrent inhibition from 0 to 0.5 decreases the response but makes it rise more
rapidly.

time proportional to the size of the change to be generated by the network, so if
the initial change rE → hE takes time τ , the total change will take τ(1 + wEE +
w2

EE + . . .) = τ/(1− wEE). Thus, we can think of Equation 3 as having summed the
polysynaptic series. For a more realistic model, the mathematical expressions may
change, but the basic ideas that an input is augmented and integration time slowed
by the reverberating circuit does not.

In the limit wEE → 1, the effective time constant for this network, τ/(1 − wEE),
becomes arbitrarily large. Indeed for wEE = 1, Equation 2 becomes an equation for a
perfect integrator, τdrE/dt = hE. In other words, rE is simply the time integral of hE.
This means that the neural population adds up or integrates its input without any
forgetting or decay. Networks with wEE near 1 are often used as models for neuronal
circuits that integrate and remember signals.

A uniform inhibitory population with average rate rI and average synaptic strength
−wII (with wII > 0) receiving additional input hI, is described by an equation similar
to 2,

τ
drI

dt
= −rI − wIIrI + hI = −(1 + wII)rI + hI (4)

or (
τ

1 + wII

)
drI

dt
= −rI +

hI

1 + wII

.

Because of the sign change in the recurrent weight, recurrent inhibition has effects
opposite to those of recurrent excitation: it diminishes and speeds up responses (fig-
ure 4b). Neural circuits often have extensive mutual inhibition between inhibitory
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neurons, something that at first might seem paradoxical. We now see that such
recurrent inhibition speeds up the inhibitory response. This can be important for
stabilizing a network because inhibition that arrives more quickly gives excessively
strong recurrent excitation less time to generate runaway activity.

Networks Stabilized by Inhibition

In our analysis of the single integrate-and-fire neuron, we noted that the excitatory
input alone, without inhibitory cancellation, would drive the neuron at extremely
high rates. Similarly, experiments with inhibitory blockers suggest that many neu-
ronal circuits are unstable if the effects of inhibition are decreased. In terms of the
models we have been discussing, this suggests that the excitatory recurrent strength
wEE > 1 which, as shown previously, causes a linearized purely excitatory network
to be unstable. We now show how inhibition can tame this instability and illustrate
an interesting phenomenon related to strong excitatory feedback first revealed by
Tsodyks and colleagues.

In this and the following sections, we make an assumption about inhibition that sim-
plifies the analysis considerably without changing the basic phenomena being studied.
Inhibitory responses are, in general, quite rapid and they can be accelerated by re-
current inhibition, as discussed previously. We therefore assume that the inhibitory
response can be approximated as instantaneous. In the linear approximation, this
means that we can set drI

dt
to zero, and thus write

rI = αrE + hI (5)

where α = wIE/(1 + wII) and we now use hI for what would previously have been
hI/(1 + wII). If we substitute this expression for rI into the linearized equation for
the excitatory firing rate,

τ
drE

dt
= −rE + wEErE − wEIrI + hE = (wEE − 1)rE − wEIrI + hE , (6)

we obtain

τ
drE

dt
= (wEE − 1− αwEI) rE + hE − wEIhI . (7)

We have assumed that excitation by itself is unstable, which means, as stated above,
that wEE > 1. Overall stability requires that the term multiplying rE in Equation 7
be negative: wEE < 1 + αwEI. Thus, sufficiently strong inhibition can stabilize the
network despite excitation alone being unstable.

For reasons discussed below, we consider the response of this network to an external
input purely to the inhibitory neurons, that is, hE = 0 and hI = a non-zero constant.
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The steady-state firing rate in response to a constant external input h is obtained by
setting the right side of Equation 7 to zero and solving for rE. The result is

rE =
−wEIhI

1− wEE + αwEI

.

Recalling that 1−wEE+αwEI > 0, this shows, not surprisingly, that the excitatory rate
varies oppositely from the inhibitory input: an input that would appear to suppress
inhibition (hI < 0) causes an increase in excitatory firing (rE > 0). The surprise
comes when we substitute this expression for rE into Equation 5 for the inhibitory
firing rate, which gives the result

rI =
−(wEE − 1)hI

1− wEE + αwEI

.

Because of the assumption of instability without inhibition, wEE−1 > 0, the inhibitory
firing rate also varies oppositely to hI. In other words, attempting to drive up the
inhibitory firing rate from an external source causes both it and the excitatory firing
rate to go down rather than up. Conversely, attempting to suppress inhibitory firing
causes both rates to increase.

This effect becomes slightly more intuitive when the temporal sequence involved
is considered (Fig. 2). If external excitation is added to the inhibitory population
(Fig. 2a), inhibitory firing rates initially increase (Fig. 2b). This drives down excita-
tory firing rates, resulting in a withdrawal of recurrent excitation onto the inhibitory
cells (Fig. 2c). This withdrawal of excitation is greater than the increase in excitation
to the inhibitory cells that started the process, provided that the network is stable
but has wEE > 1. As a result, in the final condition, the inhibitory cells receive
less excitation than they did initially, and accordingly their firing rate is decreased
(Fig. 2d).

Given the strong recurrent excitation received by cortical excitatory neurons, as well
as the instability of cortex when inhibition is reduced, its seems likely that cortical
circuits operate in a regime where they are stabilized by inhibition. Thus, we would
expect to see the effect just described quite commonly. Though the model is simple,
it reveals a more general intuition: if the excitatory subnetwork alone is unstable,
it means that an increase in excitatory firing rates causes an increase in recurrent
excitation sufficient to drive excitatory rates still higher, and similarly a decrease in
excitatory firing rates causes a withdrawal of recurrent excitation sufficient to drive
excitatory rates still lower (e.g., when wEE > 1, the change in drE

dt
induced by a

decrease in rE is negative, Equation 6). Thus, if a change in steady state involves a
decrease in overall excitatory firing rates, the inhibition received by the excitatory cells
must also decrease to compensate for their large withdrawal of recurrent excitation.
Similarly, a steady state with increased excitatory firing rates requires an increase in
inhibition. Thus, ultimately, both excitation and inhibition must change in the same
direction because changes in opposite directions cannot yield a new steady state.
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Figure 2: (NOTE: need to redo this fig to change labels b-e to a-d.) Illustration of the sequence
of events following addition of excitatory external input to the inhibitory population, signified by
red input line, in a network stabilized by inhibition. Gray indicates activity levels before addition
of the external input, red indicates increased activity levels, and blue indicates decreased activity
levels. See text for details. Figure modified with permission from Ozeki et al., 2007.

In many neurons in the primary visual cortex, an appropriate visual stimulus within
the “center” region of the receptive field yields an optimal response, but increasing
the size of the stimulus so that it covers a surrounding area (the “surround”) reduces
the response, a phenomenon known as surround suppression. A stimulus covering
only the surround, and not the center, yields no response. It is believed that the
center stimulus provides external excitatory input to both excitatory and inhibitory
populations, whereas a surround stimulus provides external excitation predominantly
onto the inhibitory population. Results from David Ferster’s lab indicate that both
the inhibition and the excitation that the neuron in primary visual cortex receives
are reduced by surround suppression. This may provide an example of the effect we
have been discussing.

Nonlinear Analysis of Circuits With Excitatory and Inhibitory Populations

We now consider the effects of nonlinearities on our simple model of one excitatory
and one inhibitory population. We use Equations 2 and 4, linking the two populations
through weights wEI and wIE as in the linear model. The resulting equations are

drE

dt
= −rE + FE[wEErE − wEIrI + hE]

drI

dt
= −rI + FI[wIErE − wIIrI + hI] . (8)

Here we allow for different firing-rate functions for the excitatory and inhibitory
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Figure 3: Dynamics of an E-I network. a) Phase plane (rI versus rE) for an excitatory-inhibitory
network. The red and blue curves are the excitatory and inhibitory nullclines, respectively. The point
where these two curves cross determines the equilibrium steady-state values of rE and rI. The curve
with arrows shows the trajectory of the excitatory and inhibitory rates over time, starting at rE =
rI = 0 and ending at the equilibrium point. b) The excitatory and inhibitory rates corresponding to
the trajectory in a, plotted as a function of time.

neurons. These equations support a variety of behaviors for different parameters,
including steady-state and oscillatory activity, as first explored by Wilson and Cowan.

Suppose that hE and hI are constant inputs. The first step in analyzing Equations 8
is to determine whether they produce constant excitatory and inhibitory firing rates
in this case and, if so, to determine the steady-state values of rE and rI. By definition,
steady-state values do not change in time, so their derivatives must be zero. Therefore,
constant steady-state firing rates produced by this system must satisfy the conditions

rE = FE(wEErE − wEIrI + hE) and rI = FI(wIErE − wIIrI + hI)

that make the right sides of Equations 8 zero. These two equations define two different
relationships between rE and rI. The curves along which these relationships hold are
called nullclines. In Figure 3, the red curve in the plane defined by the variables rE

and rI (known as the phase plane) is the set of points for which rE = FE(wEErE −
wEIrI +hE), and the blue curve is where rI = FI(wIErE−wIIrI +hI). For points along
the red curve, drE/dt = 0, so rE cannot change, and similarly for points along the
blue curve, drI/dt = 0. For a stable network, Equations 8 sets up flows in the rE-rI

plane that move toward these nullclines. The point where the two nullclines cross is
the equilibrium point of the system where neither rE nor rI changes, and the values of
rE and rI at the crossing point determine the steady-state excitatory and inhibitory
firing rates.
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The evolution of rE and rI from initial values rE = rI = 0 to their steady-state values
is indicated by the curve with arrows on it in Figure 3a and, as a function of time
in Figure 3b. For the parameters we have used, the trajectory follows a spiral in
the phase plane or, equivalently, the firing rates oscillate over time as they approach
their steady-state values. Note that when the trajectory crosses a nullcline, it is
always either vertical (when crossing the excitatory nullcline) or horizontal (when
crossing the inhibitory nullcline). This is required by the fact that the derivative of
the corresponding firing rate must vanish along the nullcline.

If we are only interested in small deviations of the firing rates about their equilibrium
values, we can approximate the nullclines near their crossing point by straight lines.
This is equivalent to the linear approximation we have discussed. The slopes of these
straight lines determine the response gains, equivalent to the factor g we introduce
previously. An important feature of nonlinear systems is that their gains can change
depending where on the curvilinear nullclines the equilibrium point lies. Thus, a
nonlinear system can be approximated by a series of linear systems with different
gains, something called a piecewise linear approximation.

In terms of the phase-plane analysis, the assumption we made in the previous section
that inhibitory responses are instantaneous means that we assume that the inhibitory
firing rate always stays on its nullcline (the blue curve in Figure 3a). Our analysis of
networks stabilized by inhibition can be generalized: the condition that the excitatory
network alone be unstable, which means wEE > 1 for the linear network, corresponds
more generally to the condition that the excitatory nullcline (the red curve in Fig-
ure 3a) has a positive slope at the equilibrium point (where the red and blue curves
cross)). Indeed we can expand FE around the fixed point r0

E, r0
I :

FE(I) = FE(I0) +
∂FE

∂I

∂I

∂rE

∆rE +
∂FE

∂I

∂I

∂rI

∆rI + ...

where I = wEErE − wEIrI + hE. Given that −r0
E + FE(I0) = 0 (because r0

E, r0
I is a

fixed point and, there, both derivatives are zero), we get that the nullcline is given
by the equation:

∆rI =
1

F ′
EwEI

(F ′
EwEE − 1)∆rE

where F ′
E = ∂FE

∂I
.

Adding external excitation to the inhibitory population corresponds to shifting the
inhibitory nullcline to the left (because of the additional excitation, a smaller value
of rE yields drI

dt
= 0 for a fixed rI). If the excitatory nullcline has positive slope, as

in Figure 3a, then moving the inhibitory nullcline leftward causes the equilibrium
values of both rE and rI to decrease. That is, adding external input to the inhibitory
population causes rE and rI to move in the same direction.
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Circuits for Decision Making

We now apply these mathematical tools to a network model of decision making.
Following X-J. Wang, we consider two populations of excitatory neurons, each cor-
responding to one decision outcome. For example, suppose a person is driving and
needs to decide whether to turn right or left. We assume that there are two popu-
lations of excitatory neurons, one active when the decision is a right turn, the other
when it is a left turn. We do not model neurons that then transform this decision
pattern of activity into a motor act, such as turning the steering wheel. Under some
circumstances no decision needs to made made, so neither population should be ac-
tive. When a decision is required, it can either be biased or unbiased by sensory
input. If, for example, if the sensory stimulus is a road sign that says “turn left’, the
sensory input should favor a decision and bias it toward a left turn. If the sensory
stimulus is an obstacle in the middle of a three lane highway, there is a need to turn
but the direction is irrelevant. In this case, the sensory input should favor a decision
without biasing the decision. Between these extremes, input may provide a range of
biasing effects.

In order to simplify the analysis, we will consider specifically the example of two
possible decisions, which would correspond to the simplest circuit. The network will
be made of two excitatory and one inhibitory populations. We would like to know
whether it is possible to build a pattern of synaptic connections between the different
populations such that: 1) In the absence of relevant sensory stimuli there is only one
stable pattern of spontaneous activity which corresponds to a state of “no decision”.
2) The sensory stimulus that triggers the decision should select one of the two stable
patterns of activities corresponding to the decisions. In particular, in each case the
excitatory population corresponding to the intended motor response should be active,
and the activity of the excitatory population corresponding to the alternative decision
should be suppressed. One possible mechanism to implement such a system would be
based on inhibition-mediated competition between the two excitatory populations:
when the activity of one population grows, inhibition increases and it suppresses the
activity of the other population. The input to these populations generated by the
sensory stimulus should trigger the decision and it should generate the bias for one
decision or another.

We let r1 and r2 be the firing rates of the two excitatory populations, and rI be the
firing rate of the inhibitory population. We begin by assuming no excitatory coupling
between the excitatory populations, but that each receives identical input from the
inhibitory population:

τ
dr1

dt
= −r1 + F (wEEr1 − wEIrI + h1)
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τ
dr2

dt
= −r2 + F (wEEr2 − wEIrI + h2)

As in the previous section, we assume that the inhibition responds instantaneously.
We do not include any external input for the inhibition, but we assume that it re-
sponds equally to the firing of both excitatory populations. Thus, we write rI =
α(r1 + r2). Substituting this into the above equations gives

τ
dr1

dt
= −r1 + F ((wE − wI)r1 − wIr2 + h1)

τ
dr2

dt
= −r2 + F ((wE − wI)r2 − wIr1 + h2)

where we have defined wE = wEE and wI = αIwEI to simplify the notation. Note that,
if we had included excitatory coupling between r1 and r2 of strength w12 = w21, the
equations would have the identical form with wI) and wE) replaced by wI)−w12 and
wE)− w12 respectively.

In order to study the system we compute the nullclines. We first assume that the
sensory inputs h1 and h2 are equal (h1 = h2 = h), which would correspond to the
unbiased case in which both decisions are equivalent. In all the interesting cases
the nullclines cross at least at one symmetric point, where r1 = r2. Such a point
corresponds to a pattern of activity which does not express any preference for one
choice or another, and hence it is a “no decision” configuration. The stability of the
symmetric point depends on the slope of the nullclines, which in turn, depends on
both the synaptic weights, and on the shape of the neuronal response function, as
explained in the case of one excitatory and one inhibitory population. Depending on
the external input h, the system can operate in different regimes and the symmetric
point can be either stable or not. Indeed h determines the target firing rates of
the neurons and hence their sensitivity to modifications of the input. In particular
the neurons are maximally reactive when they operate in the linear regime, where
the slope of the neuronal response function is maximal. The sensitivity decreases
smoothly if the neuronal firing rate goes to zero or if it saturates.

Let us now analyze in detail the symmetric case. The fact that the two inputs are
equal, implies symmetry, that in turn, has as a consequence that for any fixed point
r1, r2, there is a corresponding point r2, r1. These two points collapse into a single
fixed point if the nullclines cross at a point where r1 = r2. In all the interesting cases,
such a symmetric fixed point exists and it is useful to start the analysis by focusing
on the stability properties of such a point. Indeed all patterns of activity for which
r1 = r2 do not express any preference for one choice or another, and hence correspond
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Figure 4: The stability of the symmetric ”no decision” point: the two nullclines (red
for r1 and blue for r2) cross in one point. We focus on what happens in a neighborhood
of such a point. Here we illustrate 4 cases corresponding to 4 different slopes of the
nullclines. The grey arrows indicate the final direction of the movement. Case A
is the desired configuration: attractive along the diagonal of the r1, r2 plane, and
repulsive in the orthogonal direction.

to a “no decision” configuration. If we want to force the system to decide, we then
need to make the symmetric point repulsive. The best way would be to make it what
is called a saddle point, something resembling a mountain pass connecting two valleys
corresponding to the two decisions (i.e. the two desired attractors in which r1 is high
and r2 is low and vice versa). The system would naturally flow into either one or the
other valley, but it would not be able to climb up from the pass in the direction of
the surrounding peaks. These peaks lie along the diagonal r1 = r2 and soar on the
”no decision” path, which is to be avoided. Summarizing, any fixed point along the
line over which r1 = r2 should be attractive in the direction of this line, because we
do not want configurations in which both r1 and r2 go to infinity or to zero, but along
the orthogonal direction it should be repulsive to force the system to either activate
r1 and suppress r2 or vice versa. A simple analysis of all possibilities shows that there
is only one way to obtain such a behavior: the parameters should tuned in such a
way that: 1) both nullclines have a negative slope, and 2) the nullcline of r2 is steeper
than the nullcline of r1 (see Figure 4).
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How do we determine quantitatively the slopes of the nullclines given a particular set
of parameters? If we approximate the neuronal transfer function with its tangent at
the fixed point (linearization), we find after some simple algebra that the two slopes
are

w̃E − w̃I − 1

w̃I

and
w̃I

w̃E − w̃I − 1

for r1 and r2 respectively, where w̃E = F ′wE and w̃I = F ′wI and F ′ is the derivative
of the neuronal response function F with respect to the total current evaluated at the
fixed point. F ′ depends on the shape of neuronal response function in our specific
case, but it might depend on several other sources of nonlinearity as adaptation or
synaptic depression and facilitation.

In the case of small input h, the neurons operate in low firing rate, fluctuation dom-
inated regime, in which F ′ is small. The nullclines cross in such a way that the
symmetric, no decision point, is stable (Figure 5a). In particular we have that both
nullclines have a negative slope (w̃E < w̃I + 1) and the r2 nullcline (blue) is less steep
than the r1 nullcline (red). The second condition corresponds to w̃E > 1 (indeed it
is corresponds to imposing that the slope of the r1 nullcline is negative, but not too
steep (w̃E − w̃I − 1)/w̃I > −1).

If we increase the external input h, as in presence of a cue which should trigger a
decision, the system switches to a different regime in which it is forced to decide be-
cause the symmetric point becomes repulsive. Indeed, as h increases, the symmetric
point becomes what is called a saddle point, something resembling a mountain pass
connecting two valleys corresponding to the two decisions (i.e. the two desired at-
tractors in which r1 is high and r2 is low and vice versa). The system would naturally
flow into either one or the other valley, but it would not be able to climb up from the
pass in the direction of the surrounding peaks. These peaks lie along the diagonal
r1 = r2 and soar on the ”no decision” path, which is to be avoided. Summarizing, the
symmetric fixed point along the line over which r1 = r2 would be attractive in the
direction of this line, avoiding configurations in which both r1 and r2 go to infinity or
to zero, but along the orthogonal direction it would be repulsive to force the system
to either activate r1 and suppress r2 or vice versa.

As h increases, two things happen: 1) the symmetric fixed point moves to higher
firing rates, and 2) F ′ also increases, making the r2 nullcline (blue) steeper, and the
r1 nullcline (red) less steep to the extent that both nullclines have a negative slope,
and the nullcline of r2 becomes steeper than the nullcline of r1 (see Figure 5b).

In this case w̃E < w̃I + 1, which essentially means that inhibition is large enough
to dominate over excitation. This is not surprising given that we need to build a
sufficiently strong competition between the two excitatory populations. Moreover
the r2 nullcline is steeper than the r1 nullcline, which happens when w̃E > 1. The
second condition says that each excitatory population would be unstable, like the
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Figure 5: Nullclines for different regimes. a) No decision (h1 = h2 = 20). b) Unbiased decision
(h1 = h2 = 40). c) Weakly biased decision (h1 = 40, h2 = 43). d) Strongly biased decision
(h1 = 40, h2 = 46). In all cases wE = 1.4, wI = 0.7

excitatory population in an ISN, and its activity would explode were it not for the
regulatory effects of inhibition. Such a condition is needed to amplify any deviation
in the direction orthogonal to the diagonal r1 = r2. One of the two populations is
then guaranteed to run away rather then returning back to the diagonal.

What happens when the network moves away from the symmetric fixed point? If
r1 is larger than r2, then r1 keeps increasing at the expense of r2. As r2 cannot
become negative (i.e. the response function F is zero for negative currents), the
process would stop when the activity of the winning population r1 brings r2 to zero.
However, as r1 increases, and r2 decreases, both populations tend to leave the regime
in which the neuronal response function is linear. In particular, the saturation due
to the refractory period slows down the growth of r1, and r2 decays smoothly to zero
because when the average input goes below threshold, the neurons in population 2
can still fire, driven by the subthreshold fluctuations. This translates into a bending
of the nullclines which leads to the formation of other two fixed points (see Figure
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5b). One corresponds to a pattern of activity in which r1 is elevated and r2 is low, and
the other to one in which r2 wins over r1. The two points lie symmetrically around
the diagonal r1 = r2. These are the two stable fixed points which correspond to the
two possible decisions.

Notice that if h increases even further F ′ again decreases to zero, and the slopes of
the nullclines change in such a way that the symmetric point becomes stable again,
as in case a of Figure 5. The bending of the nullclines is due to saturation, in the case
of large sensory input. It is surprising that for too large inputs the two excitatory
populations would stop competing.

Every time the sensory input is modified, the nullclines shift. In the case in which
the input is biased, for example when h2 increases and h1 remains the same, the r2

nullcline shifts up (see Figure 5c and d) and the intersection point with the r1 nullcline
moves right-down. So now any trajectory that starts from a symmetric point r1 = r2

falls into the basin of attraction of the stable fixed point corresponding to the decision
2. In other words, as h2 increases, the bias to be attracted toward a point at which
r2 suppresses r1 becomes progressively larger and eventually it makes the decision 1
attractor disappear (see Figure 5d).
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