
Fundamentals of Bioimaging (Prof. Gruetter) 
Solutions to Problem Set No. 3   8.3.2019 

 

S3-1 
 

Solution 1 - The colour of the sky 

Rayleigh scattering through a thicker layer of air causes high energy (blue) 

photons to be scattered too much to be visible, while lower energy (red) 

retains more of its directionality and is thus the dominant wavelength (see 

picture). This effect is also the main reason why the sun appears yellowish 

to us. From space, it looks actually white. 

Solution 2 - Half-value layer and effective atomic number Zeff 

a)  

𝑛(𝑥) = 𝑁0𝑒−𝜇𝑥𝑎 

𝑥𝑎 =
−ln (

𝑛(𝑥)
𝑁0

)

𝜇
; 𝑥𝑎 =

−ln (
1
2)

(𝜇𝑎𝜌𝑁𝐴)/𝐴
  ⇒   𝑥𝑎 = 0.94 𝑐𝑚 

b) Use 

𝑍𝑒𝑓𝑓 = (∑ 𝜆𝑖𝑍𝑖
3.4

𝑛

𝑖=1

)

1
3.4

, with 𝜆𝑖 =

𝑃𝑖𝑍𝑖
𝐴𝑖

∑ 𝑃𝑗𝑍𝑗/𝐴𝑗
𝑛
𝑗=1

 

Let <1> refer to H, <2> to O and <3> to Gd: 

Z1=1 Z2=8 Z3=64 

A1=1 A2=16 A3=157 

P1=55·2·1=110 P2=55·16=880 P3=0.001·157=0.157 

Plugging this in gives Zeff=7.85, while pure water gives 7.49. 

Solution 3 - Compton Scattering 

a) 

The relationship between energy and wavelength is in this case: 

ℎ𝜈(𝑘𝑒𝑉) =  
ℎ𝑐

𝜆
=  

(6.62 · 10−34 𝐽 · s) (3 · 108 𝑚/𝑠𝑒𝑐)

(𝜆)(10−9 𝑚/nm) (1.6 · 10−19 𝐽/𝑒𝑉)(103 𝑒𝑉/keV) 
=

1.24

𝜆
 

The wavelength λ of a 2-MeV photon then is:  

𝜆 =  
1.24

ℎ𝜈
=  

1.24

2000 𝑘𝑒𝑉
= 0.00062 𝑛𝑚 

 

 

Rayleigh Scattering: 

Picture taken one hour after sunset 
(courtesy wikipedia article “Rayleigh Scattering) 
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The energy transferred to the electron is greatest when the change in wavelength of the photon is maximum; Δλ 

is maximum when φ = 180 degrees. 

𝛥𝜆max = 0.00243[1 − cos(180)] = 0.00243[1 − (−1)] = 0.00486 nm 

The wavelength λ’ of the photon scattered at 180 degrees is now: 

𝜆′ = 𝜆 + 𝛥𝜆 = (0.00062 + 0.00486) 𝑛𝑚 = 0.00548 𝑛𝑚 

The energy hν’ of the scattered photon is: 

ℎ𝜈′ =  
1.24

𝜆′
=  

1.24

0.00548 𝑛𝑚
= 226 𝑘𝑒𝑉 

The energy Ek of the Compton electron is: 

𝐸𝑘 = ℎ𝜈 − ℎ𝜈′ = (2000 − 226) 𝑘𝑒𝑉 =  1774 𝑘𝑒𝑉 

b)  = 0.00243·(1-cos), so Δλ = 0.00071 nm. As above, hν = 1.24/λ, so λ = 1.24/150 = 0.0083 nm. The scattered 

photon has wavelength λ’ = λ+, which gives it λ’ = 0.00901 nm and hν’ = 138 keV. The Compton electron takes 

the remaining 150 keV – 138 keV = 12 keV. 

As λ’> λ, the energy of the scattered photon is decreased. 

 

c)  λ is the wavelength of the photon before scattering, 

λ' is the wavelength of the photon after scattering, 

m is the mass of the electron, 

θ is the angle by which the photon's heading changes 

Energy and momentum conservation: 

𝐸𝛾 +  𝐸𝑒 =  𝐸𝛾′ +  𝐸𝑒′        (1) 

𝑝𝛾 =  𝑝𝛾′ + 𝑝𝑒′        (2)  

where 𝐸𝛾 and 𝑝𝛾  are the energy and momentum of the photon 

and 𝐸𝑒 and 𝑝𝑒  are the energy and momentum of the electron 

From (1), we have:  ℎ𝑓 +  𝑚𝑐2 = ℎ𝑓′ +  √(𝑝𝑒′𝑐)2 + (𝑚𝑐2)2        

 Solving for 𝑝𝑒′: 

 (ℎ𝑓 +  𝑚𝑐2 − ℎ𝑓′)2 =  (𝑝𝑒′𝑐)2 + (𝑚𝑐2)2   
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(ℎ𝑓+ 𝑚𝑐2−ℎ𝑓′)
2

− 𝑚𝑐2

𝑐2 =  𝑝𝑒′
2              (3) 

Solving (2) and rearrange: 

𝑝𝑒′
2

=  𝑝𝛾
2

+ 𝑝𝛾′
2

−  2𝑝𝛾′�⃗�𝛾 =   𝑝𝛾
2

+  𝑝𝛾′
2

−  2|𝑝𝛾′||𝑝𝛾| cos 𝜃  

𝑝𝑒′
2 =  (

ℎ𝑓

𝑐
)

2
+  (

ℎ𝑓′

𝑐
)

2
− 2 (

ℎ𝑓′

𝑐
) (

ℎ𝑓

𝑐
) cos 𝜃       (4) 

By equating (3) and (4), we get after simplification: 

−2ℎ2𝑓𝑓′cos 𝜃 =  −2ℎ2𝑓𝑓′ +  2ℎ(𝑓 − 𝑓′)𝑚𝑐2      

Dividing by −2ℎ𝑓𝑓′𝑚𝑐2  : 

𝑓 − 𝑓′

𝑓𝑓′
=

ℎ

𝑚𝑐2
(1 − cos 𝜃) 

which can be rewritten:   
1

𝑓′
−  

1

𝑓
=

ℎ

𝑚𝑐2
(1 − cos 𝜃).  

This is equivalent to the Compton scattering equation, but it is usually written using λ's rather than f's.  

 𝑓 =
𝑐

𝜆
  , so we have finally: 𝜆′ − 𝜆 =

ℎ

𝑚𝑐
(1 − cos 𝜃). 

c bis)  We can also derive this equation directly from the Compton Energy equation seen in the lecture (slide 3-8): 

𝐸𝑓 =
𝐸𝑖

(1 − 𝑐𝑜𝑠𝜃)
𝐸𝑖

𝑚𝑒𝑐2 + 1
 

For a photon, we have : 

𝐸 = ℎ𝑓 = ℎ
𝑐

𝜆
 

The Compton equation becomes then: 

(1 − 𝑐𝑜𝑠𝜃)
𝐸𝑖

𝑚𝑒𝑐2
𝐸𝑓 + 𝐸𝑓 = 𝐸𝑖  

ℎ2𝑐2

𝜆𝑖𝜆𝑓

𝑚𝑒𝑐2
(1 − 𝑐𝑜𝑠𝜃) + ℎ

𝑐

𝜆𝑓
= ℎ

𝑐

𝜆𝑖
 

ℎ𝑐

𝜆𝑖𝜆𝑓𝑚𝑒𝑐2
(1 − 𝑐𝑜𝑠𝜃) +

1

𝜆𝑓
=

1

𝜆𝑖
 

ℎ

𝑚𝑒𝑐
(1 − 𝑐𝑜𝑠𝜃) + 𝜆𝑖 = 𝜆𝑓 

         𝜆𝑓 − 𝜆𝑖 =
ℎ

𝑚𝑒𝑐
(1 − 𝑐𝑜𝑠𝜃) 
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Solution 4 - Pair Production 

a) Subtract 511 keV per created electron and divide the remaining energy by two: 

(2750-1022)/2=864 keV. 

b)  = 0.00243·(1-cos); if φ=60°, Δλ=0.001215 nm. If we assume that the incident photon has the limit of infinite 

energy and thus λ=0, then λ’= Δλ and hν’=1.24/λ’=1021 keV. At least 1022 keV is needed for pair production to 

occur.  

Solution 5 - Radiation Protection 

a) 1Gy=E/m   =>   10cGy = 0.1Gy = E/(10·10-3) kg   =>   E=10-3J 

b) This question is often asked to new people at PET centres. 

i. = (/)· = 0.1542 cm2/g · 11.35 g/cm3 = 1.75 cm-1. 

ii. The transmission for perpendicular radiation is 0.25, so  𝑒−·𝑑25% =  𝑒−1.75 cm−1·𝑑25% = 0.25. This means 

·d25% = ln(4) and thus d25% = ln(4)/1.75 cm-1 = 0.792 cm. 
iii. m = V · 𝜌 = A · 𝑑25% · 𝜌 = 1.5·104 cm2 · 0.792 cm · 11.35 g/cm3 = 134838 g = 135 kg. 
iv. The calculated weight is too heavy to carry. If we take 10 kg as the maximum apron weight, the transmission 

would be 92%. This means no lead aprons are used in PET. 

 

 


