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Solution 1: Neuron activation 

a) The a-v before the increase of CBF: a v
MRC C
F

− =  

The a-v after the increase of CBF: 
1.5*a v

MRC C
F

− =  

(Metabolic rate (MR) and arterial oxygen concentration (Ca) are constants. F is the original flow.)So there is a 
33.3% decrease in the a-v during an 50% increase of CBF. 

b) As shown in a), when CBF is increased by 50%, Cv will increase. So the concentration of the deoxyhemoglobin in 
the veins will decrease. 

This decrease in deoxyhemoglobine concentration during neuron activations allows to image activation of the 
brain using magnetic resonance (MR). The basic principle of that measurement is to image changes of 
deoxhyemoglobine concentrations, which is a paramagnetic compound  influencing magnetic fields, hence the 
MR signal. 

Solution 2: Car exchange 

a) For any time, the system is described by the following differential equations: 
𝑑𝐿∗(𝑡)
𝑑𝑡

= 𝑉
𝐺∗(𝑡)
𝐺

− 𝑉
𝐿∗(𝑡)
𝐿

𝑑𝐺∗(𝑡)
𝑑𝑡

= −𝑉
𝐺∗(𝑡)
𝐺

+ 𝑉
𝐿∗(𝑡)
𝐿

 

Where V is the car flux between Geneva and Lausanne in each direction, G and L are the total amount of cars in 
Geneva and Lausanne (assumed to be constant), respectively and G* and L* are the number of red cars in 
Geneva and Lausanne, respectively. In the following notations, the explicit time dependency will be omitted. 
 

b) These two linear differential equations can be written as a differential system in the following way: 

𝑑
𝑑𝑡
�𝐿

∗

𝐺∗� = �
−
𝑉
𝐿

𝑉
𝐺

𝑉
𝐿

−
𝑉
𝐺

��𝐿
∗

𝐺∗� 

We need first to find the eigenvalues and eigenvectors of the matrix defining the differential system. The 
characteristic polynomial is: 

�−
𝑉
𝐿
− 𝜆� �−

𝑉
𝐺
− 𝜆� −

𝑉2

𝐺𝐿
= 0 

From this, we find the two eigenvalues : 
𝜆1 = 0

𝜆2 = −�
𝑉
𝐺

+
𝑉
𝐿
�

 

The corresponding eigenvectors are: 
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𝒖1 = �𝐿𝐺�

𝒖2 = � 1
−1�

 

So, the basis vectors of the solutions of this differential system are: 

𝒚1 = 𝑒𝜆1𝑡 �𝐿𝐺� = �𝐿𝐺�

𝒚2 = 𝑒𝜆2𝑡 � 1
−1� = 𝑒−�

𝑉
𝐺+

𝑉
𝐿�𝑡 � 1

−1�
 

Any solution is a combination of these two vectors. However, a single combination is respecting the initial 
conditions, which are 𝐿∗(0) = 0 and 𝐺∗(0) = 𝐺0∗ = 50000: 

�𝐿
∗

𝐺∗� = 𝑎 �𝐿𝐺� + 𝑏 𝑒−�
𝑉
𝐺+

𝑉
𝐿�𝑡 � 1

−1� 

= �𝑎𝐿 + 𝑏 𝑒−�
𝑉
𝐺+

𝑉
𝐿�𝑡 

𝑎𝐺 − 𝑏  𝑒−�
𝑉
𝐺+

𝑉
𝐿�𝑡
� 

With �𝐿
∗(0)
𝐺∗(0)� = � 0

𝐺0∗
�, we get for a and b : 

𝑎 =
𝐺0∗

𝐺 + 𝐿
 

𝑏 = −
𝐺0∗𝐿
𝐺 + 𝐿

 

So, finally, the solution for the labeling is: 

𝐿∗(𝑡) =
𝐺0∗𝐿
𝐺 + 𝐿

�1 − 𝑒−�
𝑉
𝐺+

𝑉
𝐿�𝑡�

𝐺∗(𝑡) =
𝐺0∗𝐺
𝐺 + 𝐿

+
𝐺0∗𝐿
𝐺 + 𝐿

𝑒−�
𝑉
𝐺+

𝑉
𝐿�𝑡

 

 
c) For 𝑡 → ∞, we have : 

𝐿∗(∞) =
𝐺0∗𝐿
𝐺 + 𝐿

= 14286 𝑟𝑒𝑑 𝑐𝑎𝑟𝑠

𝐺∗(∞) =
𝐺0∗𝐺
𝐺 + 𝐿

= 35714 𝑟𝑒𝑑 𝑐𝑎𝑟𝑠
 

 
d) Let’s name 𝑡8000 the time needed to have more than 8000 red cars in Lausanne. The condition is then: 

𝐿∗(𝑡8000) =
𝐺0∗𝐿
𝐺 + 𝐿

�1 − 𝑒−�
𝑉
𝐺+

𝑉
𝐿�𝑡8000� = 8000 

−�
𝑉
𝐺

+
𝑉
𝐿
� 𝑡8000 = 𝑙𝑛 �1 −

𝐺 + 𝐿
𝐺0∗𝐿

8000� 

𝑡8000 =
−1

�𝑉𝐺 + 𝑉
𝐿�

𝑙𝑛 �1 −
𝐺 + 𝐿
𝐺0∗𝐿

8000� = 147 ℎ𝑜𝑢𝑟𝑠 

 
e) The percentage of red cars in Lausanne and Geneva after a very long time is given by: 

𝐿∗(∞)
𝐿

=
𝐺0∗

𝐺 + 𝐿
= 14.3%

𝐺∗(∞)
𝐺

=
𝐺0∗

𝐺 + 𝐿
= 14.3%
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They are equal. The system reaches its equilibrium when they are as many red cars leaving Geneva than those 
leaving Lausanne per unit of time. The total amount of cars per minute driving from or to Geneva is the same. In 
order to have the equilibrium for the red cars, the probability of finding a red car leaving Lausanne or Geneva 
must be the same. This probability is given by the amount of red car over the total amount of cars in each city. 
This value is often called fractional enrichment. 

 
 

Solution 3: FDG-PET modeling / (brain) glucose metabolism 

 

a) The differential equations describing the evolution of the total concentration in each pool are: 
𝑑
𝑑𝑡
𝐶𝑓𝑟𝑒𝑒 = 𝐾1𝐶𝑆 − (𝑘2 + 𝑘3)𝐶𝑓𝑟𝑒𝑒 

𝑑
𝑑𝑡
𝐶𝑇 = 𝑘3𝐶𝑓𝑟𝑒𝑒 − 𝐶𝑀𝑅𝐺𝑙𝑐 

We assume constant total concentrations, which means that the differentials written above are equal to zero. 
We have: 

𝐶𝑓𝑟𝑒𝑒 =
𝐾1𝐶𝑆

(𝑘2 + 𝑘3)
 

𝐶𝑀𝑅𝐺𝑙𝑐 = 𝑘3𝐶𝑓𝑟𝑒𝑒 
Which gives: 

𝐶𝑀𝑅𝐺𝑙𝑐 = 𝐶𝑆
𝐾1𝑘3

(𝑘2 + 𝑘3)
 

 
b) We can evaluate α and β using the plasma tracer concentration. To estimate the two parameters, we need two 

measurements. A good idea is to take the ones with the higher signal (5 and 15 min) (the third one can be used 
as verification): 
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�
𝛼 𝑒−

5
𝛽 = 𝐶𝑆∗(5𝑚𝑖𝑛)          (1)

𝛼 𝑒−
15
𝛽 = 𝐶𝑆∗(15𝑚𝑖𝑛)          (2)

 

→ 𝑒
10
𝛽 =

𝐶𝑆∗(5𝑚𝑖𝑛)
𝐶𝑆∗(15𝑚𝑖𝑛) 

→
10
𝛽

= 𝑙𝑛 �
𝐶𝑆∗(5𝑚𝑖𝑛)
𝐶𝑆∗(15𝑚𝑖𝑛)� 

→ 𝛽 =
10

𝑙𝑛 � 𝐶𝑆
∗(5𝑚𝑖𝑛)

𝐶𝑆∗(15𝑚𝑖𝑛)�
= 10 𝑚𝑖𝑛 

We can reuse one of the two equations (1) or (2) to extract α: 

𝛼 𝑒−
5
𝛽 = 𝐶𝑆∗(5𝑚𝑖𝑛) 

→ 𝛼 = 𝑒
5
𝛽𝐶𝑆∗(5𝑚𝑖𝑛) = 2000

𝑘𝐵𝑞
𝑚𝑙

 

The Patlak formula to calculate the metabolic rate of glucose is: 

𝐶𝑀𝑅𝐺𝑙𝑐 =
𝐶𝑆
𝐿𝐶

𝐶𝑇∗(𝑇)

∫ 𝐶𝑆∗(𝑡)𝑑𝑡𝑇
0

 

We have the tissue tracer concentration at 40 min, where the contribution of free tracer in the tissue voxel can 
be neglected. We need then to calculate the integral of the plasma tracer concentration from 0 to 40min. 

� 𝐶𝑆∗(𝑡)𝑑𝑡 = � 𝛼 𝑒−
1
𝛽 𝑡 𝑑𝑡 + � 𝛼 𝑒−

𝑡
𝛽 𝑑𝑡

𝑇

1

1

0

𝑇

0
 

= 𝛼 𝑒−
1
𝛽 ∗

1
2
− 𝛼𝛽 �𝑒−

𝑡
𝛽�

1

𝑇

 

=
1
2

 𝛼 𝑒−
1
𝛽 − 𝛼𝛽 �𝑒−

𝑇
𝛽 − 𝑒−

1
𝛽� = 18635 

𝑘𝐵𝑞
𝑚𝑙

𝑚𝑖𝑛        𝑓𝑜𝑟 𝑇 = 40𝑚𝑖𝑛 

Finally, we find for the given values: 

𝐶𝑀𝑅𝐺𝑙𝑐 =
𝐶𝑆
𝐿𝐶

𝐶𝑇∗

∫ 𝐶𝑆∗(𝑡)𝑑𝑡𝑇
0

= 𝟎.𝟏𝟐𝟒  
𝝁𝒎𝒐𝒍
𝒈 𝒎𝒊𝒏

 

(we assume a tissue density of 1g/ml) 

Solution 4: Model Fitting Pitfalls 

This problem intends to make you aware of the pitfalls in experimental practice. In order to derive meaningful physical 
parameters (i.e. time constants) from experimental data, one often has to fit to a model function. This fitting is not 
trivial and can be error-prone. 

In a PET experiment, we want to measure a saturation curve A(1-e-λt). The experiment takes 50 minutes and we can 
measure every 5 minutes, obtaining the following values: 

min 5 15 25 35 45 

value 0.0472 0.1964 0.4149 0.4259 0.6265 
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fct [1] 0.0942 0.2592 0.3935 0.5034 0.5934 

res [1] 0.0479 0.0628 -0.0214 0.0775 -0.0331 

fct [2] 0.0784 0.2262 0.3625 0.4884 0.6046 

res [2] 0.0312 0.0297 -0.0524 -0.0625 -0.0219 

Now we want to fit to our model function. Consider the following two: 

1 − 𝑒−0.02𝑡  [1] 
2 ∙ (1 − 𝑒−0.008𝑡) [2] 

a) RMSE function 1 = 5.23 % 
RMSE function 2 = 4.61 % 

b)  

 
c) Measure longer, reduce the measurement noise. Here’s the curve if we measured 180 min: 
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