Neural Networks and Biological Modeling

Professor Wulfram Gerstner
Laboratory of Computational Neuroscience

Question set 3

Exercise 1: Separation of time scales

\boldsymbol{A}. One-dimensional system
Consider the following differential equation

$$
\begin{equation*}
\tau \frac{d x}{d t}=-x+c . \tag{1}
\end{equation*}
$$

1.1 Find the fixed point x_{0} of this system. Hint: a fixed point is a stationary solution $\Rightarrow \frac{d x}{d t}=0$.
1.2 Show that the fixed point is a stable one, and that the solution of (1) converges exponentially towards the fixed point with a time constant τ. Hint: write down the solution assuming an initial condition $x(t=0) \neq x_{0}$.
1.3 Consider the case where c is time-dependent, namely,

$$
c \equiv c(t)=\left\{\begin{array}{l}
0 \text { for } t<0 \\
c_{0} \text { for } 0 \leq t<1 \\
0 \text { for } t>1
\end{array}\right.
$$

Calculate the solution $x(t)$ with initial condition $x(t=-10)=0$.
1.4 Take the expression $x(t)$ you have found in the previous question. Consider $\tau=0.5$ and $\tau=0.01$ and sketch the function graph.
B. Separation of time scales

Consider the following system of equations:

$$
\begin{aligned}
\frac{d u}{d t} & =f(u)-m \\
\epsilon \frac{d m}{d t} & =-m+c(u)
\end{aligned}
$$

with $\epsilon=0.01$.
1.5 Exploit the fact that $\epsilon \ll 1$ and reduce the system to one equation (note the similarity between the m-equation and Eq.(1)).
1.6 Set $f(u)=-a u+b$ where $a>0, b \in \mathbb{R}$ and $c(u)=\tanh (u)$. Discuss the stability of the fixed points with respect to a and b. Hint: use the graphical analysis for one dimensional equations from week 1: when plotting $f(u)$ and $c(u)$ against u, you can read off the fixed point from that graph.

Exercise 2: Phase plane stability analysis

2.1 Linear system

Consider the following linear system:

$$
\left[\begin{array}{rl}
\frac{d u}{d t} & =\alpha u-w \\
\frac{d w}{d t} & =\beta u-w
\end{array}\right.
$$

These equations can be written in matrix form as $\frac{d}{d t} x=A x$ where $x=\binom{v}{w}$ and $A=\left(\begin{array}{cc}\alpha & -1 \\ \beta & -1\end{array}\right)$. Determine the conditions for stability of the point $(u=0, w=0)$ in the case $\beta>\alpha$ by studying the eigenvalues of the above matrix. (Hint: Distinguish the cases of real and complex eigenvalues.)

2.2 Piecewise linear Fitzhugh-Nagumo model

The Fitzhugh-Nagumo model is defined by the equations

$$
\left[\begin{array}{rl}
\frac{d u}{d t} & =F(u, w)=f(u)-w+I \\
\frac{d w}{d t} & =G(u, w)=b u-w
\end{array}\right.
$$

Here, $u(t)$ is the membrane potential and $w(t)$ is a second, time-dependent variable. I stands for the injected current. A simplified model is obtained by considering a piecewise linear $f(u)$:

$$
f(u)= \begin{cases}-u & \text { if } u<1 \\ \frac{u-1}{a}-1 & \text { if } 1 \leq u<1+2 a \\ 2(1+a)-u & \text { if } u>1+2 a\end{cases}
$$

with $a<1, b>1 / a$.
(i) Sketch the "nullclines" $d u / d t=0$ and $d w / d t=0$ in a (u, v)-plot. Consider the case $I=0$. How does the fixed point move as I is varied? Sketch the form of the flow (i.e., the vector $(d u / d t, d w / d t)$) along the nullclines and deduce qualitatively the shape of the trajectories.
(ii) Calculate the Jacobian matrix evaluated at the fixed point,

$$
J=\left(\begin{array}{cc}
\frac{\partial F}{\partial u} & \frac{\partial F}{\partial w} \\
\frac{\partial G}{\partial u} & \frac{\partial G}{\partial w}
\end{array}\right)
$$

Determine, by studying the eigenvalues of J, the linear stability of the fixed point as a function of I. What happens when the fixed point destabilizes?

