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QUESTION SET 3

Exercise 1: Separation of time scales

A. One-dimensional system

Consider the following differential equation

d
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1.1 Find the fixed point zy of this system. Hint: a fixed point is a stationary solution = ‘fl—‘f =0.

1.2 Show that the fixed point is a stable one, and that the solution of (1) converges exponentially towards the
fixed point with a time constant 7. Hint: write down the solution assuming an initial condition z(t = 0) # xo.

1.3 Consider the case where c is time-dependent, namely,
0 fort<0
c=c(t)=1 cfor0<t<1
0 fort>1.

Calculate the solution z(t) with initial condition z(t = —10) = 0.

1.4 Take the expression z(t) you have found in the previous question. Consider 7 = 0.5 and 7 = 0.01 and
sketch the function graph.

B. Separation of time scales

Consider the following system of equations:
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with € = 0.01.

1.5 Exploit the fact that ¢ < 1 and reduce the system to one equation (note the similarity between the
m-equation and Eq.(1)).

1.6 Set f(u) = —au+ b where a > 0, b € R and ¢(u) = tanh(u). Discuss the stability of the fixed points with
respect to @ and b. Hint: use the graphical analysis for one dimensional equations from week 1: when plotting
f(w) and ¢(u) against u, you can read off the fixed point from that graph.



Exercise 2: Phase plane stability analysis

2.1 Linear system

Consider the following linear system:

du_
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These equations can be written in matrix form as %x = Az where z = ( Z} ) and A = < g 1 ) Determine
the conditions for stability of the point (v = 0,w = 0) in the case § > « by studying the eigenvalues of the
above matrix. (Hint: Distinguish the cases of real and complex eigenvalues.)

2.2 Piecewise linear Fitzhugh-Nagumo model

The Fitzhugh-Nagumo model is defined by the equations

du =F(u,w) = f(u) —w+1
dt
% = Gu,w) =bu—w

Here, u(t) is the membrane potential and w(t) is a second, time-dependent variable. I stands for the injected
current. A simplified model is obtained by considering a piecewise linear f(u):
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with a < 1, b > 1/a.

(i) Sketch the “nullclines” du/dt = 0 and dw/dt = 0 in a (u, v)-plot. Consider the case I = 0. How does the
fixed point move as I is varied? Sketch the form of the flow (i.e., the vector (du/dt, dw/dt) ) along the nullclines
and deduce qualitatively the shape of the trajectories.

(ii) Calculate the Jacobian matrix evaluated at the fixed point,
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Determine, by studying the eigenvalues of J, the linear stability of the fixed point as a function of I. What
happens when the fixed point destabilizes?



