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Week 4 
Reducing detail:
Analysis of 2D models
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3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

3.3 Analysis of  a 2D Neuron Model

4.1 Type I and II Neuron Models
- limit cycles

4.2  Pulse input
- where is the firing threshold?
- separation of time scales

4.3. Further reduction to 1 dim
- nonlinear integrate-and-fire (again)

Reading for week 4:
NEURONAL DYNAMICS
- Ch. 4.4 – 4.7 

Cambridge Univ. Press



-Reduction of Hodgkin-Huxley to 2 dimension
-step 1: separation of time scales

-step 2: exploit similarities/correlations

Week 4 – Review from week 3
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Week 4 – Review from week 3
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Week 4 – review from week 3

Enables graphical analysis!
-Pulse input 
 AP firing (or not)

- Constant input
 repetitive firing (or not)
 limit cycle (or not)

2-dimensional equation
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3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

3.3 Analysis of  a 2D Neuron Model

4.1 Type I and II Neuron Models
- limit cycles
- where is the firing threshold?
- separation of time scales

4.2. Further Reduction to 1D

Week 4 – Reducing Detail – 2D models

Type I and      type II 
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Week 4 – 4.1.  Type I and II Neuron Models

Type I and type II  models
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neuron



4.1 Nullclines change for  constant stimulus
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4.1. Separation of time scales
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Week 4 - Exercise inhibitory rebound NOW! 

Now exercises

Start at 9:25
Next lecture at 9:40



4.1 Nullclines change for  constant stimulus
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4.1. Limit cycle (example: FitzHugh Nagumo Model)
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-unstable fixed point
-closed boundary

with arrows pointing inside
limit cycle



4.1.  Limit Cycle

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)

-unstable fixed point in 2D
-bounding box with inward flow
 limit cycle  (Poincare Bendixson)



4.1.  Limit Cycle

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)

-containing one unstable fixed point
-no other fixed point 
-bounding box with inward flow
 limit cycle  (Poincare Bendixson)

In 2-dimensional equations,
a limit cycle must exist, if we can
find a surface  



4.1 Type II Model 
constant input
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Discontinuous gain function

Stability lost oscillation with finite frequency

Hopf bifurcation



4.1.  Hopf bifurcation

iλ γ ω= +

0γ < 0γ >

iλ γ ω= −

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)

u(t)

Blackboard



I0

ν Discontinuous
gain function: Type II

Stability lost oscillation with finite frequency

4.1.  Hopf bifurcation:  f-I -curve
f-I curve

ramp input/
constant input

I0



4.1 Example: FitzHugh-Nagumo /  Hopf bifurcation

I=0

I>Ic



4.1. Type I and II Neuron Models

Type I and type II  models

I0 I0

f
f-I curve f-I curve

ramp input/
constant input

I0

neuron

Now:
Type I model



type I Model: 3 fixed points
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4.1.  Type I Neuron Models: saddle-node bifurcation

apply constant stimulus I0

size of arrows!
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4.1.  Type I Neuron Models: saddle-node bifurcation

constant input 
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4.1.  Type I Neuron Models: saddle-node bifurcation



4.1. Example: Morris-Lecar as type I Model

I=0

I>Ic
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4.1. Example: Morris-Lecar as type I Model



Response at  firing threshold?

ramp input/
constant input

I0

Type I                    type II

I0 I0

ff
f-I curve f-I curve

Saddle-Node
Onto limit cycle

For example:
Subcritical Hopf

4.1. Type I and II Neuron Models



4.1.  Type I and II Neuron Models

Type I and type II  models

I0 I0

f
f-I curve f-I curve

ramp input/
constant input

I0

neuron

Enables graphical analysis!

Constant input
 repetitive firing (or not)
 limit cycle (or not)

2-dimensional equation
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Neuronal Dynamics – Quiz 4.1.
A. 2-dimensional neuron model with (supercritical) saddle-node-

onto-limit cycle bifurcation 
[ ] The neuron model is of type II, because there is a jump in the f-I 
curve
[ ] The neuron model is of type I, because the f-I curve is continuous
[ ] The neuron model is of type I, if the limit cycle passes through a 
regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical 
Hopf bifurcation 
[ ] The neuron model is of type II, because there is a jump in the f-I 
curve
[ ] The neuron model is of type I, because the f-I curve is continuous
[ ] starting with zero current, and slowly increasing the current, is this 
true?  
“ in the regime below the Hopf bifurcation, the neuron is

at rest or will necessarily converge to the resting state”
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Week 4 - Exercise 1 and 2: NOW! 

Now exercises

Next lecture at 11:15
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Week 4 
Reducing detail:
Analysis of 2D models
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Week 4 – part 2: Pulse input in 2D Neuron Models
3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

3.3 Analysis of  a 2D Neuron Model

4.1 Type I and II Neuron Models
- limit cycles

4.2  Pulse input
- where is the firing threshold?
- separation of time scales

4.3. Further reduction to 1 dim
- nonlinear integrate-and-fire (again)



4.2. Threshold for Pulse Input in 2dim. Neuron Models

pulse input
I(t)

neuron

u

Delayed spike

Reduced amplitude

u



Review from 4.1 Bifurcations, simplifications

Bifurcations in neural modeling,
Type I/II neuron models,
Canonical simplified models

Nancy Koppell,
Bart Ermentrout,
John Rinzel,
Eugene Izhikevich

and many others
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4.2 Threshold for Pulse input
Blackboard:
Saddle, stable manifold, 
Slow response
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4.2  Type I model: Pulse input



4.1 Type I model: Threshold for Pulse input

Stable manifold plays role of
‘Threshold’ (for pulse input)

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)



4.1 Type I model: Delayed spike initation for Pulse input

Delayed spike initiation close to
‘Threshold’ (for pulse input)

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)



4.2 Threshold for pulse input in 2dim. Neuron Models

pulse input
I(t)

neuron

u

Delayed spike

u

Reduced amplitude

NOW: model with subc. Hopf



Review from 4.1: FitzHugh-Nagumo Model: Hopf bifurcation
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4.2  FitzHugh-Nagumo Model  with pulse input
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Week 4 – part 2: Threshold for pulse input in 2D models
3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

3.3 Analysis of  a 2D Neuron Model

4.1 Type I and II Neuron Models
- limit cycles

4.2  Pulse input
- where is the firing threshold?
- separation of time scales

4.3. Further reduction to 1 dim
- nonlinear integrate-and-fire (again)



4.2 Separation of time scales, example FitzHugh-Nagumo Model

( , ) ( )du F u w RI t
dt

τ = +

stimulus

),( wuG
dt
dw

w =τ

pulse input
Separation of time scales

uw ττ >>

0=
dt
du

0=
dt
dww

u
I(t)=0

Stable fixed point

I(t)

blackboard



4.2  FitzHugh-Nagumo model: Threshold for Pulse input

Middle branch of u-nullcline
plays role of

‘Threshold’ (for pulse input)
Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)

uw ττ >>
Assumption:



4.2 Detour: Separation fo time scales in 2dim models

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)

uw ττ >>
Assumption:
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4.2 FitzHugh-Nagumo model: Threshold for Pulse input

trajectory 
-follows u-nullcline:
-jumps between branches:  

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)

uw ττ >>
Assumption:

slowslow

slow

slow

fast
fast

slow

fast



4.2 Threshold for pulse input  in 2dim. Neuron Models

pulse input
I(t)

neuron

u

Delayed spike

u

Reduced amplitude

Biological input scenario

Mathematical explanation:
Graphical analysis in 2D



Week 4– Quiz 4.2.
A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation 
[ ] The voltage threshold for repetitive firing is always the same

as the voltage threshold for pulse input.
[ ] in the regime below the saddle-node bifurcation, the voltage threshold for repetitive 
firing  is given by the stable manifold of the saddle.
[ ] in the regime below the saddle-node bifurcation, the voltage threshold for action 
potential firing in response to a short pulse input is given by the middle branch of the u-
nullcline.
[ ] in the regime below the saddle-node bifurcation, the voltage threshold for action 
potential firing in response to a short pulse input is given by the stable manifold of the 
saddle point. 

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation 
[ ] in the regime below the  bifurcation, a voltage threshold for action potential firing in 
response to a short pulse input exists only if uw ττ >>
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Week 4: Reducing Detail – 2D models
3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

3.3 Analysis of  a 2D Neuron Model

4.1 Type I and II Neuron Models
- limit cycles

4.2  Pulse input
- where is the firing threshold?
- separation of time scales

4.3. Further reduction to 1 dim
- nonlinear integrate-and-fire (again)
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4.3.  Further reduction to 1 dimension

Separation of time scales

 Flux nearly horizontal



4.3. Further reduction to 1 dimension

Separation of time scales
-w is nearly constant 

(most of the time)

2-dimensional equation
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w =τ slow!
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4.3.  Further reduction to 1 dimension
Hodgkin-Huxley reduced to 2dim

w uτ τ>>
Separation of time scales
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τ = + During preparation/initation of spike



4.3.  Spike initiation: Nonlinear Integrate-and-Fire Model

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)

( , ) ( ) ( ) ( )rest
du F u w RI t f u RI t
dt

τ = + = +

 Nonlinear I&F (see week 1!)
During spike initiation, the 2D models with separation of time scales
can be reduced to a 1D model equivalent to nonlinear integrate-and-fire



4.3.  2D model, after spike initiation

Separation of time scales
-w is  constant (if not firing) 

2-dimensional equation

( , ) ( )du F u w RI t
dt

τ = +

),( wuG
dt
dw

w =τ

( ) ( )du f u RI t
dt

τ = +
Relevant during spike 
and downswing of AP Integrate-and-fire:

threshold+reset for AP 



2dimensional Model

Separation of time scales
-w is  constant (if not firing) 

2-dimensional equation

( , ) ( )du F u w RI t
dt

τ = +

),( wuG
dt
dw

w =τ

( ) ( )du f u RI t
dt

τ = +

Linear plus exponential

Relevant during spike 
and downswing of AP

w-dynamics replaced by
Threshold and reset in
Integrate-and-ire

4.3.  From 2D    to      Nonlinear Integrate-and-Fire Model

Nonlinear Integrate-and-Fire Model
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Exercise 2 and 3: NOW! 
inhibitory rebound

Now exercises-I0

Stable fixed
point at -I0

Assume separation
of time scales



Neuronal Dynamics – Literature for week 3 and 4.1
Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,
Neuronal Dynamics: from single neurons to networks and 
models of cognition. Chapter 4 Cambridge Univ. Press, 2014
OR J. Rinzel and G.B. Ermentrout,  (1989). Analysis of neuronal excitability and oscillations. 
In Koch, C. Segev, I., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA. 

Selected references.
-Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. 
Neural Computation, 8(5):979-1001.
-Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How spike 
generation mechanisms determine the neuronal response to fluctuating input. 
J. Neuroscience, 23:11628-11640.
-Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008). 
Biological Cybernetics,  99(4-5):361-370.
- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)



The END

The END



4.3.  Nonlinear Integrate-and-Fire Model

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014)
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 Nonlinear I&F (see week 1!)

( ) ( ) exp( )u
restf u u u ϑ−

∆= − − + ∆

Exponential integrate-and-fire model
(EIF)



Neuronal Dynamics – 4.2.  Exponential Integrate-and-Fire Model
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Fourcaud-Trocme et al, J. Neurosci. 2003



Neuronal Dynamics – Quiz 4.3.
A. Exponential integrate-and-fire model.  
The model can be derived
[ ] from a 2-dimensional model, assuming that the auxiliary variable w is constant.
[ ] from the HH model, assuming that the gating variables h and n are constant.
[ ] from the HH model, assuming that the gating variables m is constant.
[ ] from the HH model, assuming that the gating variables m is instantaneous.

B.  Reset. 
[ ] In a 2-dimensional model, the auxiliary variable w is necessary to implement a 

reset of the voltage after a spike
[ ] In a nonlinear integrate-and-fire model, the auxiliary variable w is necessary to 
implement a  reset of the voltage after a spike
[ ] In a nonlinear integrate-and-fire model,  a  reset of the voltage after a spike is 
implemented algorithmically/explicitly
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