Biological Modeling of Neural Networks

Week 4 Reducing detail: Analysis of 2D models Wulfram Gerstner

EPFL, Lausanne, Switzerland

Reading for week 4: NEURONAL DYNAMICS - Ch. 4.4 – 4.7

Cambridge Univ. Press

✓ 3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

✓ 3.3 Analysis of a 2D Neuron Model

4.1 Type I and II Neuron Models - limit cycles

4.2 Pulse input

- where is the firing threshold?
- separation of time scales

4.3. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

Week 4 – Review from week 3

-Reduction of Hodgkin-Huxley to 2 dimension -step 1: separation of time scales

-step 2: exploit similarities/correlations

Week 4 – Review from week 3 I_{Na} $C\frac{du}{dt} = -g_{Na}[m(t)]^{3}h(t)(u(t) - E_{Na}) - g_{K}[t]$

$$C\frac{du}{dt} = -g_{Na} m_0(u)^3 (1-w)(u-E_{Na}) - g_K [\frac{w}{a}]^4 (u-E_K) - g_l(u-E_l) + I(t)$$

dynamics of *m* are fast dynamics of *h* and *n* are similar

$$\frac{dh}{dt} = -\frac{h - h_0(u)}{\tau_h(u)} \longrightarrow \frac{dw}{dt} = -\frac{w - w_0(u)}{\tau_{eff}(u)}$$

$$[n(t)]^{4}(u(t) - E_{K}) - g_{l}(u(t) - E_{l}) + I(t)$$

$$\longrightarrow m(t) = m_0(u(t))$$
ar
$$\longrightarrow 1 - h(t) = a n(t)$$

$$w(t) \qquad w(t)$$

Week 4 – review from week 3

2-dimensional equation stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Enables graphical analysis! -Pulse input

\rightarrow AP firing (or not)

- Constant input

- → repetitive firing (or not)
- → limit cycle (or not)

3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

3.3 Analysis of a 2D Neuron Model

4.1 Type I and II Neuron Models

- limit cycles
- where is the firing threshold?
- separation of time scales

4.2. Further Reduction to 1D

Week 4 – 4.1. Type I and II Neuron Models

ramp input/ constant input

neuron

Type I and type II models

4.1 Nullclines change for constant stimulus

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

apply constant stimulus I_0

u-nullcline

4.1. Separation of time scales

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$
Separation of time scal

$$\tau_w >> \tau_u$$

blackboard

 $\tau_w >> \tau_u \longrightarrow \Delta w << \Delta u$

Unless close to nullcline

Week 4 - Exercise inhibitory rebound NOW!

Start at 9:25 Next lecture at 9:40

Now exercises

4.1 Nullclines change for constant stimulus

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

apply constant stimulus Io

u-nullcline

4.1. Limit cycle (example: FitzHugh Nagumo Model)

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

-unstable fixed point
 -closed boundary
 with arrows pointing inside
 Iimit cycle

4.1. Limit Cycle

-unstable fixed point in 2D
-bounding box with inward flow
→ limit cycle (Poincare Bendixson)

In 2-dimensional equations, a limit cycle must exist, if we can find a surface

-containing one unstable fixed point -no other fixed point -bounding box with inward flow \rightarrow limit cycle (Poincare Bendixson)

4.1. Hopf bifurcation

 $\gamma < 0$

4.1. Hopf bifurcation: *f-I*-curve

Stability lost \rightarrow oscillation with finite frequency

4.1 Example: FitzHugh-Nagumo / Hopf bifurcation

4.1. Type I and II Neuron Models

Now: Type I model

Type I and type II models

4.1. Type I Neuron Models: saddle-node bifurcation

stimulus

type I Model: 3 fixed points

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

apply constant stimulus Io

Saddle-node bifurcation

4.1. Type I Neuron Models: saddle-node bifurcation

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

Blackboard:
flow arrows,
ghost/ruins

constant input

4.1. Type I Neuron Models: saddle-node bifurcation

4.1. Example: Morris-Lecar as type I Model

I=0

|>|_c

4.1. Example: Morris-Lecar as type I Model

I₀

4.1. Type I and II Neuron Models

↓ |_0

Response at firing threshold?

Type I

Saddle-Node Onto limit cycle

ramp input/ constant input

f-l curve

type II

For example: **Subcritical Hopf**

Enables graphical analysis!

Constant input

- \rightarrow repetitive firing (or not)
- \rightarrow limit cycle (or not)

Type I and type II models

Neuronal Dynamics – Quiz 4.1.

onto-limit cycle bifurcation

curve

[] The neuron model is of type I, if the limit cycle passes through a regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical **Hopf bifurcation**

[] The neuron model is of type II, because there is a jump in the f-I curve

true?

" in the regime below the Hopf bifurcation, the neuron is at rest or will necessarily converge to the resting state"

A. 2-dimensional neuron model with (supercritical) saddle-node-

- [] The neuron model is of type II, because there is a jump in the f-I
- [] The neuron model is of type I, because the f-I curve is continuous
- [] The neuron model is of type I, because the f-I curve is continuous [] starting with zero current, and slowly increasing the current, is this

Week 4 - Exercise 1 and 2: NOW!

Next lecture at 11:15

Now exercises

Biological Modeling of Neural Networks

Week 4 Reducing detail: Analysis of 2D models

Wulfram Gerstner EPFL, Lausanne, Switzerland

Neuron Models 3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

✓ 3.3 Analysis of a 2D Neuron Model

4.1 Type I and II Neuron Models - limit cycles

4.2 Pulse input

- where is the firing threshold?
- separation of time scales

4.3. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

4.2. Threshold for Pulse Input in 2dim. Neuron Models

I(t)

Delayed spike

U

Reduced amplitude U

Review from 4.1 Bifurcations, simplifications

Bifurcations in neural modeling, Type I/II neuron models, Canonical simplified models

Nancy Koppell, Bart Ermentrout, John Rinzel, Eugene Izhikevich and many others

Review from 4.1: Saddle-node onto limit cycle bifurcation

4.2 Threshold for Pulse input

stimulus

 $\tau \frac{du}{dt} = F(u, w) + RI(t)$

 $\tau_w \frac{dw}{dt} = G(u, w)$

pulse input

Blackboard: Saddle, stable manifold, Slow response

4.2 Type I model: Pulse input

stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

pulse input

4.1 Type I model: Threshold for Pulse input

Stable manifold plays role of 'Threshold' (for pulse input)

4.1 Type I model: Delayed spike initation for Pulse input

Delayed spike initiation close to 'Threshold' (for pulse input)

4.2 Threshold for pulse input in 2dim. Neuron Models

pulse input

I(t)

Delayed spike

neuron

Reduced amplitude

NOW: model with subc. Hopf

Review from 4.1: FitzHugh-Nagumo Model: Hopf bifurcation

stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

apply constant stimulus Io

u-nullcline

4.2 FitzHugh-Nagumo Model with pulse input

W

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

pulse input

Biological Modeling of Neural Networks

Week 4 **Reducing detail**: Analysis of 2D models

Wulfram Gerstner EPFL, Lausanne, Switzerland

✓ 3.1 From Hodgkin-Huxley to 2D

- **√** 3.2 **Phase Plane Analysis**
- 3.3 Analysis of a 2D Neuron Model
- 4.1 Type I and II Neuron Models - limit cycles
 - 4.2 Pulse input
 - where is the firing threshold?
 - separation of time scales

4.3. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

4.2 Separation of time scales, example FitzHugh-Nagumo Model

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$\tau_{w} \frac{dw}{dt} = G(u, w)$ **Separation of time scales pulse input** $\tau_{w} \gg \tau_{u}$ I(t)

blackboard

4.2 FitzHugh-Nagumo model: Threshold for Pulse input

Middle branch of u-nullcline plays role of 'Threshold' (for pulse input)

4.2 Detour: Separation fo time scales in 2dim models

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Assumption:

 $\tau_w >> \tau_u$

trajectory -follows u-nullcline: slow -jumps between branches: fast

4.2 FitzHugh-Nagumo model: Threshold for Pulse input

4.2 Threshold for pulse input in 2dim. Neuron Models

Biological input scenario

Delayed spike

Mathematical explanation: Graphical analysis in 2D

Reduced amplitude

Week 4– Quiz 4.2.

A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation [] The voltage threshold for repetitive firing is always the same

as the voltage threshold for pulse input.

[] in the regime below the saddle-node bifurcation, the voltage threshold for repetitive firing is given by the stable manifold of the saddle. [] in the regime below the saddle-node bifurcation, the voltage threshold for action potential firing in response to a short pulse input is given by the middle branch of the unullcline.

[] in the regime below the saddle-node bifurcation, the voltage threshold for action potential firing in response to a short pulse input is given by the stable manifold of the saddle point.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation [] in the regime below the bifurcation, a voltage threshold for action potential firing in response to a short pulse input exists only if $\tau_w >> \tau_u$

Week 4: Reducing Detail – 2D models 3.1 From Hodgkin-Huxley to 2D

Biological Modeling of Neural Networks

Week 4 **Reducing detail:** Analysis of 2D models

Wulfram Gerstner EPFL, Lausanne, Switzerland

√ 3.2 **Phase Plane Analysis**

3.3 Analysis of a 2D Neuron Model

4.1 Type I and II Neuron Models - limit cycles

4.2 Pulse input

- where is the firing threshold?
- separation of time scales

4.3. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

4.3. Further reduction to 1 dimension

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$
$$\frac{dw}{dw} = F(u, w) + I(t)$$

$$\tau_w \frac{uw}{dt} = G(u, w)$$

Separation of time scales

$$au_w >> au_u$$

→ Flux nearly horizontal

4.3. Further reduction to 1 dimension

2-dimensional equation stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w) \qquad slow!$$

Separation of time scales -w is nearly constant (most of the time)

4.3. Further reduction to 1 dimension

Hodgkin-Huxley reduced to 2dim

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$2$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

$$3$$

$$2$$

$$2$$

$$3$$

$$2$$

$$2$$

$$3$$

Separation of time scales

$$\tau_{w} \xrightarrow{u} \tau_{u}$$

$$\tau_{w} \frac{dw}{dt} \approx 0 \rightarrow w \approx w_{rest}$$

>> au

$$\tau \frac{du}{dt} = F(u, w_{rest}) + RI(t)$$

Stable fixed point

0

-1

During preparation/initation of spike

4.3. Spike initiation: Nonlinear Integrate-and-Fire Model

 $\tau \frac{du}{dt} = F(u, w_{rest}) + RI(t) = f(u) + RI(t)$ → Nonlinear I&F (see week 1!) During spike initiation, the 2D models with separation of time scales can be reduced to a 1D model equivalent to nonlinear integrate-and-fire

4.3. 2D model, after spike initiation

and downswing of AP

2-dimensional equation

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Separation of time scales -wis constant (if not firing)

$$\tau \frac{du}{dt} = f(u) + RI(t)$$

Integrate-and-fire: threshold+reset for AP

2dimensional Model

Relevant during spike and downswing of AP

Nonlinear Integrate-and-Fire Model w-dynamics replaced by Threshold and reset in Integrate-and-ire

Nonlinear Integrate-and-Fire Model

2-dimensional equation

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$F_w \frac{dw}{dt} = G(u, w)$$

Separation of time scales -w is constant (if not firing) $\tau \frac{du}{dt} = f(u) + RI(t)$ Linear plus exponential

Assume separation of time scales

Now exercises

Neuronal Dynamics – Literature for week 3 and 4.1

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski, Neuronal Dynamics: from single neurons to networks and models of cognition. Chapter 4 Cambridge Univ. Press, 2014 OR J. Rinzel and G.B. Ermentrout, (1989). Analysis of neuronal excitability and oscillations. In Koch, C. Segev, I., editors, *Methods in neuronal modeling*. MIT Press, Cambridge, MA.

Selected references.

- -Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8(5):979-1001.
- -Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating input. J. Neuroscience, 23:11628-11640.
- -Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008). Biological Cybernetics, 99(4-5):361-370.
- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)

The END The END

4.3. Nonlinear Integrate-and-Fire Model

Exponential integrate-and-fire model (EIF)

$$f(u) = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

$$\tau \frac{du}{dt} = F(u, w_{rest}) + RI(t) = f(u) + RI(t)$$

$$\rightarrow \text{Nonlinear I&F (see week)}$$

Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014)

ek 1!)

Neuronal Dynamics – 4.2. Exponential Integrate-and-Fire Model

Direct derivation from Hodgkin-Huxley

$$C\frac{du}{dt} = -g_{Na} m^{3} h (u - E_{Na}) - g_{K} n^{4} (u - E_{K}) - g_{l} (u - E_{l}) + I(t)$$

$$C\frac{du}{dt} = -g_{Na}[m_0(u)]^3 h_{rest}(u - E_{Na}) - g_K[n_{rest}]^4(u - E_K) - g_l(u - E_l) + I(t)$$

$$\tau \frac{du}{dt} = F(u, h_{rest}, n_{rest}) + RI(t) = f(u) + RI(t)$$

Fourcaud-Trocme et al, J. Neurosci. 2003

$$f(u) = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

gives expon. I&F

Neuronal Dynamics – Quiz 4.3.

A. Exponential integrate-and-fire model.

The model can be derived

[] from a 2-dimensional model, assuming that the auxiliary variable w is constant.
[] from the HH model, assuming that the gating variables h and n are constant.
[] from the HH model, assuming that the gating variables m is constant.
[] from the HH model, assuming that the gating variables m is instantaneous.

B. Reset.

[] In a 2-dimensional model, the auxiliary variable w is necessary to implement a reset of the voltage after a spike
[] In a nonlinear integrate-and-fire model, the auxiliary variable w is necessary to implement a reset of the voltage after a spike
[] In a nonlinear integrate-and-fire model, a reset of the voltage after a spike is implemented algorithmically/explicitly