

Prof **François Bochud** Institute of Radiation physics (IRA) UNIL - CHUV

Introduction to Medical Physics

Patient dose and radiation protection

Learning objectives

- Describe the general method used to estimate the patient dose in radiodiagnostic and in nuclear medicine
- Describe the dosimetric quantities and the methodology used in radiodiagnostic to estimate the dose
- Explain the main difference between external irradiation and internal contamination
- Explain the basic of the computation of dose with compartmental models

Two irradiation situations

- External irradiation
 - Radiation generators
 - Sealed radioactive source

- Internal contamination
 - Open radioactive source

Patient dose and radiation protection

1. Diagnostic radiology What is the highest contribution of dose to the population in medical imaging?

- 1. Conventional radiography
- 2. Dental radiography
- 3. Computed Tomography

Number of examinations/1000 caput (European countries)

Figure 1: Total frequencies of diagnostic and interventional radiology procedures per 1000 of population for different countries, including plain radiography (including dental), fluoroscopy, CT and interventional radiology (upper). Without plain radiography (lower) (2).

What is the **effective dose** ?

- Energy deposited per unit of mass
- 2. Absorbed dose weighted by the radiation quality factors w_R
- 3. Equivalent dose weighted by the tissue quality factors w_T

Radiological examinations (Switzerland)

number of examinations

C I VL

FOPH, Radiation protection, Annual report 2015

Radiological examinations (Switzerland)

Fig. 4: Répartition de la fréquence et contribution aux doses de rayonnement des différents examens radiologiques, IRA 2015

Time evolution of radiological dose (Switzerland)

Fig. 3 : L'exposition au rayonnement d'origine médicale augmente du fait des examens CT ; en ce qui concerne les autres applications, la tendance est à la baisse. Exposition au rayonnement d'origine médicale (sans les examens CT)

Exposition au rayonnement d'origine médicale due aux examens CT

Methodological scheme

risk indicator (ICRP, UNSCEAR) $E = DQ \times e_{DQ}$ ***** **Dosimetric quantity** specific to the patient specific to the installation (this quantity is **measured** or *calculated* in practice)

Effective dose

Conversion factor generic adult / pediatric

Imaging modality	Dosimetric quantity (DQ)	
Radiography	ESAK [mGy]	
	Entrance Skin Air Kerma	
	D_e [mGy]	
	Entrance dose in air	
Radioscopy	KAP [mGy cm ²]	
	Kerma Area Product	
	IRP [mGy]	
	Interventional Reference Point	
Computed tomography (CT)	CTDI [mGy]	
	CT Dose Index	
	DLP [mGy cm]	
	Dose Length Product	
Mammography	ESAK [mGy]	
	Entrance Skin Air Kerma	
	MGD [mGy]	
	Mean Glandular Dose	

Patient dose and radiation protection

1.1Diagnostic radiology**Radiography**

ESAK in radiography

(entrance skin air kerma)

ESAK can be measured

$$ESAK = C \times \left(\frac{U[kV]}{100}\right)^2 \times Q[mAs] \times \frac{1}{d^2}$$

ESAK can be calculated

C = 0.10 mGy m²/mAs

(air kerma constant at d=1m, U=100kV,

total filtration=3mm Al) varies from one installation to another (±50%)

Exercise

What is the entrance dose in air for a radiography of the abdomen with the following parameters?

U = 80 kV Q = 40 mAs d = 80 cm

1. Press "1" when you are finished

Exercise: D_e in radiography

Example of Swiss **Diagnostic Reference Level** (DRL) for radiography

	D _e
Système / organe	Dose à la surface d'entrée du patient par cliché [mGy]
Thorax (pa)	0,15
Thorax (profil)	0,75
Rachis lombaire (ap ou pa)	7
Rachis lombaire (profil)	10
Bassin (ap)	3,5
Crâne (ap ou pa)	2,5
Crâne (profil)	1,5

Computation of E in radiography

(Example of a chest x-ray PA (postero-anterior))

Effective dose:
$$\mathbf{E} = \mathbf{e}_{D_{E}} \times \mathbf{D}_{e}$$

Organ	Concerned	Dose relative	Dose relative to D _e w _T	Contribution
	fraction	to D _e		to e _{De} [mSv/mGy]
Gonads	0%	0%	0.20	0.000
Red bone marrow	20%	100%	0.12	0.024
Colon	10%	100%	0.12	0.012
Lungs	100%	50%	0.12	0.060
Stomac	100%	30%	0.12	0.036
Bladder	0%	0%	0.05	0.000
Breasts	100%	10%	0.05	0.005
Liver	100%	30%	0.05	0.015
Esophagus	80%	50%	0.05	0.020
Thyroid gland	50%	50%	0.05	0.012
Skin	7%	100%	0.01	0.001
Bone surface	2%	100%	0.01	0.002
Rest	0%	0%	0.05	0.000
Total				~0.20

Conversion factors e_{De} for the main radiographic exams

Exam	Incidence	field size (cm²)	e _{De} [mSv/mGy]
Skull	PA	20x25	0.02
<mark>Chest</mark>	<mark>PA</mark>	<mark>33x37</mark>	<mark>0.20</mark>
Shoulder	AP	18x25	0.02
Cervical spine	AP	15x20	0.07
Dorsal spine	AP	16x35	0.17
Lombar spine	AP	16x35	0.21
Abdomen	AP	30x40	0.31
Abdomen	PA	30x40	0.15
Hip	AP	18x30	0.17
Knee	AP	15x18	0.005

Typical magnitude of the **effective dose** E in **radiography**

Patient dose and radiation protection

1.2Diagnostic radiologyFluoroscopy

Fluoroscopy

(Slightly more complex than radiography)

You measured an **air kerma** of **120 mGy** at a distance of **5 cm** from the focal spot. What would be the magnitude of the air kerma at a **distance of 1 m**?

- 1. 120 mGy
- 2. 24 mGy
- 3. 6 mGy
- 4. 3 mGy
- 5. 0.3 mGy

Fluoroscopy: KAP does not depend on distance (KAP: kerma area product)

Fluoroscopy: KAP

Direct measurement

Ionization chamber at the tube exit

Calculation

From the exposition parameters (kV, mAs, axis dose rate, field size)

Computation of the **effective dose** E in **fluoroscopy**

 $\mathbf{E} = \mathbf{e}_{\mathrm{KAP}} \cdot \mathbf{KAP}$

Exam	e _{KAP} [mSv /Gy / cm²]
Skull AP	0.04
Chest PA	0.1
Abdomen AP	0.2
Lumbar spine LAT	0.1

Typical magnitude of the **effective dose E** in **diagnostic fluoroscopy**

Abdominal aortography Lower limb arteriography Ovarian phlebography Pulmonary arteriography Thoracic aortography Cerebral angiography Colonoscopy Shoulder arthrography Hysterosalpingography Mict. cysto-urethrography Intravenous urography ERCP Transhepatic cholangiography Retrograde cholangiography Defecography Enteroclysis Oesophagus 0

Typical magnitude of the **effective dose E** of **therapeutic fluoroscopy**

Patient dose and radiation protection

1.3Diagnostic radiology**CT: Computed Tomography**

Dose distribution in CT

Dose distribution with circular symmetry

Weighted CTDI (CTDI_w)

$$CTDI_{w} = \frac{1}{3}CTDI_{center} + \frac{2}{3}CTDI_{periphery} \quad [mGy/mAs]$$

CT dose index (CTDI)

mean dose measured in the phantom for one tube rotation

periphery

CTDI_{vol}: mean dose in the slice

Dose Length Product (DLP)

Computation of the **effective dose E** in CT

Exercise

What is the **effective dose** of a **chest CT** exam with the following parameters? U = 120 kV Q = 160 mAs

Rotation time = 0.6 s Collimation = 16 x 1.25 mm Reconstructed slice thickness = 2.5 mm Pitch = 1.2 Examined length = 30 cm CTDI_w = 0.1 mGy/mAs $e_{DIP} = 0.015$ mSv/(mGy cm)

1. Press "1" when you are finished

Exercise (solution)

U = 120 kV Q = 160 mAs Rotation time = 0.6 s Collimation = 16 x 1.25 mm Reconstructed slice thickness = 2.5 mm Pitch = 1.2 Examined length = 30 cm CTDI_w = 0.1 mGy/mAs $e_{DLP} = 0.015$ mSv/(mGy cm)

$$E = CTDI_{w} \times \frac{Q}{pitch} \times L \times e_{DLP} =$$
$$= 0.1 \times \frac{160}{1.2} \times 30 \times 0.015 =$$
$$= 6 mSv$$

Patient dose and radiation protection

1.4Diagnostic radiologyMammography

ESAK in mammography

(ESAK: entrance skin air kerma)

Mo/Mo 28 kV: Γ_{κ} = 0.05 mGy m²/mAs

ESAK in mammography

- ESAK (or D_e) **not** really **representative of risk**
- The effective dose E is even worse
 - w_T considers an android human (50% male / 50% female)
 - only one organ irradiated
- The Mean Glandular Dose (MGD) is a good risk estimator

$$MGD = ESAK \times mgd_{ESAK}$$
 [mGy]

mgd_{ESAK} for a 50/50 composition (50 % glandular / 50 % adipose tissues)

Half Value Layer of the x-ray beam

Compress	sed breast thickness [mm]	
30	50	70
0.23	0.14	0.094
0.27	0.16	0.11
0.31	0.19	0.13
0.34	0.21	0.15
	Compress 30 0.23 0.27 0.31 0.34	Compressed breast thickne30500.230.140.270.160.310.190.340.21

Patient dose and radiation protection

2. Nuclear medicine

A target region r_T can be irradiated from other source regions r_S or from the region itself

FIGURE 22-1 Absorbed dose delivered to a target organ from one or more source organs containing radioactivity is calculated by the absorbed fraction dosimetry method.

Equivalent dose in target region r_{T}

Equivalent dose in target region r_{T}

Number of nuclear transformations in source region r_s per unit of intake during time τ

Intake (activity incorporated) $H_T = I \sum_{S} \tilde{a}(r_S, \tau)$

Equivalent dose in target region r_{T}

Patient dose and radiation protection

2.1Nuclear medicineComputation of the S factor

Transport of energy from r_s to r_T is computed by **Monte Carlo simulation**

FIGURE 22-5 Representation of an "average man" used for MIRD dose calculations and tables. (Adapted with permission from Snyder WS, Fisher HL Jr, Ford MR, Warner GG: Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogenous phantom. J Nucl Med Suppl 3:9, 1969.)

ICRP-110 voxel phantoms

Other ICRP phantoms

Fetal phantoms

To be realized by ICRP TG 96 with support of U.S. Environmental Protection Agency

Other ICRP phantoms

pregnant women (8 weeks to 38 weeks post-conceptions)

To be realized by ICRP TG 96 with support of U.S. Environmental Protection Agency

Other ICRP phantoms

pediatric reference phantoms

To be realized by ICRP TG 96 with support of U.S. Environmental Protection Agency

Dose to the patient 2.3 Nuclear medicine Direct measurement of the number of nuclear transformations

Number of nuclear transformations within **source region** r_s

Time (sec)

Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012

$\tilde{A}(r_s, \tau)$ can be measured in nuclear medicine

Time (sec)

 $\begin{array}{l} \textbf{quantitative SPECT}\\ \text{imaging performed}\\ \textbf{at different times} \text{ allows us}\\ \text{to estimate } \tilde{A}(r_{s},\tau) \end{array}$

Dose to the patient
2.4
Nuclear medicine
Compartment models

$\tilde{A}(r_s,\tau)$ can be computed with compartmental biokinetic models

Organism divided in sub-systems: Compartments

The compartments are considered as instantaneously homogenous

Continuous transfer

between the compartments

Flux from one compartment to another

Proportional to A in the source

λ: fractional transfer rate

probability of transfer from one compartment to another per unit of time

HATM (human alimentary tract model)

Dose to the patient 2.5 Nuclear medicine Computation of the number of nuclear transformations with compartmental models What is the solution to this differential equation?

1. f(x) = -x + b2. $f(x) = -x^2 + b x + c$ 3. f(x) = -a/x4. $f(x) = a \exp(-x)$

Simple case with **two compartments** and **one flux**

$$\begin{bmatrix} \text{(time series)} & A_{1}(t) = A_{1,0}e^{-\lambda_{12}t} \\ & A_{2}(t) = A_{2,0} + A_{1,0}\left[1 - e^{-\lambda_{12}t}\right] \end{bmatrix}$$

$$\begin{split} & \tilde{A}\big(r_{S1},\tau\big) = \int A_1\big(t\big) dt = A_{1,0} \frac{1}{\lambda_{12}} = A_{1,0} \frac{T_{\text{bio},12}}{\ln 2} \\ & \text{(integration of the time series)} \end{split} \qquad \tilde{A}\big(r_{S2},\tau\big) = \int A_2\big(t\big) dt = A_{2,0} + \Big(1 - A_{1,0} \frac{T_{\text{bio},12}}{\ln 2}\Big) \end{split}$$

(time series)
$$A_{1}(t) = A_{1,0}e^{-\lambda_{12}t}$$

 $A_{2}(t) = A_{2,0} + A_{1,0}\left[1 - e^{-\lambda_{12}t}\right]$

Simple case with four compartments and four fluxes

Matrix formalism

$$\frac{\partial A_4}{\partial t} = \lambda_{14}A_1 + \lambda_{24}A_2$$

Diagonal terms: **outputs**

The **radioactive decay** effect can be taken into account by adding the decay constant λ_{nuc} in each diagonal term of Λ

$$\Lambda_{_{ii}}=\sum_{_{j\neq i}}-\lambda_{_{ij}}$$

Off-diagonal terms: inputs

Solution of the problem

Knowing the **time evolution** of the **activity A** in each compartment allows us to compute the **number of nuclear transformations** $\tilde{A}(\tau)$

$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{\Lambda} \mathbf{A} \qquad \qquad \mathbf{A}(t) = \mathbf{A}_0 \mathbf{e}^{\mathbf{\Lambda} t}$$

$$\tilde{\mathbf{A}}(\tau) = \int_{0}^{\tau} \mathbf{A}_{0} \mathbf{e}^{\mathbf{A}t} \mathbf{d}t$$

(integration of A(t) between times 0 and τ)

Equivalent dose to each organ

Effective dose

 $E = \frac{\sum_{T} w_{T} H_{T} (female) + \sum_{T} w_{T} H_{T} (male)}{2}$

for a generic person

Patient dose and radiation protection

3. Summary of the dosimetric quantities Which affirmation concerning the **effective dose** is correct? *(multiple responses possible)*

- 1. It estimates the global risk for a population
- 2. It estimates the global risk for an individual
- 3. It is related to an androgyn reference person
- 4. It is useful to compare different irradiation conditions
- 5. It is linked to the risk observed on the Hiroshima & Nagasaki survivors

For which imaging modality, is the effective dose not relevant to estimate the risk?

- 1. Chest x-ray
- 2. Abdomen x-ray
- 3. Mammography
- 4. Full body CT scan

Radiology

The most relevant risk is estimated by the effective dose, E

$E = DQ \times e_{DQ}$

Exceptions:

fluoroscopy, where the skin is the most at risk (IRP); mammography, where only one organ is exposed (MGD)

Imaging modality	Dosimetric quantity (DQ)	
Radiography	ESAK [mGy]	
	Entrance Skin Air Kerma	
	D _e [mGy]	
	Entrance dose in air	
Radioscopy	KAP [mGy cm ²]	
	Kerma Area Product	
	IRP [mGy]	
	Interventional Reference Point	
Computed tomography (CT)	CTDI [mGy]	
	CT Dose Index	
	DLP [mGy cm]	
	Dose Length Product	
Mammography	ESAK [mGy]	
	Entrance Skin Air Kerma	
	MGD [mGy]	
	Mean Glandular Dose	

How do we restrict the dose delivered to the patient?

- Dose limits are applied with specific values for each type of exam (*limitation principle*)
- Dose reference levels are proposed for each type of exam (optimization principle)
- 3. There are no legal restriction
- 4. No idea

7 sur 7

Radiology and dose reference levels (**DRL**)

Comparisons with **dose reference levels** (DRL) is performed through the **dosimetric quantities** (DQ)

 Tableau 1 : NRD et valeurs cibles pour adultes

Examen / problématique		NRD (75 ^e percentile) CTDI _{Vol} [mGy] PDL [mGy·cm]	
1	Crâne / cerveau Examens standards, recherche de métastases, abcès cérébral, …	65	1000
2	Cerveau (vaisseaux) Hémorragies, anévrismes, malformations artério- véneuses, …	65	1000
3	Partie osseuse de la face, sinus Traumatismes, sinusites, …	25	350
4	Base du crâne, rocher Traumatismes, cholestéatome, …	50	250
5	Cou, colonne vertébrale cervicale (parties molles, osseuses) Adénopathie, recherche d'abcès,	30	600

