

24.04.19 Virtual Reality

Experimental Design and experimentation in VR

Dr Bruno Herbelin

Laboratory of Cognitive Neuroscience Center for Neuroprosthetics Brain & Mind Institute EPFL

Introduction

- People will trust what you say if you can prove it !
- Professional & scientific communities want evidences
 - Facts & observations
 - Measures
- Difficulties
 - How to prove that my method is better?
 - How to evaluate the change in performance / success?
- Pitfalls
 - Biased measurements
 - The new algorithm is faster (*on a new computer*) than the old algorithm (*on an old computer*)
 - Biased subjects
 - "I tested it myself !"

- Causal research
 - Experiment the causal relationship between one or more variables on one or more outcome variables
 - Variable; factor that can change and is measurable
 - Causal relationship
 - When one variable depends on the change of another

e.g. Fever reduction depends on Paracetamol intake

If X, then Y AND If NOT X, then NOT Y

- Causal research
 - Experiment the causal relationship between one or more variables on one or more outcome variables
 - Variable; factor that can change and is measurable
 - Causal relationship
 - When one variable depends on the change of another e.g. Fever reduction depends on Paracetamol intake
- NB:
- Correlational relationship (non-experimental design)
 - Measure of a correlation between two variables
 - Positive or negative (e.g. +/- 1.0 linear factor)
 - Non correlated (0)
 - Correlation does not equal causation
 - Unless your experiment uses control condition, you cannot infer the causation from a correlation

Principle of Randomization

- Protect experiment from factors not under consideration
- Variations caused by extraneous factors are considered as noise (chance probability)
- Principle of **Replication**
 - Experiment should be done with more than 1 subject
 - Accuracy of mean effect increases with repetitions
- Principle of local **Control**
 - Measure (and suppress) variability of extraneous factors by deliberately testing them
 - Group or block design

- True experimental design obey the three principles
 - Random selection and assignment of subjects
 - **Selection** = how to find subjects
 - **Assignment** = how to use selected subjects
 - Repeat the experiment with many subjects
 - Control conditions or groups (e.g. Placebo group)
- If not, there are other approaches
 - Quasi-experimental design
 - No randomization, but with control
 - Non-experimental design
 - No randomization, no control
 - Survey, correlational studies

- Independent variables (IV)
 - Factors manipulated by the experimenter
- Dependent variables (DV)
 - Responses measured by the experimenter
- Experimental and control groups
 - Participants are randomly assigned in two groups
 - Experimental group; with manipulation
 - Control group; without any manipulation
 - This is because a truly causal relationship is bidirectional:

```
If X, then Y
AND
If NOT X, then NOT Y
```

- Experimental hypothesis
 - Statement predicting a cause and its effect(s)
 - Typically, how an independent variable will affect a dependent variable
 - e.g. "Increase of treatment will improve recovery"
- Null hypothesis
 - The hypothesis that the experimental manipulation will have no impact on dependent variables
 - e.g. "Increase of treatment does not improve recovery"
 - Does not mean there was no effect on the participant, but that the experiment does not measure it
- An experiment is performed to validate an hypothesis i.e. prove that the null hypothesis is wrong

- Timing
 - Cross-sectional research
 - Experiment performed on a subject at one occasion
 - Focus on presently manipulated conditions
 - Longitudinal research
 - Data gathered repeatedly throughout the length of the study
 - Covers long periods, from few days to several years
- Pre/post testing
 - Pre-test; measure dependent variable before manipulation
 - Not always applicable or relevant
 - Post-test; measure dependent variable after manipulation

Between subjects vs. Within subjects

- Between subject design
 - Subjects are divided into groups
 - Each group has only 1 condition of a variable
 - Results are compared **between groups**
 - Eliminates variations due to ordering of conditions
- Within subjects design
 - Subjects perform all conditions of a variable
 - Results are compared **between conditions** for all subjects
 - Eliminate variations due to user differences

Notations

•	Observations or measures ;	0
•	Treatment or programs ;	Х
	 e.g. intervention, manipulation, etc. 	
•	Assignment to groups	
	 Random assignment; 	R
	 Non-equivalent groups; 	Ν
	 Cutoff assignment 	С

Two-groups experimental design

 Experimental and control groups

R	Х	0
R		0

- Subjects randomly assigned
- Post test only
 - Assume two groups are equivalent
 - Determine if two groups are different after the program
- Capable of assessing cause-effect relationships of one independent variable
 - Yes, it follows the three principles!

The simplest and a very often used research design method

Analysis of results

- Compare the means of two groups
 - Compute the mean (or median) of DVs per group
 - . They are equal; null hypothesis validated
 - One is higher than the other; the null hypothesis invalidated
 - Problem; how much variability in the data?
 - e.g. measures vary from -100 to 100, means differ by 2.0; does this really mean something?
- Standard deviation
 - Measure the dispersion of data
 - = square root of Variance
- Standard error of the mean
 - Confidence interval for the computed mean
 - standard deviation / number of measurements

Analysis of results

• Standard error of the mean (example)

4 users for each condition: Error bars overlap, so can't conclude anything

16 users for each condition: Error bars are disjoint, so Windows is significantly different from Mac

- Student's t-test
 - Tests if the mean of two groups are identical (null hypothesis)
 - **p value** = probability that the difference is chance
 - e.g. $p < 0.05 \rightarrow 95\%$ confidence that it is not chance!

Example in VR

• Putting yourself in the skin of a black avatar reduces implicit racial bias

Tabitha C. Peck, Sofia Seinfeld, Salvatore M. Aglioti, Mel Slater. Consciousness and Cognition Volume 22, Issue 3, September 2013, Pages 779–787.

Example in VR

- Putting yourself in the skin of a black avatar reduces implicit racial bias
 - IV 1 : skin color of avatar in VR
 - DV: Racial Implicit Association Test

Group	Pre IAT	Skin change	Post IAT
R	0		0
R	0	Х	0

- IV 2 : synchrony of motion of avatar
 - DV: Questionnaire on body ownership

Group	Sync	Post Q
R	Х	0
R		0

Experiment

- 60 subjects light skin
- 4 Groups
 - Embodied-Light-Skinned (EL)
 - Embodied-Dark-Skinned (ED)
 - Non-Embodied Dark-Skinned (ND)
 - Embodied-Alien-Skinned (EA)

Group	Pre IAT	Program	Post IAT	Q
R	0	EL	0	0
R	0	ED	0	0
R	0	ND	0	0
R	0	EA	0	0

Results

Bar chart showing means and standard errors of Δ *IAT* by condition.

Bart chart showing means and standard errors of average embodiment questionnaire score by condition. The average embodiment score is obtained as (Q1 + 6 - Q4)/2. (Q1:I felt as if the body I saw in the virtual world might be my body. *Q4 :* I felt like the avatar was not me.)

Null-Hypothesis "Synchrony of movement has no effect on body ownership" proven wrong. Null-Hypothesis "Embodiment in a body of opposite color does not impact racial bias" proven wrong.

More detail in the paper : http://www.sciencedirect.com/science/article/pii/S1053810013000597

Factorial design

- Extend 2-groups design for multiple variables
 - Each variable shall be tested with two groups, so two variables can be

R	X11	0
R	X12	0
R	X21	0
R	X22	0

tested with four, three with six, etc...

- Each independent variable is called a factor
- Consider two or more levels per factors
 - Variation of the variable
 - e.g. with / without manipulation + intermediate levels
- Mix the factors and levels
 - Subjects are randomly assigned to one level of one factor

Factorial design

- Factorial notations
 - e.g. 2 x 3 (two by three) design
 - Two factors
 - First factor has two levels
 - Second factor has three levels
 - Total of 2x3=6 groups
- Mixed Factorial design
 - Between group measure on one independent variable
 - Repeated measure on the other

Analysis of results (examples)

~~

Example in VR

- First person experience of body transfer in virtual reality
 - Slater, Spanlang, Sanchez-Vives & Blanke, PloS one, 2010.

3PP

First-person experience of body transfert in VR

EXPERIMENTAL PROTOCOL for EEG RECORDING

VERE-WP1 / LNCO & EventLab / Nov. 2010

Experiment : factorial design

Result

Interaction of the two factors (synchrony and perspective) for the subjective self identification (Q1 and Q3)

Self identification (Q1); How much did you feel that the seated girl's body was your body?

Self identification (Q3); How strong was the feeling that you were wearing different clothing?

Illusory touch (Q2); How strong was the feeling that the touch you felt was caused by the woman that you saw?

Control (Q4); How strong was the feeling that the color of the room changed during the experiment?

Experimental design for VR

- In VR like in HCI, human factor determines the validity of the system
 - Need to perform valid experimentation on subjects
 - Non-experimental design is not strong enough to conclude on the causality
- Pitfalls
 - User experience and acceptation of technology strongly influence results
 - Can't compare a teenage gamer with elderly
 - People like / dislike high-tech gadgets
 - High habituation and learning during testing
 - Past the surprise of immersion, people change behavior

Experimental design for VR

- Testable hypothesis
 - Modify one feature = create an independent variable
 - Dependent variable = measurement of user
- Techniques for controlling IVs
 - Enable / disable a feature (\rightarrow groups)
 - Change hardware (\rightarrow groups)
 - e.g. HMD vs. CAVE
 - Compare with / without training
 - Vary the influence or magnitude of a feature
 - Change values of parameters (\rightarrow factorial levels)
 - e.g. low, medium, high
 - Vary the difficulty or complexity of the task
 - e.g. show that a factor is better for complex tasks

Experimental design for VR

- Tools for measuring user (DV)
 - Simulation
 - Time (to reach, to accomplish a task, etc.)
 - Distance (from A to B, length of a path, etc.)
 - User
 - Physiological
 - Eye tracking, heart rate, etc.
 - Cognitive
 - Questionnaire scores, scales, etc.
- Pitfalls
 - Do not change instructions! (influence performance)
 - Do not ask directly about the IV

Conclusion

- Experimental design is powerful
 - Proves the causal relationship between variables
 - High scientific value (statistics)
- Experimental design has strong constraints
 - Needs several subjects
 - Every little difference in conditions changes everything
- Many more combinations & possibilities
 - e.g. ANOVA for factorial within subjects
 - e.g. Covariance design with ANCOVA analysis
- In short
 - You test people, not system
 - results indicate what subjects do / think, not if the system is better...