Biological Modelling of Neural Networks Exam 17 June 2014

- Write your name in legible letters on top of this page.
- The exam lasts 160 min .
- Write all your answers in a legible way on the exam (no extra sheets).
- No documentation is allowed apart from 1 sheet A5 of handwritten notes.
- No calculator is allowed.
- Have your student card displayed before you on your desk.

Evaluation:

1. / 7 pts
2. / 12 pts
3. / 6 pts
4. / 8 pts
5. / 9 pts
6. / 8 pts

Total: \qquad / 50 pts

1 Ion channel (7 points)

We consider the following model of a ion channel

$$
I_{i o n}=g_{0} x^{p}(u-E)
$$

where u is the membrane potential. The parameters g_{0}, p and $E=0$ are constants.
(a) What is the name of the variable E ? \qquad
Why does it have this name, what does it signify (give answer in one short sentence)
number of points: 1
(b) The variable x follows the dynamics

$$
\frac{d x}{d t}=-\frac{x-x_{0}(u)}{\tau}
$$

where $x_{0}(u)$ is monotonically increasing and bounded between zero and one. Suppose we make a voltage step from a fixed value E to a new constant value u_{0}. Give the mathematical solution $x(t)$ for $t>0$
$x(t)=$ \qquad
number of points: 2

An electrophysiologist tells you that he is able to apply voltage steps as in (b) and that by measuring the current he wants to determine the parameters g_{0} and $x_{0}(u)$ of the ion channel in (a) and (b)
(c) How should he proceed to measure the parameter p ? What would be different between the case $p=1$ and $p=2$? You can sketch a little figure to illustrate your answer.
\qquad
\qquad
\qquad
number of points: 2
(d) Under the assumption that $x_{0}(u)$ is bounded between zero and 1 , how can he measure g_{0} ?
\qquad
\qquad
\qquad
number of points: 1
(e) Given the value of g_{0} and p, how can he measure the value $x_{0}\left(u_{1}\right)$ at some arbitrary value u_{1} ? If possible, give a mathematical expression to illustrate your explanation.
\qquad
\qquad
number of points: 1

2 Phase Plane Analysis (12 points)

We study a network of coupled rate neurons. However, we assume that the interaction weights w are subject to fatigue (also called synaptic depression) when they are used intensively. We write $w=J_{0} x$ with some variable x and a fixed parameter J_{0} The system of equations is:

$$
\begin{align*}
\tau \frac{d h}{d t} & =-h+J_{0} \times g(h) \tag{1}\\
\tau_{x} \frac{d x}{d t} & =2.8-x-9.0 \times g(h) \tag{2}
\end{align*}
$$

$\tau=1$ and $\tau_{x}>\tau$ are time constants (arbitrary units). You may assume that $15<\tau_{x}<30$.
J_{0} is a parameter (later we consider $J_{0}=3$).

The gain function is:
$g(h)=0.2$ for $h<0.4$
$g(h)=2 h-0.6$ for $0.4 \leq h \leq 0.8$
$g(h)=1$ for $h>0.8$
(as shown on the right)

a) Assume $J_{0}=3$. The nullclines are shown below, without axis labels or scale.

- Add the axis labels.
- Label the 2 nullclines.
- Give the numerical values for the 4 circled points a, b, c and d. number of points: 3

c) Evaluate the differential equations at $(h, x)=(0,1)$ and draw an arrow in the above graph. (The direction of the arrow should qualitatively point in the right direction, i.e. towards the right quadrant). number of points: 1
d) Add in your graph flow arrows along the nullclines (at least four on each nullcline). number of points: 2
e) Draw two trajectories. One starting at $(1,0)$ and another one starting at $(0,1)$. number of points: 2
f) Determine analytically the stability of the fixed point, using Equations 1 and 2 repeated here for convenience:

$$
\begin{align*}
\frac{d h}{d t} & =\frac{1}{\tau}\left[-h+J_{0} \times g(h)\right] \tag{3}\\
\frac{d x}{d t} & =\frac{1}{\tau_{x}}[2.8-x-9.0 \times g(h)] \tag{4}
\end{align*}
$$

Give the two eigenvalues.
Result: The fixed point is (stable/unstable/saddle).
number of points: 2
(3pts) The two eigenvalues are \qquad
number of points: 3
(Space for calculations)

3 Continuity equation (6 pts)

In a population of integrate-and-fire neurons with firing threshold $x=\vartheta$ the distribution of membrane potentials $p(x, t)$ for $x<\vartheta$ evolves according to

$$
\begin{equation*}
\tau \frac{d}{d t} p(x, t)=-\frac{d}{d x} J(x, t)+r(t) \delta\left(x-x_{0}\right) \tag{5}
\end{equation*}
$$

(a) What is the meaning of the term $r(t)$, why do we need this term?
number of points: 1
(b) What is the meaning of the parameter x_{0}, why do we need this term?
\qquad
number of points: 1
(c) How do you calculate $r(t)$?
\qquad
number of points: 1
(d) We now specify the model in Eq. (5) and study a nonlinear integrate-and-fire model which is driven by an external input (that does not depend on the potential). For our specific model, the flux term is

$$
J(x, t)=p(x, t)\left\{-x(t)+x_{1}+x_{2} \exp \left[x(t) / x_{3}\right]+x_{4} \sin (\omega t)\right\}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}$ are fixed parameters.
What can you say about each term in particular with respect to the the neuron model
\qquad
\qquad
the noise \qquad
\qquad
\qquad
the input \qquad
\qquad

4 Spike Train Statistics (8 points)

A neuron has received a constant stimulus during the time $0<t<300 \mathrm{~ms}$ and generated a spike train $S(t)=\sum_{f=1}^{10} \delta\left(t-t^{f}\right)$ with 10 spikes at times $t^{1}, t^{2}, \ldots t^{10}$. There were no spikes for $t<0$.

The following graph sketches the situation with two example spike trains.

(a) What is the mean firing rate of the neuron, during the period of stimulation?
number of points: 1
(b) Suppose that the spike train has been generated by a stochastic neuron model with absolute refractory period $\Delta^{\text {abs }}$. Spikes occur with stochastic intensity

$$
\begin{array}{lll}
\rho(t)=0 & \text { for } & t^{f}<t<t^{f}+\Delta^{\text {abs }} \\
\rho(t)=\rho_{0} & \text { for } t \geq t^{f}+\Delta^{\text {abs }} \tag{7}
\end{array}
$$

Write down the likelihood that an observed spike train with spike times $t^{1} \ldots t^{10}$ could have been generated by the model. The right-hand side of your equation should contain the parameters $\Delta^{\text {abs }}$ and ρ_{0}.
\qquad
\qquad
(c) Observed spikes have occurred at times $20,50,80,110, \ldots, 290 \mathrm{~ms}$ (see the first of the two sample spike trains in the graph on the left).

Try to explain the observed sequence of spike by the model with absolute refractoriness. Set $\Delta^{\mathrm{abs}}=10 \mathrm{~ms}$.

What is the most likely value of the parameter ρ_{0} ?
$\rho_{0}=$ \qquad number of points: 2 space for calculations, if necessary
(d) Suppose that, in a second trial, each of the spikes is jittered by $\pm 5 \mathrm{~ms}$ compared to the first trial. (see the second of the two sample spike trains in the graph on the left, e.g. spikes occur at $25,45,85,105 \ldots$ ms.)

Redo the estimation of ρ_{0}. The result is $\rho_{0}=$

Justify your answer in words:
\qquad
number of points: 2

5 Mean-field and population activity (9 points)

Consider a population of N identical neurons. If driven by an input $I(t)$, each neuron fires independently and stochastically with a Poisson firing rate $\nu(t)=$ $g(I(t))$.

The input $I=I^{\text {ext }}+I^{\text {syn }}$ has a fixed external component $I^{\text {ext }}$ as well as a synaptic component $I^{\text {syn }}$.
(a) Suppose that each neuron receives spike input from all other neurons. Spike arrival at time $t=0$ evokes a response $w_{0}\left[\exp \left(-t / \tau_{2}\right)-\exp \left(-t / \tau_{1}\right)\right]$ with $0<\tau_{1}<$ τ_{2}.

Write down the total input $I\left(t_{0}\right)$ to a specific neuron i assuming that you know the spike times for $t<t_{0}$.
number of points: 1
(b) Based on your result in (a), calculate the expected value of the input assuming that all neurons fire independently at the same constant frequency ν_{0}. The result should be expressed in a simple formula containing the relevant parameters.
number of points: 2
space for calculations, if necessary
(c) even for constant firing rates, the input will fluctuate around the mean input calculated above. Assume that $w_{0}=5 / N$.

How does the standard deviation of these fluctuations scale with the number of neurons N ?
\qquad

How does the expected input scale with the number of neurons N ?
\qquad
number of points: 2
(d) Assume that the gain function $g(I)$ is piecewise linear with $g(I)=0$ for $I \leq 1$, $g(I)=2 I-1$ for $1<I \leq 2$, and $g(I)=1$ for $I>2$.

Furthermore set $\tau_{2}=1$ and $\tau_{1}=0$ and $w_{0}=5 / N$, as before. Consider the limit $N \rightarrow \infty$ and dermine graphically the fixed points of the population activity $A(t)$. Make a graph in the space here:
number of points: 2
(e) What is the number of fixed points in the above graph? Exists there a value for $I^{\text {ext }}$ where the number of fixed points changes?
\qquad
\qquad
number of points: 2

6 Hopfield model (8 points)

Consider a network of $N=20000$ neurons that has stored 4 patterns
$\begin{aligned} \xi^{1} & =\left\{\xi_{1}^{1}, \ldots \xi_{N}^{1}\right\} \\ \xi^{2} & =\left\{\xi_{1}^{2}, \ldots \xi_{N}^{2}\right\} \\ \xi^{3} & =\left\{\xi_{1}^{3} \ldots \xi_{N}^{3}\right\} \\ \xi^{4} & =\left\{\xi_{1}^{4} \ldots \xi_{N}^{4}\right\}\end{aligned}$
using the synaptic update rule $w_{i j}=(J / N) \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu}$ where $J>0$ is a parameter. Each pattern has values $\xi_{i}^{\mu}= \pm 1$ so that exactly 50 percent of neurons in a pattern have $\xi_{i}^{\mu}=+1$.

Assume stochastic dynamics: neurons receive an input $h_{i}(t)=\sum_{j} w_{i j} S_{j}(t)$ where $S_{j}(t)= \pm 1$ is the state of neuron j. Neurons update their state

$$
\begin{equation*}
\operatorname{Prob}\left\{S_{i}(t+1)=+1 \mid h_{i}(t)\right\}=0.5\left[1+g\left(h_{i}(t)\right)\right] \tag{8}
\end{equation*}
$$

where g is an odd and monotonically increasing function: $g(h)=4 h$ for $|h|<0.25$ and $g(h)=1$ for $h \geq 0.25$ and $g(h)=-1$ for $h \leq-0.25$.
(a) Rewrite the righ-hand-side of equation (8) by introducting an overlap $m^{\mu}(t)=$ $(1 / N) \sum_{j} \xi_{j}^{\mu} S_{j}(t)$.
number of points: 1
(b) What is the significance of the overlap? Describe its meaning in one sentence; give examples if necessary.
\qquad
\qquad
\qquad
number of points: 1
(c) Assume that the four patterns are orthogonal, i.e., $\sum_{i} \xi_{i}^{\mu} \xi_{i}^{\nu}=0$ if $\mu \neq \nu$. Assume that the overlap with pattern 4 at $t=0$ has a value of 0.25 and $m^{\mu}(0)=0$ for all other patterns.

Suppose that neuron i is a neuron with $\xi_{i}^{4}=-1$.
What is the probability that neuron i fires in time step 1? Give the formula for arbitrary J and evaluate then for $J=1$.
\qquad

What is the probability that another neuron k with $\xi_{k}^{4}=+1$ fires in time step 1? Give the formula for arbitrary J and evaluate then for $J=1$.
\qquad
number of points: 2
(d) For the same assumptions as in (c), what is the expected overlap for $\left\langle m^{4}(t)\right\rangle$ after the first time step.
$<m^{4}(1)>=$
number of points: 2
(e) In question (d) you calculated the EXPECTATION $<m^{4}>$. Can we drop the expectation sign in the limit of $N \rightarrow \infty$? Justify your answer in two sentences.
\qquad
\qquad
\qquad
\qquad
number of points: 2

