
MATLAB

• You can download MatLab from Distrilog at
http://distrilog.epfl.ch/main.aspx

• Q&A forum on MatLab can be found at
http://ch.mathworks.com/matlabcentral/answers/

• You can find a video tutorial on MatLab at
http://ch.mathworks.com/academia/student_center/tutorials/launchpad.
html http://www.tutorialspoint.com/matlab/index.htm

1

http://distrilog.epfl.ch/main.aspx
http://ch.mathworks.com/matlabcentral/answers/
http://ch.mathworks.com/academia/student_center/tutorials/launchpad.html
http://www.tutorialspoint.com/matlab/index.htm

2The Default MATLAB Desktop (2013a)

Set the path!

3Scalar Arithmetic Operations

Symbol Operation MATLAB form

^ exponentiation: ab a^b

* multiplication: ab a*b

/ right division: a/b a/b

\ left division: b/a a\b

+ addition: a + b a + b

- subtraction: a - b a - b

Order of Precedence

• What do I really mean when I type

4

8 + 3 * 5 ^ 3 ?

• Many possibilities:

(8 + 3) * (5 ^ 3)

8 + ((3 * 5) ^ 3)

8 + (3 * (5 ^ 3)) correct

5Order of Precedence

Precedence Operation

First what is inside Parentheses, evaluated starting
with the innermost pair.

Second Exponentiation, evaluated from left to right.

Third Multiplication and division with equal
precedence, evaluated from left to right.

Fourth Addition and subtraction with equal precedence,
evaluated from left to right.

PEMDAS

6Examples of Variables and Assignment

• Writing these two line produces

>> A = sqrt(4);

>> A = tan(pi/4) + A

A = 3

• A semicolon at the end of the RHS expression
suppresses the display.

• However, the assignment still takes place.

A 4←

A tan +2
4
π ←  
 

7Relational Operators
Compare two expressions or variables

== equal to a == b

> greater than a > b

< less than a < b

>= greater or equal a >= b

<= less than or equal a <= b

~= not equal a ~= b

Relational operators
logical 1 if expression is true

logical 0 if expression is falsereturn:

8Relational Operators

Relational operators return:
1 if expression is true

0 if expression is false

• The result of the comparison is a value that can
be used in an assignment.

• The precedence of relational operators is lower
than that of addition and subtraction (PEMDAS).

>> 8 == 5
ans =

0

9
Saving the Workspace

When you “quit” Matlab, the variables in the
workspace are erased from memory.

If you need them for later use, you must save
them.

>> save

saves all of the variables in the workspace into
a file called matlab.mat (it is saved in the
current directory)

10
Saving the Workspace

>> save Claudia

saves all of the variables in the workspace into
a file called Claudia.mat

>> save Important A B C D*

saves the variables A, B, C and any variable
beginning with D into a file called
Important.mat

11
Loading from a .mat file

>> load Claudia

loads all of the variables from the file
Claudia.mat

There are no known security problems with
load.

Hence, you can safely send (as attachment),
receive and use .mat files from others.

http://www.mathworks.com/help/matlab/ref/matfile.html

12
Loading Excel Files

>> xlsread(‘Claudia.xls’)
>> xlsread(‘Claudia.xls’,’Sheet1’,’B10:F28’)

Create a .dat file with the following format
>> dlmwrite(‘Claudia.dat’,A,’,’)
>> csvread(‘Claudia.dat’)
>> csvread(‘Claudia.dat’,0,2)

Another option for reading a text file is
>> textread(‘Claudia.dat’)

Loading text Files

13
Introduction to arrays

• An array is an ordered collection of real
numbers

• Arrays are the primary building blocks in
MatLab

• Scalar
a=[1] (1 row, 1 column)

• Vector
a=[1,-5, 3, 2] (1 row, 4 columns)

• General 2D arrays
a=[1.2, -3.2, 1.0; 3.1, 92, 0.0] (2-by-3)

14Defining arrays

Construction:

• Manual
• Incremental
• linspace
• transpose: “’”

• zeros
• ones
• rand/randn

15Row vectors – incremental construction

>> r = 3 : 2 : 10

r =

3 5 7 9

Syntax:

first element : increment : limit

[3,5,7,9]

16Linspace command

• also creates a linearly spaced row vector
• number of elements are specified instead of increment

Syntax: linspace(xf,xl,n)
• xf – first element
• xl – last element
• n - number of evenly-spaced elements

>> A = linspace(3,9,4)

A =

3 5 7 9

17zeros

• Syntax: zeros(n,m)

• Create an array of zeros that has
• n – rows
• m - columns

>> r = zeros(1,3)

r =

0 0 0

>> c = zeros(3,2)

c =

0 0

0 0

0 0

18ones

• Syntax: ones(n,m)

• Create an array of ones that has
• n – rows
• m - columns

>> r = ones(1,3)

r =

1 1 1

>> c = ones(3,2)

c =

1 1

1 1

1 1

19rand

• Syntax: rand(n,m)

• Create an array of random numbers
• n – rows
• m - columns

>> r = rand(2,3)

r =

0.9501 0.2311 0.6068

0.8147 0.1270 0.6324

uniform random distribution between 0 and 1

Array column concatenation 20

>> A = ones(2,3)

A =

1 1 1

1 1 1

>> B = zeros(2,2)

B =

0 0

0 0

>> C = [A B]

C =

1 1 1 0 0

1 1 1 0 0

A and B must have
the same number of rows

Array row concatenation 21

C =

1 1 1 0 0

1 1 1 0 0

r =

3 3 3 3 3

>> D = [C ; r]

D =

1 1 1 0 0

1 1 1 0 0

3 3 3 3 3

C and r must have the
same number of columns

22The transpose operator

• The transpose operator converts
– (row vector)’ (column vector)
– (column vector)’ (row vector)
–

>>A = [1, 2 ; 3, 4]

A =
1 2
3 4

>> B = A'

B =

1 3

2 4

'

size command 23

size(A) returns a 1 x 2 array that contains:
– number of rows of A
– number of columns A

>> A = rand(5,6);

Example:

>> size(A)

ans =

5 6

>> d = size(A)

d =

5 6

rows # columns

size command 24

>> A = rand(5,6);

• Syntax: n = size(A,1)

• n – number of rows of A

• Syntax: m = size(A,2)

• m – number of columns A

>> n = size(A,1)

n =

5

>> m = size(A,2)

m =

6

Example:

numel command – getting number of elements 25

>> r = ones(1,4)
r =

1 1 1 1

>> n = numel(r)

n =

4

• Syntax: n = numel(A)

• n – number of elements of A

Example:

>> A = ones(2,4)
A =

1 1 1 1

1 1 1 1

>> n = numel(A)

n =

8

Accessing elements or parts of an array

A(3,2) is

– the element in the (3rd row , 2th column) of A

26

>> A = [2 1;-2 3;4 5];

2 1
2 3

4 5
A

 
 = − 
  

>> A(3,2)

ans =

5

>> A(end,1)

ans =

4

If A is an array,
– find(A) returns a row vector containing
the linear indexes of the non-zero
elements of A

• Example: (row vector)

27Find function

>> A = [-3 0 1 5];

>> find(A)

ans =

1 3 4

Using the find function

Example: Set all negative elements of array A to zero

28

>> A = [2 1 ; -2 -3 ; 4 -5];

>> Lindx = find(A < 0)

Lindx =
2
5
6

>> A(Lindx) = 0
A =

2 1
0 0
4 0

>> [rI,cI] = find(A < 0);

>>>> A =
2 1
0 0
4 0

>> A = [2 1 ; -2 -3 ; 4 -5];

Do 3X for i
= 1, 2, 3

>> A(rI(i),cI(i)) = 0

Question Indexing 29

B =

1 0 0
0 1 0
0 0 1

>> B(2,3)

ans
0

>> B(:, 2:3)

ans

B =

0 0
1 0
0 1

Question

>> A = 13:-3:2 – 3; B = linspace(13,1,5);
>> isequal(A,B)

A. ans =
1

B. ans =
0

30

A =
13 10 7 4 1

B =
13 10 7 4 1

Relational operators are used to compare variables.

There are 6 comparisons:

– “equal to”, using ==
– “not equal to”, using ~=
– “less than”, using <
– “less than or equal to”, using <=
– “greater than”, using >
– “greater than or equal to”, using >=

The result of a comparison is of class logical
Two values: true (1) or false (0),

Review: Relational operators

Relational operations on vectors

• Example

32

>> A = [-3 2 1 5];
>> B = [1 2 5 1];

>> A == B

ans =

0 1 0 0

>> A <= B

ans =

1 1 1 0

-3 = 1? 5 ≤1?

Note: the result of relational operations are logical variables
1-true, 0-false

If A and B are scalars (double or logical), then

A&B is TRUE (1) if A and B are both nonzero, otherwise
it is FALSE (0). This is the logical AND operator.

A|B is TRUE (1) if either A or B are nonzero, otherwise it
is FALSE (0). This is the logical OR operator.

xor(A,B) is TRUE (1) if one argument is 0 and the
other is nonzero, otherwise it is FALSE (0). This is the
logical EXCLUSIVE OR operator.

~A is TRUE if A is 0, and FALSE if A is nonzero. This is
the logical NEGATION operator.

Logical Operators

For arrays, the operations are applied element-wise

Indexing with logical arrays

Example

Set all elements in array A with values between -5 and -2
to zero

34

>> A = [2 -3 ; -5 1.9];

>> Indx = A <= -2 & A >= -5
Indx =

0 1
1 0

>> A(Indx) = 0
A =

2 0
0 -1.9

(A <= -2) & (A >= -5)

Logical function any
>> L = [1 0 1 0 ; 1 0 0 0];

>> A = any(L)
A =

1 0 1 0

any(L): determines if any element in the column is nonzero

>> B = any(L,2)
B =

1
1

any(L,2): determines if any element
in the row is nonzero

Logical function all
>> L = [1 0 1 0 ; 1 0 0 0];

>> C = all(L)
C =

1 0 0 0

all(L): determines if all elements in the column are nonzero

>> D = all(L,2)
D =

0
0

all(L,2): determines if all elements
in the row are nonzero

Scalar and short circuit && (and) and || (or) 37

% Variables b and a must be scalars

% and defined

x = (b ~= 0) && (a/b > 18.5)

left expression is evaluated first

if (b ~= 0) is false (i.e. b = 0)
x = false
without evaluating right expression

otherwise
(a/b > 18.5) is evaluated and
the result is assigned to x

if and end statements
To conditionally control the execution of statements

38

if condition

statements

end
• If condition is TRUE (or nonzero), the

statements between the if and end are executed.

• Otherwise, they are not executed.

• Execution continues with any statements after the
end.

if, else and end statements 39

if condition

statements1

else

statements2

end

• If condition is TRUE, statements1 are executed.

• Otherwise, statements2 are executed.

• Execution continues with any statements after the
end.

false

...
if exp_1

statements1
elseif exp_2

statements2
elseif exp_3

statements3
end
more statements

Evaluate exp_1

Evaluate exp_2

Evaluate exp_3

true

Continue after end

true

true

false

false

Execute
statements1

Execute
statements2

Execute
statements3

Could have also used a single else before the end

if, elseif and end statements

% check if x is a scalar and a double and a
% real number
if isscalar(x) && isa(x,'double') && isreal(x)

if x < -1
y = -1;

elseif x < 2
y = x;

elseif x < 5
y = 3 - x;

else
y = -2;

end

else
error('x should be a real scalar');

end

Piecewise linear function

The most common value for array is a row vector of
integers, starting at 1, and increasing to a limit n

for x = 1:n
statements

end

The array is simply the row vector
[1 2 3 4 … n]

Hence, the statements are executed n times.

– The first time through, the value of x is set equal to 1;
– the k’th time through, the value of x is set equal to k.

array

For Loops

For Loops Example

for x = 1:3
disp(['x is ' num2str(x)])

endx is 1
x is 2
x is 3

for x = 1:3
x

end

x = 1
x = 2
x = 3

A = [3 2 1];
for x = A

disp(['x is ' num2str(x)])
end
x is 3
x is 2
x is 1

nested for loops

A = zeros(4,3)
for m = 1:4

for n = [1 3]
A(m,n) = m*n;

end
end

in
ne

r

ou
te

r

A =
1.00 0 3.00
2.00 0 6.00
3.00 0 9.00
4.00 0 12.00

m=1

m=2

m=3

m=4

n=1 n=3

Plot Function

If x and y are vectors (i.e., a row or column
vector), of the same length, then

– plot(x,y) plots the elements of y
versus the elements of x

- plot(y) plots the elements of y
versus its indexes

• (more later – see help for options)

Plot examples

x = linspace(-pi,pi);
plot(x,sin(x))

Plot sin(w) for w between –pi and pi

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x = linspace(-pi,pi);
y = zeros(size(x));

for k = 1 : size(x,2);
y(k) = sin(x(k));

end
plot(x,y) -4 -3 -2 -1 0 1 2 3 4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Using for loop

47Plot multiple diagrams

x = linspace(-pi,pi);

plot(x,sin(x),’b’);
hold on;
plot(x,cos(x),’r’);

figure();
subplot(2,1,1);
plot(x,sin(x),’b’);
subplot(2,1,2);
plot(x,cos(x),’r’);

Question 5

The function ‘hist’ bins your data and plots it as a histogram. What would
the output be for the following code?
>> A = rand(1,1000); hist(A)

48

A B

Statistical Functions

If A is a matrix with size n*m, then

– mean(A,k) returns the average of matrix A in
dimension k (i.e. if k=1 we get the average
of all the columns)

- min(A,[],k)/max(A,[],k) returns the
minimum/maximum of matrix A in dimension k
(i.e. if k=1 we get the minimum/maximum of
all the columns)

– var(A) returns a row vector with the
variance of all the columns of matrix A

	MATLAB
	The Default MATLAB Desktop (2013a)
	Scalar Arithmetic Operations
	Order of Precedence
	Order of Precedence
	Examples of Variables and Assignment
	Relational Operators
	Relational Operators
	Saving the Workspace
	Saving the Workspace
	Loading from a .mat file
	Loading Excel Files
	Introduction to arrays
	Defining arrays
	Row vectors – incremental construction
	Linspace command
	zeros
	ones
	rand
	Array column concatenation
	Array row concatenation
	The transpose operator
	size command
	size command
	numel command – getting number of elements
	Accessing elements or parts of an array
	Find function
	Using the find function
	Question Indexing
	Question
	Review: Relational operators
	Relational operations on vectors
	Logical Operators
	Indexing with logical arrays
	Logical function any
	Logical function all
	Scalar and short circuit && (and) and || (or)
	if and end statements
	if, else and end statements
	if, elseif and end statements
	Piecewise linear function
	For Loops
	For Loops Example
	nested for loops
	Plot Function
	Plot examples
	Slide Number 47
	Question 5
	Statistical Functions

