MATLAB

- You can download MatLab from Distrilog at http://distrilog.epfl.ch/main.aspx
- Q\&A forum on MatLab can be found at http://ch.mathworks.com/matlabcentral/answers/
- You can find a video tutorial on MatLab at http://ch.mathworks.com/academia/student center/tutorials/launchpad. html http://www.tutorialspoint.com/matlab/index.htm

The Default MATLAB Desktop (2013a)

Scalar Arithmetic Operations

Symbol Operation

MATLAB form

\wedge	exponentiation: a^{b}	$\mathbf{a \wedge} \mathbf{b}$
*	multiplication: $a b$	$\mathbf{a * b}$
/	right division: a / b	\mathbf{a} / \mathbf{b}
\	left division: b / \mathbf{a}	$\mathbf{a} \backslash \mathbf{b}$
+	addition: $\mathbf{a}+\mathrm{b}$	$\mathbf{a}+\mathbf{b}$
-	subtraction: $\mathbf{a - b}$	$\mathbf{a}-\mathbf{b}$

Order of Precedence

- What do I really mean when I type

$$
8+3 * 5 \wedge 3
$$

?

- Many possibilities:

$$
\begin{aligned}
& (8+3) *(5 \wedge 3) \\
& 8+(3 *(5 \wedge 3)) \\
& 8+((3 * 5) \wedge 3)
\end{aligned}
$$

Order of Precedence

PEMDAS

\[

\]

Examples of Variables and Assignment

- Writing these two line produces

$$
\begin{array}{rlrl}
>A & =\operatorname{sqrt(4);} & \mathrm{A} \leftarrow \sqrt{4} \\
>A & =\tan (\mathrm{pi} / 4)+\mathrm{A} & \mathrm{~A} \leftarrow \tan \left(\frac{\pi}{4}\right)+2 \\
\mathbf{A} & =3 &
\end{array}
$$

- A semicolon at the end of the RHS expression suppresses the display.
- However, the assignment still takes place.

Relational Operators

Compare two expressions or variables

$$
\left.\begin{array}{rll}
& == & \text { equal to } \\
> & \text { greater than } & \mathbf{a}>\mathbf{b} \\
< & \text { less than } & \mathbf{a}<\mathbf{b} \\
>= & \text { greater or equal } & \mathbf{a}>=\mathbf{b} \\
<= & \text { less than or equal } & \mathbf{a}<=\mathbf{b} \\
\sim= & \text { not equal } & \mathbf{a} \sim \mathbf{b}
\end{array}\right] \begin{array}{ll}
\text { logical } 1 \text { if expression is true } \\
\text { logical } 0 & \text { if expression is false }
\end{array}
$$

Relational Operators

- The result of the comparison is a value that can be used in an assignment.
- The precedence of relational operators is lower than that of addition and subtraction (PEMDAS).

Saving the Workspace

When you "quit" Matlab, the variables in the workspace are erased from memory.

If you need them for later use, you must save them.

>> save

saves all of the variables in the workspace into a file called matlab . mat (it is saved in the current directory)

Saving the Workspace

>> Save Claudia

saves all of the variables in the workspace into a file called Claudia . mat

>> save Important A B C D*

saves the variables A, B, C and any variable beginning with \mathbf{D} into a file called Important.mat

>> load Claudia

loads all of the variables from the file Claudia.mat

There are no known security problems with load.

Hence, you can safely send (as attachment), receive and use . mat files from others.

Loading Excel Files

>> xlsread('Claudia.xls')
>> xlsread('Claudia.xls','Sheet1','B10:F28')

Loading text Files
Create a .dat file with the following format >> dlmwrite('Claudia.dat', A,' ,')
>> csvread('Claudia.dat')
>> csvread('Claudia.dat', 0, 2)

Another option for reading a text file is >> textread('Claudia.dat')

Introduction to arrays

- An array is an ordered collection of real numbers
- Arrays are the primary building blocks in MatLab
- Scalar

$$
a=[1]
$$

(1 row, 1 column)

- Vector

$$
a=[1,-5,3,2]
$$

(1 row, 4 columns)

- General 2D arrays

$$
\begin{equation*}
a=[1.2,-3.2,1.0 ; 3.1,92,0.0] \tag{2-by-3}
\end{equation*}
$$

Defining arrays

Construction:

- Manual
- Incremental
- linspace
- transpose: "’"
- zeros
- ones
- rand/randn

Row vectors - incremental construction

$\gg r=3: 2: 10$

Syntax:
first element : increment : limit

Linspace command

- also creates a linearly spaced row vector
- number of elements are specified instead of increment
Syntax: linspace($\mathrm{xf}, \mathrm{xl}, \mathrm{n}$)
- xf - first element
- xl - last element
- n - number of evenly-spaced elements
>> A = linspace $(3,9,4)$
A =

zeros

- Syntax:

$z \operatorname{eros}(n, m)$

- Create an array of zeros that has
- n - rows
- m - columns

$$
\begin{array}{ll}
\gg=\operatorname{zeros}(1,3) & \gg c=z \operatorname{cros}(3,2) \\
r= & c=
\end{array}
$$

0
0
0

00
$0 \quad 0$
$0 \quad 0$

ones

- Syntax:
- Create an array of ones that has
- n - rows
- m-columns

$$
\begin{aligned}
& \gg r=\operatorname{ones}(1,3) \\
& r= \\
& 1 \quad 1 \quad 1 \\
& 11 \\
& 11 \\
& 1 \quad 1 \\
& \text { >> c }=\operatorname{ones}(3,2) \\
& \text { c = }
\end{aligned}
$$

- Syntax:

rand (n,m)

- Create an array of random numbers
- n - rows
- m - columns
uniform random distribution between 0 and 1
$\gg r=r a n d(2,3)$
$r=$
0.9501
0.2311
0.6068
0.8147
0.1270
0.6324

Array column concatenation

$$
\begin{aligned}
& \text { >> A }=\operatorname{ones}(2,3) \\
& \text { A = } \\
& 1 \quad 1 \quad 1 \\
& 1 \quad 1 \\
& 1 \\
& \gg C=\left[\begin{array}{ll}
A & B
\end{array}\right] \\
& \text { >> B = zeros(2,2) } \\
& \text { B = }
\end{aligned}
$$

Array row concatenation

$$
\mathrm{C}=
$$

1	1	1	0	0
1	1	1	0	0
3	3	3	3	3

The transpose operator

- The transpose operator converts
- (row vector) \longrightarrow (column vector)
- (column vector)' \longrightarrow (row vector)
$-\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{\prime} \longrightarrow\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
>>A = [1, 2 ; 3, 4] >> B = A'
A $=$
B =
12
13
34
2
4
size(A) returns a 1×2 array that contains:
- number of rows of \mathbf{A}
- number of columns \mathbf{A}

Example:
$\gg A=\operatorname{rand}(5,6) ; \quad \gg d=\operatorname{size}(A)$
>> size(A)
d =
ans =
5
6

- Syntax: $\quad n=\operatorname{size}(A, 1)$
- \mathbf{n} - number of rows of \mathbf{A}
- Syntax:

$$
m=\operatorname{size}(A, 2)
$$

- m - number of columns A

Example:
>> $n=\operatorname{size}(A, 1)$
>> m = $\operatorname{size}(A, 2)$
n =
m =

numel command - getting number of elements

- Syntax:

$$
\mathrm{n}=\operatorname{numel}(\mathrm{A})
$$

- \mathbf{n} - number of elements of \mathbf{A}

Example:

```
>> r = ones(1,4)
r =
    1 1 1 1 1
>> n = numel(r)
n =
```

 4
 >> $A=\operatorname{ones}(2,4)$
A =

1	1	1	1
1	1	1	1
\gg	n	$=$	numel (A)

n =

Accessing elements or parts of an array

Find function

If A is an array,

- find(A) returns a row vector containing the linear indexes of the non-zero elements of A
- Example: (row vector)

Using the find function

Example: Set all negative elements of array A to zero

$$
\begin{aligned}
& \begin{array}{l}
\text { > A = }\left[\begin{array}{llllll}
2 & 1 & ; & -2 & -3 & 4 \\
\hline
\end{array}\right] ; \quad A=\left[\begin{array}{cc}
2 & 1 \\
-2 & -3 \\
4 & -5
\end{array}\right] \\
\text { Lindx }=
\end{array}
\end{aligned}
$$

Question Indexing

B =	>> $\mathrm{B}(2,3)$
100	ans
010	
$0 \quad 0 \quad 1$	>> $B(:, 2: 3)$
	ans

$$
\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}
$$

Question

>> A = 13:-3:2 - 3; B = linspace(13,1,5);
>> isequal(A,B)

B. $\mathrm{ans}=$ 0

$$
\begin{aligned}
& A= \\
& 13 \\
& \\
& \\
& \\
& B= \\
& 10
\end{aligned}
$$

Review: Relational operators

Relational operators are used to compare variables.
There are 6 comparisons:

- "equal to", using ==
- "not equal to", using ~=
- "less than", using <
- "less than or equal to", using <=
- "greater than", using >
- "greater than or equal to", using >=

The result of a comparison is of class logical
Two values: true (1) or false (0),

Relational operations on vectors

- Example

$$
\left.\begin{array}{rl}
\gg & =\left[\begin{array}{rrr}
-3 & \mathbf{2} & \mathbf{1} \\
> & \mathbf{5}
\end{array}\right] ; \\
\gg & -3=1 ? \\
& -1
\end{array}\right) ;
$$

$>A=B$
ans =

$\gg A<=B$
ans $=$

Note: the result of relational operations are logical variables 1-true, 0-false

Logical Operators

If A and B are scalars (double or logical), then

A\&B is TRUE (1) if A and B are both nonzero, otherwise it is FALSE (0). This is the logical AND operator.
$\mathbf{A} \mid \mathbf{B}$ is TRUE (1) if either \mathbf{A} or \mathbf{B} are nonzero, otherwise it is FALSE (0). This is the logical OR operator.
$\operatorname{xor}(\mathbf{A}, \mathbf{B})$ is TRUE (1) if one argument is 0 and the other is nonzero, otherwise it is FALSE (0). This is the logical EXCLUSIVE OR operator.
$\sim \mathbf{A}$ is TRUE if \mathbf{A} is 0 , and FALSE if \mathbf{A} is nonzero. This is the logical NEGATION operator.

For arrays, the operations are applied element-wise

Indexing with logical arrays

Example

$$
-5 \leq A(i, j) \leq-2
$$

Set all elements in array \mathbf{A} with values between -5 and -2 to zero

$$
\begin{aligned}
& \begin{array}{l}
>\mathrm{A}=\left[\begin{array}{llllll}
2 & -3 & ; & -5 & 1.9
\end{array}\right] ; \quad A=\left[\begin{array}{ccc}
2 & -3 \\
-5 & -1.9
\end{array}\right] \\
>\operatorname{Indx}=\mathrm{A}<=-2 \& A>=-5
\end{array} \\
& \text { Indx = } \\
& 0 \quad 1 \\
& 1 \\
& 0 \\
& \begin{array}{ll}
\gg A(\text { Indx }) & =0 \\
A= & 0 \\
2 & -1.9
\end{array}
\end{aligned}
$$

Logical function any

$$
\gg L=\left[\begin{array}{lllllllll}
1 & 0 & 1 & 0 & ; & 0 & 0 & 0
\end{array}\right] ;
$$

> A = any(L)
A =

$$
L=\left[\begin{array}{ll|l|l}
1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 0 \\
\hline
\end{array}\right]
$$

any (L): determines if any element in the column is nonzero

$$
\gg B=\operatorname{any}(L, 2)
$$

$$
B=
$$

any(L,2): determines if any element in the row is nonzero

Logical function all

$$
\begin{aligned}
& \text { >> L = [} 110100 ; 10000] ; \\
& \text { >> C }=\text { all(L) } \\
& \text { C = } \\
& L=\left[\begin{array}{cccc}
\left.\left.\begin{array}{|c|ccc}
1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 0
\end{array}\right] .\right] ~
\end{array}\right.
\end{aligned}
$$

all(L): determines if all elements in the column are nonzero

$$
\gg D=\operatorname{all}(L, 2)
$$

D =
all($\mathrm{L}, \mathbf{2)}$: determines if all elements in the row are nonzero

Scalar and short circuit \&\& (and) and || (or)

\% Variables b and a must be scalars
\% and defined

$$
x=(b \sim=0) \& \&(a / b>18.5)
$$

left expression is evaluated first

$$
\begin{aligned}
& \text { if (} \mathrm{b} \sim=0 \text {) is false (i.e. } \mathrm{b}=0 \text {) } \\
& \text { x = false } \\
& \text { without evaluating right expression }
\end{aligned}
$$

otherwise
($a / b>18.5$) is evaluated and the result is assigned to x

if and end statements

To conditionally control the execution of statements

if condition

statements

end

- If condition is TRUE (or nonzero), the statements between the if and end are executed.
- Otherwise, they are not executed.
- Execution continues with any statements after the end.

if, else and end statements

if condition
 statements1
 else
 statements2
 end

- If condition is TRUE, statements1 are executed.
- Otherwise, statements2 are executed.
- Execution continues with any statements after the end.

if, elseif and end statements

if exp_1 statements1 elseif exp_2 statements2 elseif exp_3 statements3 end more statements

Could have also used a single else before the end

Piecewise linear function

\% check if x is a scalar and a double and a
\% real number

```
if isscalar(x) && isa(x,'double') && isreal(x)
    if x < -1
        y = -1;
    elseif x < 2
        y = x;
    elseif x < 5
        y = 3 - x;
    else
        y = -2;
    end
else
    error('x should be a real scalar');
end
```


For Loops

The most common value for array is a row vector of integers, starting at , and increasing to a limit

The array is simply the row vector

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & \cdots & n
\end{array}\right]
$$

Hence, the statements are executed \mathbf{n} times.

- The first time through, the value of x is set equal to $\mathbf{1}$;
- the 'th time through, the value of \mathbf{x} is set equal to \mathbf{k}.

For Loops Example

$$
\begin{array}{ll}
\text { for } x=1: 3 & \text { for } x=1: 3 \\
\quad x & \text { disp(['x is ' num2str }(x)]) \\
\text { end } & x \text { is } 1 \\
x=1 & x \text { is } 2 \\
x=2 & x \text { is } 3 \\
x=3 &
\end{array}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & 2 \\
1
\end{array}\right] ; \\
& \text { for } x=A \\
& \quad \text { disp(['x is ' num2str }(x)]) \\
& \text { end } \\
& x \text { is } 3 \\
& x \text { is } 2 \\
& x \text { is } 1
\end{aligned}
$$

nested for loops

Plot Function

If x and y are vectors (i.e., a row or column vector), of the same length, then

- plot(x, y) plots the elements of y versus the elements of x
- plot(y) plots the elements of y versus its indexes
- (more later - see help for options)

Plot examples

Plot $\sin (w)$ for w between $-p i$ and $p i$

$$
\begin{aligned}
& x=\operatorname{linspace}(-p i, p i) ; \\
& \operatorname{plot}(x, \sin (x))
\end{aligned}
$$

Using for loop

$$
\begin{aligned}
& x=\operatorname{linspace}(-p i, p i) ; \\
& y=z e r o s(\operatorname{size}(x)) ;
\end{aligned}
$$

for $k=1$: $\operatorname{size}(x, 2)$; $y(k)=\sin (x(k)) ;$
end
plot (x, y)

Plot multiple diagrams
x = linspace(-pi,pi);
plot ($\left.x, \sin (x),{ }^{\prime} b^{\prime}\right)$;
hold on;
plot(x, $\cos (x)$, 'r') ;

figure(); subplot(2,1,1); plot(x,sin(x), 'b'); subplot(2,1,2);
plot(x, $\cos (x)$, r^{\prime});

Question 5

The function 'hist' bins your data and plots it as a histogram. What would the output be for the following code?
>> A = rand(1,1000); hist(A)

Statistical Functions

If A is a matrix with size $n * m$, then

- mean(A,k) returns the average of matrix A in dimension k (i.e. if $k=1$ we get the average of all the columns)
- $\min (\mathrm{A},[\mathrm{l}, \mathrm{k}) / \max (\mathrm{A},[\mathrm{l}, \mathrm{k})$ returns the minimum/maximum of matrix A in dimension k (i.e. if $\mathrm{k}=1$ we get the minimum/maximum of all the columns)
- $\operatorname{var}(\mathrm{A})$ returns a row vector with the variance of all the columns of matrix A

