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Introduction

= Limits of imaging techniques using X rays
= Mostly anatomical
= Limited contrast of soft tissues




NMR: The basics
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Orbital gyromagnetic ratio

Same phenomenon for electron: electronic gyromagnetic ratio

Same phenomenon for some nucleus: nuclear gyromagnetic ratio



Useful nucleus in NMR

AX Z atomic number
7 A mass number

When Aand Zeven - no NMR phenomenon

When A or Z odd - NMR phenomenon



When A or Z odd

protons, neutrons movement (mass) = quantified kinetic momentum

Spin: S

nucleus

S={0, ¥%,1,3/2 ..}



Origin of the signal in MRI: Nucleus

Mass: spin (§) Charges: magnetic momentum ([i)

= Rotation of a mass leads to a = Rotation of charges leads to a
kinetic momentum magnetic momentum (small magnet)

= Quantified spin
=  Proton, neutron and electron have a
spin equal to 1/2

w="y- S Y : Gyromagnetic ratio

MRI : imaging of hydrogen nuclei = proton imaging


http://radiographics.rsnajnls.org/cgi/content/full/25/4/1087/F2

Nucleus properties : spin values

\Z Even Odd
A
1=0 1=1.2.3. ...
Even Ex: 12C, 160 Ex: 14N, 2H
| =1/2, 3/2,5/2, ...
Odd

Ex: 13C’ 170’ 1H ’ 15N ’ 19|: ’ 31P




Effect of a static magnetic field on a magnetic momentum

1. Splitting of energy levels

T

B, =0
B, >0 AE=u B,
Same energy level —%h B,
M
Number of levels available : At equilibrium:

NB/No = exp — AE/KT

21+1
fB,=15T

NPB/No < 1.001 %



Effect of a static magnetic field on a magnetic momentum

2. A macroscopic magnetization appears

Set of spin %2
NB > Na

M= Macroscopic magnetization



Effect of a static magnetic field on a magnetic momentum

A magnetic field B on a current loop (small magnet or magnetic moment)

- Torque
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Associated potential energy: E = ﬁ-|§



Effect of a static magnetic field on a magnetic momentum

3. Precession of M around B

Spinning top Iin Magnetic moment in a
gravitation field magnetic field (proton)
ve' B
2T
RN ttt

= The spinning frequency Is proportional to the static
magnetic field B, (Larmor frequency)

= Forproton:v=4258MHz @ 1T



Nuclei

H-1

H-2

P-31

F-19

C-13

N-15

O-17

Nuclel used in NMR

Y2

Yo

Yo

Yo

Yo

5/2

Isotopic %.

99.98

0.015

100

100

1.108

0.365

0.037

sensibility

1

0.0096

0.0664

0.834

0.0159

0.00104

0.0291

Larmor frequency
(MHz/T)

42.576
6.535
17.236
40.055

10.705

4.315

5.772

(for electron: 176 GHz/T)



NMR or MRI major steps

POLARIZATION

RESONANCE

RELAXATION




Magnetic resonance experiment

A radiofrequency corresponds
to a rotating magnetic field B,

Resonance condition :
B, frequency equals
the Larmor frequency

M rotates around ..
B, and B, |

Receiver
Coil




Bloch equation

'M,B,-M,B, |-M, /T,
M,B,—~M,B,]-M, /T,
, =7 M,B,-M B |-(M,-M,)/T,

>
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Y

M=yMAB-R{M-M,} =1

z =z =
[|
A

v Larmor = v excitation v Larmor £ v excitation

AM

a=y j B,(t)dt (radians)



Principle of MRI

= The patient is placed in a static magnetic field (B,)

B, creates M which projection along z is M,



Principle of MRI

= The direction of M, iIs modified by applying a radio frequency,
B,(t), at Larmor frequency (42 MHz/T)

= M, rotates around B, and B,

B,
I\/IZ
W
® B, (t)

Use of an excitation antenna: tilt of M, in the transverse
plane x,y. M, > M,,



Principle of MRI

= For atilt of 90° M, is now equal to 0

M, =0
M. =M

x e

The magnetization vector is now in the transverse plane
and rotates around B, (B, is switched off). One can detect
M,y In that plane with a reception antenna.

B

)




Principle of MRI

= Magnetization returns to its equilibrium position
- energy relaxation

|
x e

The amplitude of M, decreases as a function of time

The amplitude of M, increases as a function of time



Summary

AN M

ol

Reception

B,(t)
Excitation Antenna



Basic contrast in MRI

= The speed of M, growth along B, depends on tissue
= [tis characterized by the longitudinal relaxation (T1)
= Energy is transferred to the surrounding (spin-lattice)

B,
M >
G ———

> Z

Recorded signal : M, W/\NW\/\/\/WW
(Demodulated)




Longitudinal relaxation (T1)

Growth of M, : magnetization that will be available to be tilted at the
next excitation step = Origin of the MRI signal

MZ
z T Be |— 100%
%L_D;‘y 63%

— i ittt |1 0,021



http://radiographics.rsnajnls.org/content/vol25/issue4/images/large/g05jl24g9x.jpeg
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Longitudinal relaxation and T1 contrast

Growth of M, :
Solids and liquids : very slow = small signal
Soft tissue : middle - middle signal
fat: fast = large signal | G* *
=Magnetization transfer on C o® ‘9
o




Longitudinal relaxation and T1 contrast

= T1 istissue characteristic
= |maging using T1 weighting

|\/|Z White matter

\

Grey matter

\

Cerebrospinal liquid

Longitudinal relaxation (T1) : magnetization growth
along z (longitudinal axis)



Longitudinal relaxation and T1 contrast

magnetic fields(t)

.
>

Spins Molecular

lattice
(1) movement

Movements of x induces magnetic field variations - stimulated relaxation



Longitudinal relaxation and T1 contrast

-Dipolar relaxation (other spins) T1,
-Dipolar paramagnetic relaxation (Gd) T1,

-Quadripolar relaxation T1 (spin > 2)



Transverse « relaxation » (T2)

=  Simultaneous with T1 but faster

= Lost of phase coherence between the individual spin
"Decrease of M, (signal) (in addition of T1 effect)
=*No energy exchange with the lattice (spin-spin)

= Depends on the magnetic homogeneity of the tissue

Lost of phase coherence M
ZJ

LRI Vi
)7 I\ 37% -

Xy

——e—

M,y as a function of
time



http://radiographics.rsnajnls.org/content/vol25/issue4/images/large/g05jl24g14x.jpeg

Transverse « relaxation » (T2)

&o

Reduction of M, :

Solids : very fast - small signal
Soft tissue: middle - middle signal
Liquids: slow - large signal ]




Transverse « relaxation » (T2)

= T2 Is also a tissue characteristic
= |maging using T2 weighting

Cerebrospinal liquid

Grey matter

White matter




Order of magnitude

= [ndicative values (T1in general >> T2)

Tissue T1@15T T2
(msec) (msec)
Fat 260 80
Liver 500 40
Muscle 870 45
White matter 780 90
Grey matter 900 100

Cerebrospinal lig. 2’400 160




Transverse « relaxation » (T2)

Simultaneous with T1, but faster = lost of magnetization coherence
Mutual effects of u

AB, Interaction







Transverse « relaxation » (T2)

water:

fast movements - averaging of field variations 2 longT?2



T1 and T2 as a function of molecular dynamic

Small molecules (H,0O)

Ny - 8,

‘ T2
1/m0




Schematic of an MRI system

= Alarge magnet (static magnetic field B, (0.5 to 3 T in clinic)
= Three gradient coils (magnetic field B, that varies with position x,y,z) (a
few mmT/m)

= EXxcitation and reception antenna (magnetic field that varies with time)




From NMR to MR

> X
Z gradient

X gradient

Y gradient



Slice selection

B(z)=Bo+Gz z

AB

G, a few mT.m

Express the slice thickness D, as a function of G,



Tomographic technigue - how to choose a slice?

Slice position : frequency value

Frequency domain
Ao =7.G,. Az
Bandwidth of the rf : Av = Aw/2n

|

Slice thickness :
Az=2nAv/(y.G,))



Tomographic technigue - how to choose a slice?

=  During the excitation apply a magnetic gradient field L to the slice plane
=  Selective rf excitation to only tilt spin within the selected slice

The amplitude of B, C:L\/\

IS constant along z

., TR
\(ﬁ

WUWUWUMWW

Only one Larmor frequency value Several frequency Larmor frequencies




Encoding of the information

Phase space (k-space)

I —_—— — —— —> —> —> —> N S
Before encoding After encoding

(use of two other gradients
than slice selection)

Goal to code each pixel position in terms of frequency and
phase of the spin



Frequency encoding : during data acquisition

h

Excitation \/U‘)

Slice

selection J

Frequency -
encoding

Signal -

recording \

Sampling of the data : 1 line of the raw data



Frequency encoding : during data acquisition

Gradient

Phases of spins

IXREERAR

Reading
(256 or 512 data points for example)



Phase encoding : before data acquisition

Each spin a tagged with a phase as a function of its position

OOOOO-
SV0GES
OOOCW:

COONSE

Structure
to be imaged




Part of the sequence to encode the image

Phase encoding

Gy

Frequency encoding
Gx

Reading




Result of image encoding

Phase encoding @

A

@
@,
@ @3
&

o1 ol | @l
o2 | 02 l o2

CD3--.‘ 3
ST Tor

Frequency encoding o




Mathematics of the spin-warp

S(t,G,) = [[ M (x, y) €277 St .e*™ =" gy gy

tand G, produce phase differences:only one type of variable

Aky
k,=7G,t —t=nAt="72

mAKky
kK,=rGy7 = G =—x
S(nAk,, mAk, ) = ZZ M (X, Y) p2ri0nak, +ymaky) g dy
Akx: leAx = % Aky: NylAy = Yl

This method produce a elegant way of coding the data since it
directly produces the Fourier transform of the image

M(x,y) =D > S(nAk,,mAk, e " AR Ak



Summary

M(x,y) =D > S(nAk,,mAk,)e " I AR AK



Basic sequence :

spin echo

90° 180°
RF 2 )\ ——
Signal « 91.‘“ nuﬁu" //—>
ADC +— s
Gisiice selection : :
Gfrequency coding
Gphase coding
- TR i .
- TE >

1. Equilibrium 2.OTiIt @ 90°
t=

ﬁ
5. Reading
t=TE

A

3. Loss of phase
coherence

A
s
=

4. Refocusing pulse
t=TE/2



Basic sequence : spin echo

0 0
90 RF 180 RF



MRI sequence

Sequence of rf and magnetic gradient as a function of time
to build the image aiming to enhance a particular contrast:

*T1 contrast (image of the anatomy)
=T2 contrast ( ) +  « pathology »)

=\\Vhat would be the effect of an oedemain T2 ?



MRI sequence

Control over the image contrast

90° 180°
MDD G W S
Signal < \u“ "uﬁ“ i/~
ADC +—; -

Gslice selection

Gfrequency coding

Gphase coding

TE

TR

TE

TR
Short Long
Short T1 Protons density
Long T1,T2 T2

S(TR,TE) « p(1—e ™/1)e T#/T




Contrast variation

R
Signal « i\uﬂ nﬁun » _,
ADC + |——1 " _,

TR
TE

T1 Contrast T2 Contrast Proton density
Te=14ms Tg =100 ms Te=14ms
Tr =400 ms Tr = 1500 ms Tr =1500 ms






Slice In whatever plane




What can we do during TR?

Multi-slice acquisition
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Contrast media : T1 reduction o Ho O

Native T1 T1 + Gd

56


http://www.med.harvard.edu/AANLIB/cases/caseSLU/mr2/060.gif
http://www.med.harvard.edu/AANLIB/cases/caseSLU/mr1/060.gif
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SE and FSE what differences?

Inter-
echos
space

N

Phase
nvvarp

e
[T
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Contrast in FSE

Complete image Center of k space K space periphery




Acquisition time reduction: FSE (T2 contrast)
Other solution : GRE (Gradient Recalled Echo)

* Principle : lower tip angle for M

M., = Mg sin @

T" 6 M_ = M, cos 6

- XY

Faster T1 relaxation =2 TR can be reduced



General GRE sequences

TR
—- _—

RF Impulsion (exitation) B ] —
Slice select 1 [
Phase encoding - -

Phase back
Reading encoding | |

Unphase
Echo A

hd

TE

e EEEE—



Spin behavior

TE

180°

SE with refocalization impulsion

TE

GRE

Gradient lecture

Phases des spins
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Traveling in k space for spin echo




Traveling in k space for gradient echo

Gradient

inversion .




Spin echo versus gradient echo

SE GRE




Traveling In k space for echo planar

s Excitation 90°
s Continuous Gy

= G, alternates between
positive and negative
values




Traveling in k space for spiral data sampling

= Sinusoidal variation of G, and G,
= Variable intensity
= For what ?




Functional imaging: MR spectroscopy

Medscape® www.medscape.com

Normal MRS

Mhyoinsital- { arniree g lul le=M-acalyl aspartala-
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