

Prof. **Francis R. Verdun** Institute of Radiation physics (IRA) UNIL - CHUV

Master of Science EPF-ETH degree in Nuclear Engineering Medical radiation physics

08. MRI

Introduction

Limits of imaging techniques using X rays

- Mostly anatomical
- Limited contrast of soft tissues

NMR: The basics

Electric charge rotation \rightarrow magnetic moment μ

Mass in rotation → kinetic momentum Spin

Orbital gyromagnetic ratio

Same phenomenon for electron: electronic gyromagnetic ratio

Same phenomenon for some nucleus: nuclear gyromagnetic ratio

Useful nucleus in NMR

Z atomic number $A_{Z} X \qquad \angle atomic numbe \\ A mass number$

When A and Z even \rightarrow no NMR phenomenon

When A or Z odd \rightarrow NMR phenomenon

When A or Z odd

protons, neutrons movement (mass) \rightarrow quantified kinetic momentum

 $S = \{0, \frac{1}{2}, 1, \frac{3}{2} \dots\}$

Origin of the signal in MRI: Nucleus

Charges: magnetic momentum $(\vec{\mu})$

 Rotation of a mass leads to a kinetic momentum

(S)

Quantified spin

Mass: spin

- Proton, neutron and electron have a spin equal to 1/2
 - $\vec{\mu} = \gamma \cdot \vec{S}$ γ : Gyromagnetic ratio
 - MRI : imaging of hydrogen nuclei \rightarrow proton imaging

 Rotation of charges leads to a magnetic momentum (small magnet) Nucleus properties : spin values

If $B_o = 1.5 \text{ T}$ N β /N α < 1.001 %

2. A macroscopic magnetization appears

A magnetic field B on a current loop (small magnet or magnetic moment) → Torque

 $\vec{C} = \vec{\mu} \wedge \vec{B}$ remember: $\vec{F} = \frac{d\vec{p}}{dt}$; $\vec{C} = \frac{d\vec{L}}{dt} = \frac{d\vec{I}}{dt}$; $\vec{\mu} = \gamma \vec{I}$

$$\frac{d\vec{I}}{dt} = \vec{\mu} \wedge \vec{B} \implies \frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \wedge \vec{B} \implies \vec{\omega} = \gamma \vec{B} \iff \nu = \frac{\gamma}{2\pi} B$$

μ

X

V

Associated potential energy: $E = \vec{\mu} \cdot \vec{B}$

3. Precession of M around B_o

- The spinning frequency is proportional to the static magnetic field B_o (Larmor frequency)
- For proton : v = 42.58 MHz @ 1 T

Nuclei used in NMR

Nuclei	S	isotopic %.	sensibility	Larmor frequency (MHz/T)
H-1	1/2	99.98	1	42.576
H-2	1	0.015	0.0096	6.535
P-31	1/2	100	0.0664	17.236
F-19	1/2	100	0.834	40.055
C-13	1/2	1.108	0.0159	10.705
N-15	1/2	0.365	0.00104	4.315
O-17	5/2	0.037	0.0291	5.772

(for electron: 176 GHz/T)

NMR or MRI major steps

Magnetic resonance experiment

A radiofrequency corresponds to a rotating magnetic field B₁

Bloch equation

$$\dot{M} = \gamma M \wedge B - R \{ M - M_o \} = \begin{cases} \dot{M}_x = \gamma \left[M_y B_z - M_z B_y \right] - M_x / T_2 \\ \dot{M}_y = \gamma \left[M_z B_x - M_x B_z \right] - M_y / T_2 \\ \dot{M}_z = \gamma \left[M_x B_y - M_y B_x \right] - (M_z - M_o) / T_1 \end{cases}$$

 $\alpha = \gamma \int B_1(t) dt$ (radians)

The patient is placed in a static magnetic field (B_o)

B_o creates \vec{M} which projection along z is M_z

- The direction of M_z is modified by applying a radio frequency, B₁(t), at Larmor frequency (42 MHz/T)
- M_z rotates around B₁ and B_o

Use of an excitation antenna: tilt of M_z in the transverse plane x,y. $M_z \rightarrow M_{xy}$

For a tilt of 90° M_z is now equal to 0

The magnetization vector is now in the transverse plane and rotates around $B_o (B_1$ is switched off). One can detect M_{xy} in that plane with a reception antenna.

Magnetization returns to its equilibrium position
→ energy relaxation

The amplitude of M_{xv} decreases as a function of time

The amplitude of M_z increases as a function of time

Summary

Basic contrast in MRI

- The speed of M_z growth along B_o depends on tissue
- It is characterized by the longitudinal relaxation (T1)
- Energy is transferred to the surrounding (spin-lattice)

Longitudinal relaxation (T1)

 Growth of M_z : magnetization that will be available to be tilted at the next excitation step → Origin of the MRI signal

- Growth of M_z :
- Solids and liquids : very slow \rightarrow small signal
- Soft tissue : middle → middle signal
- fat: fast \rightarrow large signal
 - Magnetization transfer on C

- T1 is tissue characteristic
- Imaging using T1 weighting

Longitudinal relaxation (T1) : magnetization growth along z (longitudinal axis)

Movements of μ induces magnetic field variations \rightarrow stimulated relaxation

- -Dipolar relaxation (other spins) $T1_d$
- -Dipolar paramagnetic relaxation (Gd) $T1_p$
- -Quadripolar relaxation T1 (spin > $\frac{1}{2}$)

- Simultaneous with T1 but faster
- Lost of phase coherence between the individual spin
 - Decrease of M_{xy} (signal) (in addition of T1 effect)
 - No energy exchange with the lattice (spin-spin)
- Depends on the magnetic homogeneity of the tissue

- Reduction of M_{xy}:
- Solids : very fast → small signal
- Soft tissue: middle → middle signal
- Liquids: slow → large signal

- T2 is also a tissue characteristic
- Imaging using T2 weighting

Order of magnitude

Indicative values (T1 in general >> T2)

Tissue	T1 @1,5 T (msec)	T2 (msec)
Fat	260	80
Liver	500	40
Muscle	870	45
White matter	780	90
Grey matter	900	100
Cerebrospinal liq.	2'400	160

Simultaneous with T1, but faster \rightarrow lost of magnetization coherence Mutual effects of μ

Large molecules (protein)

Slow movements \rightarrow Short T2

fast movements \rightarrow averaging of field variations \rightarrow longT2

T1 and T2 as a function of molecular dynamic

Schematic of an MRI system

- A large magnet (static magnetic field B_o (0.5 to 3 T in clinic)
- Three gradient coils (magnetic field B_o that varies with position x,y,z) (a few mmT/m)
- Excitation and reception antenna (magnetic field that varies with time)

From NMR to MRI

Slice selection

 G_z a few mT.m⁻¹

Express the slice thickness D_z as a function of G_z

Tomographic technique \rightarrow how to choose a slice?

```
Slice position : frequency value
```

```
Frequency domain
```

$$\Delta \omega = \gamma \cdot \mathbf{G}_{z} \cdot \Delta z$$

Bandwidth of the rf : $\Delta v = \Delta \omega / 2\pi$

Slice thickness :

 $\Delta z = 2\pi \; \Delta \nu \; / \; (\gamma \; . \; G_z)$

Tomographic technique \rightarrow how to choose a slice?

- During the excitation apply a magnetic gradient field \perp to the slice plane
- Selective rf excitation to only tilt spin within the selected slice

Only one Larmor frequency value

Several frequency Larmor frequencies

Encoding of the information

Phase space (k-space)

Before encoding

After encoding (use of two other gradients than slice selection)

Goal to code each pixel position in terms of frequency and phase of the spin

Frequency encoding : during data acquisition

Frequency encoding : during data acquisition

Phase encoding : before data acquisition

Each spin a tagged with a phase as a function of its position

Part of the sequence to encode the image

Result of image encoding

Mathematics of the spin-warp

$$S(t, G_{y}) = \iint M(x, y) e^{2\pi i \gamma G_{x} x t} \cdot e^{2\pi i \gamma G_{y} y \tau} dx dy$$

t and G_y produce phase differences : only one type of variable
$$k_{x} = \gamma G_{x} t \quad \rightarrow t = n \Delta t = \frac{n \Delta k_{x}}{\gamma G_{x}}$$

$$k_{y} = \gamma G_{y} \tau \quad \rightarrow G_{y} = \frac{m \Delta k_{y}}{\gamma \tau}$$

$$S(n \Delta k_{x}, m \Delta k_{y}) = \sum \sum M(x, y) e^{2\pi i (xn \Delta k_{x} + ym \Delta k_{y})} dx dy$$

$$\Delta k_{x} = \frac{1}{N_{x} \Delta x} = \frac{1}{X} \qquad \Delta k_{y} = \frac{1}{N_{y} \Delta y} = \frac{1}{Y}$$

This method produce a elegant way of coding the data since it directly produces the Fourier transform of the image

$$M(x, y) = \sum \sum S(n\Delta k_x, m\Delta k_y) e^{-2\pi i (xn\Delta k_x + ym\Delta k_y)} \Delta k_x \Delta k_y$$

Summary

Fourier transform

 $M(x, y) = \sum \sum S(n\Delta k_x, m\Delta k_y) e^{-2\pi i (xn\Delta k_x + ym\Delta k_y)} \Delta k_x \Delta k_y$

Basic sequence : spin echo

Basic sequence : spin echo

MRI sequence

- Sequence of rf and magnetic gradient as a function of time to build the image aiming to enhance a particular contrast:
 - T1 contrast (image of the anatomy)
 - T2 contrast (" + « pathology »)

•What would be the effect of an oedema in T2?

MRI sequence

Control over the image contrast

 $S(TR,TE) \propto \rho(1-e^{-TR/T_1})e^{-TE/T_2}$

Contrast variation

T1 Contrast $T_E = 14 \text{ ms}$ $T_R = 400 \text{ ms}$

T2 Contrast $T_E = 100 \text{ ms}$ $T_R = 1500 \text{ ms}$ Proton density $T_E = 14 \text{ ms}$ $T_R = 1500 \text{ ms}$

T2 weighting SE (double echo)

Slice in whatever plane

What can we do during TR?

Multi-slice acquisition

Contrast media : T1 reduction

Native T1

T1 + Gd

SE and FSE what differences?

Contrast in FSE

Complete image

Center of k space

K space periphery

Acquisition time reduction: FSE (T2 contrast) Other solution : GRE (Gradient Recalled Echo)

• Principle : lower tip angle for M

Faster T1 relaxation \rightarrow TR can be reduced

General GRE sequences

Spin behavior

Traveling in k space for spin echo

Traveling in k space for gradient echo

Spin echo versus gradient echo

Traveling in k space for echo planar

- Excitation 90°
- Continuous G_y
- G_x alternates between positive and negative values

Traveling in k space for spiral data sampling

- Sinusoidal variation of G_y and G_x
- Variable intensity
- For what ?

Functional imaging: MR spectroscopy

