

1. Annual dose

Estimate the annual dose for a person working 10 h per week at 1 m from an unshielded Cesium-137 source with an activity of 500 kBq.

			Assessment of	quantities				Clearance limit	Licensing limit	Guidance values		
Radionuclide	Half-life	Type of decay/ radiation	e _{inh} Sv/Bq	e _{ing} Sv∕Bq	h ₁₀ (mSv/h)/ GBq at 1 n distance	h _{0,07} (mSv/h)/ GBq at 10 cm distance	h _{c,0,07} (mSv/h)/ (kBq/cm ²)	LL Bq/g	LA Bq	CA Bq/m ³	CS Bq/ cm ²	Unstable daughter nuclide
1	2	3	4	5	6	7	8	9	10	11	12	13
Cs-125	45 min	ec, β+ / ph	2.30E-11	3.50E-11	0.114	500	0.7	1.E+01 [1	2.00E+08	4.00E+05	10	→ Xe-125
Cs-127	6.25 h	ec, β^+ / ph	4.00E-11	2.40E-11	0.079	100	0.2	1.E+02	1.00E+08	2.00E+05	30	\rightarrow Xe-127
Cs-129	32.06 h	ec, β+ / ph	8.10E-11	6.00E-11	0.063	30	< 0.1	1.E+01	6.00E+07	1.00E+05	1000	
Cs-130	29.21 min	ec, β^+ , β^- / ph	1.50E-11	2.80E-11	0.087	500	0.8	1.E+02 [1]	3.00E+08	6.00E+05	10	
Cs-131	9.689 d	ec/ph	4.50E-11	5.80E-11	0.016	2	< 0.1	1.E+03	1.00E+08	2.00E+05	1000	
Cs-132	6.479 d	ec, $\hat{\beta}^+$, β^- / ph	3.80E-10	5.00E-10	0.119	50	0.1	1.E+01	1.00E+07	2.00E+04	100	
Cs-134	2.0648 a	β-, ec / ph	9.60E-09	1.90E-08	0.236	1000	1.1	1.E-01	5.00E+05	9.00E+02	3	
Cs-134m	2.903 h	it / ph	2.60E-11	2.00E-11	0.009	1000	1.5	1.E+03	2.00E+08	3.00E+05	3	\rightarrow Cs-134 [6]
Cs-135	2.3 E6 a	β-	9.90E-10	2.00E-09	0.000	600	0.7	1.E+02	5.00E+06	8.00E+03	10	
Cs-135m	53 min	it / ph	2.40E-11	1.90E-11	0.239	70	0.2	1.E+01 [1	2.00E+08	3.00E+05	30	\rightarrow Cs-135
Cs-136	13.16 d	β- / ph	1.90E-09	3.00E-09	0.327	1000	1.5	1.E+00	3.00E+06	4.00E+03	3	
Cs-137 / Ba-137m	30.1671 a	β^- , it / ph	6.70E-09	1.30E-08	0.092	2000	1.5	1.E-01 [2]	7.00E+05	1.00E+03	3	
Cs-138	33.41 min	β^- / ph	4.60E-11	9.20E-11	0.445	1000	1.8	1.E+01 [1	1.00E+08	2.00E+05	3	

2. Working time

You are working with a source of F-18, 200 MBq, at a distance of 10 cm. How long can you work with this source without exceeding a dose limit of 100 μ Sv ?

			Assessment q	uantities				Clearance limit	Licensing limit Guidance values			
Radionuclide	Half-life	Type of decay/ radiation	e _{inh} Sv/Bq	e _{ing} Sv/Bq	h ₁₀ (mSv/h)/ GBq at 1 r distance	h _{0,07} (mSv/h)/ nGBq at 10 cm distance	h _{c,0,07} (mSv/h)/ (kBq/cm ²)	LL Bq/g)	LA Bq	CA Bq/m ³	CS Bq/ cm ²	Unstable daughter nuclide
1	2	3	4	5	6	7	8	9	10	11	12	13
C-14	5.70 E3 a	β-	5.80 E-10	5.80 E-10	< 0.001	200	0.3	1.E+00	9.00E+06	1.00 E+04	30	
C-14 monoxide			8.00 E-13						6.00E+09	1.00 E+07		
C-14 dioxide			6.50 E-12						8.00E+08	1.00 E+06		
N-13	9.965 min	ec, β^+/ph			0.160	1000	1.7	1.E+02 [1]	7.00E+07	7.00 E+04 [3]		
O-15	122.24 s	ec, β ⁺ /ph			0.161	1000	1.7	1.E+02 [1]	7.00E+07	7.00 E+04 [3]	3	
F-18	109.77 min	ec, β+/ph	9.30 E-11	4.90 E-11	0.160	2000	1.7	1.E+01 [1]	7.00E+07	7.00 E+04 [3]	3	
Na-22	2.6019 a	ec, β^+/ph	2.00 E-09	3.20 E-09	0.330	2000	1.6	1.E-01	3.00E+06	4.00 E+03	3	
Na-24	14.9590 h	β^{-}/ph	5.30 E-10	4.30 E-10	0.506	1000	1.9	1.E+00	9.00E+06	2.00 E+04	3	
Mg-28 / Al-28	20.915 h	β ⁻ /ph	1.70 E-09	2.20 E-09	0.529	2000	3.1	1.E+01 [2]	3.00E+06	5.00 E+03	3	

3. Manipulating sources with tweezers

- 1) Calculate, for the surface dose H(0.07), the benefit linked to using tweezers (handle length of 20 cm) to hold a flask of Technetium-99m.
- 2) If the operation using the tweezers lasts 1 minute, calculate the duration of the manipulation without tweezers if we want to maintain the same dose.

			Assessment	quantities				Clearance limit	Licensing limi	it Guidance values		_
Radionuclide	Half-life	Type of decay/ radiation	e _{inh} Sv/Bq	e _{ing} Sv∕Bq	h ₁₀ (mSv/h)/ GBq at 1 i distance	h _{0,07} (mSv/h)/ m GBq at 10 cm distance	h _{c,0,07} (mSv/h)/ (kBq/cm ²	LL Bq/g)	LA Bq	CA Bq/m³	CS Bq/ cm ²	Unstable daughter nuclide
1	2	3	4	5	6	7	8	9	10	11	12	13
Tc-97	2.6 E6 a	ec / ph	1.60E-10	8.30E-11	0.017	4	< 0.1	1.E+01	3.00E+07	5.00E+04	1000)
Tc-97m	90.1 d	it / ph	2.70E-09	6.60E-10	0.014	30	0.7	1.E+02	2.00E+06	3.00E+03	10	\rightarrow Tc-97
Tc-98	4.2 E6 a	β- / ph	6.10E-09	2.30E-09	0.215	2000	1.5	1.E-01	8.00E+05	1.00E+03	3	
Tc-99	2.111 E5 a	β-	3.20E-09	7.80E-10	< 0.001	1000	1.1	1.E+00	2.00E+06	3.00E+03	3	
Tc-99m	6.015 h	it, β ⁻ / ph	2.90E-11	2.20E-11	0.022	300	0.2	1.E+02 [1]	2.00E+08	3.00E+05	30	\rightarrow Tc-99
Tc-101	14.2 min	β^-/ph	2.10E-11	1.90E-11	0.055	1000	1.6	1.E+02 [1]	2.00E+08	4.00E+05	3	
Tc-104	18.3 min	β- / ph	4.80E-11	8.10E-11	1.219	1000	1.8	1.E+01 [1]	1.00E+08	2.00E+05	3	

4. The choice of the source

For a 2-year science project you will need to irradiate thin layer samples with gamma rays.

Which source of Cobalt would you chose taking into account the duration of the project and radiation protection aspects?

			Assessment of	quantities				Clearance limit	Licensing limit	t Guidance values		
Radionuclide	Half-life	Type of decay/ radiation	e _{inh} Sv/Bq	e _{ing} Sv∕Bq	h ₁₀ (mSv/h)/ GBq at 1 r distance	h _{0,07} (mSv/h)/ m GBq at 10 cm distance	h _{c,0,07} (mSv/h)/ (kBq/cm ²)	LL Bq/g	LA Bq	CA Bq/m ³	CS Bq/ cm ²	Unstable daughter nuclide
1	2	3	4	5	6	7	8	9	10	11	12	13
Co-55	17.53 h	ec, β+/ph	8.30E-10	1.10E-09	0.302	1000	1.4	1.E+01	6.00E+06	1.00E+04	3	→ Fe-55
Co-56	77.23 d	ec, β+/ph	4.90E-09	2.50E-09	0.485	300	0.6	1.E-01	1.00E+06	2.00E+03	10	
Co-57	271.74 d	ec/ph	6.00E-10	2.10E-10	0.021	100	0.1	1.E+00	8.00E+06	1.00E+04	100	
Co-58	70.86 d	ec, β+/ph	1.70E-09	7.40E-10	0.147	300	0.3	1.E+00	3.00E+06	5.00E+03	30	
C0-38						1.0	-0.1	1.0.4	A 00T . 00	5 00T . 05	4000	G 50 563
Co-58m	9.04 h	it / ph	1.70E-11	2.40E-11	< 0.001	10	< 0.1	1.E+04	3.00E+08	5.00E+05	1000	\rightarrow Co-58 [6]

5. Shielding of sources

- 1. Compare at equal transmission (1%) the thickness of lead to shield a source of Cobalt-60 ($E_v = 1.25$ MeV) and Iridium-192 ($E_v < 0.5$ MeV).
- 2. In order to reduce the dose rate of an Iodine-131 source by a factor of 10'000, the source must be shielded with approximately:
 - 0.6 cm of lead
 - 6 cm of lead
 - 6 cm of concrete
 - 60 cm of concrete

6. Shielding for a public area

Calculate the thickness of a concrete wall for an irradiation room (area: 25 m²), where a source of Cesium-137 with an activity of 20 GBq is used for 10 h per week. The adjoining area is occupied by non professionally exposed workers, i.e. public individuals (dose limit: 0.02 mSv per week).

7. Measurement of external exposure

True or False

When working with γ emitters :

- The Automess can be used to monitor the ambient dose rate.
- The active individual dosemeter can be used to know instantaneously the dose received while working.
- The passive and active individual dosemeter have the same utility.

8. Surface contamination

Calculate the waiting time so that a surface contamination of 200 Bq/cm² of Iodine-125 decays below the legal limit of surface contamination for uncontrolled areas.

Radionuclide			Assessment quantities					Clearance li	imit	Licensing limit Guidance values			
	Half-life	Type of decay/ radiation	e _{inh} Sv/Bq	e _{ing} Sv∕Bq	h ₁₀ (mSv/h)/ GBq at 1 n distance	h _{0,07} (mSv/h)/ nGBq at 10 cm distance	h _{c,0,07} (mSv/h)/ (kBq/cm ²)	LL Bq/g	LA Bq	CA Bq/m ³	CS Bq/ cm ²	Unstable daughter nuclide	
1	2	3	4	5	6	7	8	9		10	11	12	13
I-120	81.6 min	ec, β^+ / ph	1.90E-10	3.40E-10	1.155	800	1.5	1.E+01	[1]	3.00E+07	4.00E+04	3	
I-120m	53 min	ec, β + / ph	1.40E-10	2.10E-10	1.108	800	1.7	1.E+01	[1]	4.00E+07	6.00E+04	3	
-121	2.12 h	ec, β+ / ph	3.90E-11	8.20E-11	0.077	400	0.4	1.E+02	[1]	1.00E+08	2.00E+05	10	\rightarrow Te-121
-123	13.27 h	ec / ph	1.10E-10	2.10E-10	0.043	400	0.3	1.E+02		5.00E+07	8.00E+04	30	\rightarrow Te-123
-124	4.1760 d	ec, β^+ / ph	6.30E-09	1.30E-08	0.170	300	0.5	1.E+01		8.00E+05	1.00E+03	10	
-125	59.400 d	ec / ph	7.30E-09	1.50E-08	0.033	4	< 0.1	1.E+02		7.00E+05	1.00E+03	10	
-126	12.93 d	ec, β^+ , β^- / ph	1.40E-08	2.90E-08	0.078	700	0.7	1.E + 01		4.00E+05	6.00E+02	10	
-128	24.99 min	β^- , ec, β^+ / ph		4.60E-11	0.016	1000	1.5	1.E+02	[1]		4.00E+05	3	
-129	1.57 E7 a	β- / ph	5.10E-08	1.10E-07	0.016	100	0.3	1.E-02		1.00E+05	2.00E+02	3	\rightarrow Xe-129
[-130	12.36 h	β- / ph	9.60E-10	2.00E-09	0.325	1000	1.6	1.E+01		5.00E+06	9.00E+03	3	
-131	8.02070 d	β- / ph	1.10E-08	2.20E-08	0.062	1000	1.4	1.E+01		5.00E+05	8.00E+02	3	\rightarrow Xe-131m
-132	2.295 h	β- / ph	2.00E-10	2.90E-10	0.338	1000	1.7	1.E+01	[1]	3.00E+07	4.00E+04	3	
-132m	1.387 h	it, β [–] / ph	1.10E-10	2.20E-10	0.055	300	1	1.E + 02		5.00E+07	8.00E+04	10	\rightarrow I-132 [6]
-133	20.8 h	β ⁻ / ph	2.10E-09	4.30E-09	0.093	1000	1.6	1.E+01		2.00E+06	4.00E+03	3	→ Xe-133, Xe 133m
-134	52.5 min	β- / ph	7.90E-11	1.10E-10	0.385	1000	1.8	1.E+01	[1]	6.00E+07	1.00E+05	3	
I-135	6.57 h	β- / ph	4.60E-10	9.30E-10	0.223	1000	1.6	1.E+01	[2]	1.00E+07	2.00E+04	3	→ Xe-135, Xe 135m

9. Working sector

- 1. Which type of working area is required to handle 10 MBq of an open radioactive source of Sr-90?
- 2. Which type of working area is required to handle 300 MBq of an open radioactive source of P-32?
- 3. True or false:

Type B working sector:

- The exit must be equipped with a hand and foot monitor.
- All structures (doors and walls) must be shielded.
- Is only used for handling sealed sources.

			Assessment quantities					Clearance limit	Licensing limit Guidance values			
Radionuclide	Half-life	Type of decay/ radiation	e _{inh} Sv/Bq	e _{ing} Sv∕Bq	h ₁₀ (mSv/h)/ GBq at 1 r distance	h _{0,07} (mSv/h)/ n GBq at 10 cm distance	h _{c,0,07} (mSv/h)/ (kBq/cm ²)		LA Bq	CA Bq/m ³	CS Bq/ cm ²	Unstable daughter nuclide
1	2	3	4	5	6	7	8	9	10	11	12	13
P-30	2.498 min	ec, β+/ph			0.371	900	1.7				3	
P-32	14.263 d	β-	2.90E-09	2.40E-09	< 0.001	1000	1.6	1.E+03	2.00E+06	3.00E+03	3	
P-33	25.34 d	β-	1.30E-09	2.40E-10	< 0.001	700	0.8	1.E+03	4.00E+06	6.00E+03	10	
Sr-90	28.79 a	β-	7.70E-08	2.80E-08	< 0.001	1000	1.4	1.E+00 [2	1 6.00E+04	1.00E+02	3	\rightarrow Y-90 [6]
Sr-91	9.63 h	β-/ ph	5.70E-10	7.60E-10	0.117	1000	1.6	1.E+01 [2	9.00E+06	1.00E+04	3	→ Y-91m, Y-
Sr-92	2.66 h	β^-/ph	3.40E-10	4.90E-10	0.194	1000	1.4	1.E+01 [1	1 1.00E+07	2.00E+04	3	\rightarrow Y-92 [6]

