Radiation Biology, Protection and Applications

(PHYS-450)

EXERCISES

Week 11

Problem 1: (Shielding of β -particles)

One curie of ³²P ($E_{g,max} = 1.71$ MeV, $E_g = 0.695$ MeV) is dissolved in 50mL of water for an experiment. The solution is to be kept in a polyethylene bottle ($\varrho = 0.93$ g.cm³).

a) How thick should the wall of the bottle be to stop all β -particles emitted by ³²P?

b) What should be the thickness of lead required to ensure that the dose equivalent rate due to bremsstrahlung photons is less than 1 mrem/h at 1m?

Problem 2: (Shielding of photon sources)

Determine the thickness of an iron shield able to reduce an exposure rate of 800 mR/h from 1 MeV photons to:

a) 200 mR/h

b) 150 mR/h

N.B. : Roentgen [R] is the old unit of radiation exposure and $1R = 2.58 \cdot 10^{+} C.kg^{+}$ of air.

Problem 3: (Shielding of photon sources, buildup factor)

A fluence of $10^{\circ}\gamma/\text{cm}^{\circ}$ of 1.5 MeV photons strikes a two cm thick piece of lead. What is the best estimate of the total energy that reaches a receptor beyond the lead shield?

Problem 4: (Shielding of photon sources, buildup factor)

Determine the thickness of an iron shield needed to reduce the exposure rate from a point source emitting $10^{\circ}\gamma$ /s of 1 MeV to 1 mR/h at a distance of 60 cm.

Use that the exposure rate in air for unscattered photons of energy E [MeV] is given by Exposure $[mR/h] = 0.0658 \cdot \phi \cdot E \cdot (\mu_{tar}/\varrho)_{air}$, where $\phi = flux$ of photons $[cm^2.s^4]$ and $(\mu_{tar}/\varrho)_{air}$ is the energy absorption coefficient for photons $[cm^2.g^4]$ of energy E [MeV].

Problem 5: (Shielding of neutron sources, buildup factor)

Estimate the dose equivalent rate 1m from an ²³⁹Pu-Be source that emits 3·10⁷ neutrons/s with an average energy of 4.5 MeV.

a) unshielded

b) shielded by 25 cm of water

	Absorber	(Z)				
E (MeV)	Water	Air	AI (13)	Cu (29)	Sn (50)	Pb (82)
0.100	0.058	0.066	0.135	0.355	0.658	1.162
0.200	0.098	0.111	0.223	0.595	1.147	2.118
0.300	0.133	0.150	0.298	0.795	1.548	2.917
0.400	0.166	0.187	0.368	0.974	1.900	3.614
0.500	0.198	0.223	0.435	1.143	2.224	4.241
0.600	0.229	0.258	0.501	1.307	2.530	4.820
0.700	0.261	0.293	0.566	1.467	2.825	5.363
0.800	0.293	0.328	0.632	1.625	3.111	5.877
0.900	0.325	0.364	0.698	1.782	3.391	6.369
1.000	0.358	0.400	0.764	1.938	3.666	6.842
1.250	0.442	0.491	0.931	2.328	4.340	7.960
1.500	0.528	0.584	1.101	2.720	4.998	9.009
1.750	0.617	0.678	1.274	3.113	5.646	10.010
2.000	0.709	0.775	1.449	3.509	6.284	10.960
2.500	0.897	0.972	1.808	4.302	7.534	12.770
3.000	1.092	1.173	2.173	5.095	8.750	14.470

Table 8-1. Percent radiation yield of electrons of initial energy E on different absorbers.

Energy (MeV)	Lead (11.35 g/cm ³)	lron (7.874 g/cm³)	Aluminum (2.699 g/cm³)	Water (1.00 g/cm³)	Air (0.001205 g/cm ³)	Stone concrete (2.30 g/cm ³)
0.1	0.011	0.237	1.507	4.060	3.726×10^{3}	1.734
0.3	0.151	0.801	2.464	5.843	5.372×10^{3}	2.747
0.5	0.378	1.046	3.041	7.152	$6.600 imes 10^3$	3.380
0.662	0.558	1.191	3.424	8.039	7.420×10^3	3.806
1.0	0.860	1.468	4.177	9.802	9.047×10^3	4.639
1.173	0.987	1.601	4.541	10.662	9.830×10^3	5.044
1.332	1.088	1.702	4.829	11.342	1.047×10^4	5.368
1.5	1.169	1.802	5.130	12.052	1.111×10^{4}	5.698
2.0	1.326	2.064	5.938	14.028	1.293×10^4	6.612
2.5	1.381	2.271	6.644	15.822	1.459×10^4	7.380
3.0	1.442	2.431	7.249	17.456	$1.604 imes 10^4$	8.141
3.5	1.447	2.567	7.813	19.038	1.747×10^4	8.828
4.0	1.455	2.657	8.270	20.382	1.868×10^4	9.366
5.0	1.429	2.798	9.059	22.871	2.094×10^4	10.361
7.0	1.348	2.924	10.146	26.860	2.449×10^4	11.846
10.0	1.228	2.940	11.070	31.216	2.817×10^{4}	13.227

I

	ן (ף	Dry air (sea = 0.001205	level) g/cm³)		Water, lie ($\rho = 1.00$ g	quid ;/cm ³)		Alumin (ρ = 2.699	um g/cm³)	(P	Iron = 7.874 g/c	:m³)
Energy (keV)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁱ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)
10	0.0062	5.120	4.742	5.329	5.329	4.944	70.795	26.23	25.43	1343.304	170.6	136.90
15	0.0019	1.614	1.334	1.673	1.673	1.374	21.4705	7.955	7.487	449.4479	57.08	48.96
20	0.0009	0.7779	0.5389	0.8096	0.8096	0.5503	9.2873	3.441	3.094	202.2043	25.68	22.60
30	4.26×10^{-4}	0.3538	0.1537	0.3756	0.3756	0.1557	3.0445	1.128	0.8778	64.3778	8.176	7.251
40	2.99×10^{-4}	0.2485	0.0683	0.2683	0.2683	0.0695	1.5344	0.5685	0.3601	28.5747	3.629	3.155
50	2.51×10^{-4}	0.2080	0.0410	0.2269	0.2269	0.0422	0.9935	0.3681	0.1840	15.4173	1.958	1.638
60	2.26×10^{-4}	0.1875	0.0304	0.2059	0.2059	0.0319	0.7498	0.2778	0.1099	9.4882	1.2050	0.9555
70 ^[a]	2.10×10^{-4}	0.1744	0.0255	0.1948	0.1948	0.0289	0.6130	0.2271	0.0713	6.2318	0.7914	0.5836
80	2.00×10^{-4}	0.1662	0.0241	0.1924	0.1924	0.0272	0.5447	0.2018	0.0551	4.6866	0.5952	0.4104
100	1.86×10^{-4}	0.1541	0.0233	0.1707	0.1707	0.0255	0.4599	0.1704	0.0379	2.9268	0.3717	0.2177
150	1.63×10^{-4}	0.1356	0.0250	0.1505	0.1505	0.0276	0.3719	0.1378	0.0283	1.5465	0.1964	0.0796
200	$1.49 imes 10^{-4}$	0.1233	0.0267	0.1370	0.1370	0.0297	0.3301	0.1223	0.0275	1.1496	0.1460	0.0483
300	1.29×10^{-4}	0.1067	0.0287	0.1186	0.1186	0.0319	0.2812	0.1042	0.0282	0.8654	0.1099	0.0336
400	1.15×10^{-4}	0.0955	0.0295	0.1061	0.1061	0.0328	0.2504	0.0928	0.0286	0.7402	0.0940	0.0304
500	1.05×10^{-4}	0.0871	0.0297	0.0969	0.0969	0.0330	0.2279	0.0845	0.0287	0.6625	0.0841	0.0291
600	9.71 × 10 ⁻⁵	0.0806	0.0295	0.0896	0.0896	0.0328	0.2106	0.0780	0.0285	0.6066	0.0770	0.0284

Table 8-2. Photon attenuation (μ), mass attenuation (μ/ρ), and mass energy absorption (μ_{en}/ρ) coefficients for selected elements and compounds/mixtures (J. H. Hubbell and S. M. Seltzer).

	с (р	Dry air (sea = 0.001205	level) g/cm³)	3	Water, lic (ρ = 1.00 g	quid :/cm³)		Alumin (p = 2.699 (um g/cm³)	(e	lron = 7.874 g/c	m³)
Energy (keV)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	 (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)
662 ^[a]	9.34 × 10 ⁻⁵	0.0775	0.0293	0.0862	0.0862	0.0326	0.2024	0.0750	0.0283	0.5821	0.0739	0.0280
800	8.52 × 10 ⁻⁵	0.0707	0.0288	0.0787	0.0787	0.0321	0.1846	0.0684	0.0278	0.5275	0.0670	0.0271
1000	7.66 × 10 ⁻⁵	0.0636	0.0279	0.0707	0.0707	0.0310	0.1659	0.0615	0.0269	0.4720	0.0600	0.0260
1173 ^[a]	7.05 × 10 ⁻⁵	0.0585	0.0271	0.0650	0.0650	0.0301	0.1526	0.0565	0.0261	0.4329	0.0550	0.0251
1250	6.86×10^{-5}	0.0569	0.0267	0.0632	0.0632	0.0297	0.1483	0.0550	0.0257	0.4213	0.0535	0.0247
1333 ^[a]	6.62 × 10 ⁻⁵	0.0550	0.0263	0.0611	0.0611	0.0292	0.1435	0.0532	0.0253	0.4071	0.0517	0.0243
1500	6.24 × 10 ^{−5}	0.0518	0.0255	0.0575	0.0575	0.0283	0.1351	0.0501	0.0245	0.3845	0.0488	0.0236
2000	5.36 × 10 ⁻⁵	0.0445	0.0235	0.0494	0.0494	0.0261	0.1167	0.0432	0.0227	0.3358	0.0427	0.0220
3000	4.32×10^{-5}	0.0358	0.0206	0.0397	0.0397	0.0228	0.0956	0.0354	0.0202	0.2851	0.0362	0.0204
4000	3.71 × 10 ⁻⁵	0.0308	0.0187	0.0340	0.0340	0.0207	0.0838	0.0311	0.0188	0.2608	0.0331	0.0199
5000	$3.31 imes 10^{-5}$	0.0275	0.0174	0.0303	0.0303	0.0192	0.0765	0.0284	0.0180	0.2477	0.0315	0.0198
6000	3.04×10^{-5}	0.0252	0.0165	0.0277	0.0277	0.0181	0.0717	0.0266	0.0174	0.2407	0.0306	0.0200
6129 ^[a]	3.01 × 10 ⁻⁵	0.0250	0.0164	0.0274	0.0274	0.0180	0.0713	0.0264	0.0173	0.2403	0.0305	0.0200
7000 ^[a]	2.83 × 10 ⁻⁵	0.0235	0.0159	0.0258	0.0258	0.01723	0.0683	0.0253	0.0170	0.2370	0.0301	0.0202
7115 ^[a]	2.82 × 10 ⁻⁵	0.0234	0.0158	0.0256	0.0256	0.0172	0.0680	0.0252	0.0170	0.2368	0.0301	0.0203
10,000	2.46 × 10 ⁻⁵	0.0205	0.0145	0.0222	0.0222	0.0157	0.0626	0.0232	0.0165	0.2357	0.0299	0.0211

a Coefficients for these energies were interpolated using polynomial regression.

		Copper ($ ho$ = 8.96 g/	cm³)		Lead (p = 11.35 (g/cm³)		Polyethy ($\rho = 0.93$ g	lene ;/cm³)	Co	pncrete, ordi $\rho = 2.3 \text{ g/cm}$	nary 1 ³)
Energy (keV)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ · (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ¹)	μ/ρ (cm²/g)	μ _{en} /ρ ⁻ (cm²/g)
10	1934.464	215.9	148.4	1482.31	130.6	124.7	1.9418	2.088	1.781	47.04	20.45	19.37
15	663.4880	74.05	57.88	1266.66	111.6	91.0	0.6930	0.7452	0.4834	14.61	6.351	5.855
20	302.7584	33.79	27.88	980.1860	86.36	68.99	0.4013	0.4315	0.1936	6.454	2.806	2.462
30	97.8432	10.92	9.349	344.1320	30.32	25.36	0.2517	0.2706	0.0593	2.208	0.9601	0.7157
40	43.5635	4.862	4.163	162.9860	14.36	12.11	0.2116	0.2275	0.0320	1.163	0.5058	0.2995
50	23.4125	2.613	2.192	91.2654	8.041	6.740	0.1938	0.2084	0.0244	0.7848	0.3412	0.1563
60	14.2733	1.5930	1.2900	56.9884	5.0210	4.1490	0.1832	0.1970	0.0224	0.6118	0.2660	0.0955
70 ^[a]	9.2401	1.0313	0.7933	35.0670	3.0896	2.6186	0.1754	0.1886	0.0221	0.5131	0.2231	0.0638
80	6.8365	0.7630	0.5581	27.4557	2.4190	1.9160	0.1695	0.1823	0.0227	0.4632	0.2014	0.0505
100	4.1073	0.4584	0.2949 ·	62.9812	5.5490	1.9760	0.1599	0.1719	0.0242	0.3997	0.1738	0.0365
150	1.9864	0.2217	0.1027	22.8589	2.0140	1.0560	0.1427	0.1534	0.0279	0.3303	0.1436	0.0290
200	1.3969	0.1559	0.0578	11.3330	0.9985	0.5870	0.1304	0.1402	0.0303	0.2949	0.1282	0.0287
300	1.0026	0.1119	0.0362	4.5752	0.4031	0.2455	0.1132	0.1217	0.0328	0.2523	0.1097	0.0297
400	0.8434	0.0941	0.0312	2.6366	0.2323	0.1370	0.1013	0.1089	0.0337	0.2250	0.0978	0.0302
500	0.7492	0.0836	0.0293	1.8319	0.1614	0.0913	0.0925	0.0995	0.0339	0.2050	0.0892	0.0303
600	0.6832	0.0763	0.0283	1.4165	0.1248	0.0682	0.0855	0.0920	0.0338	0.1894	0.0824	0.0302
662 ^[a]	0.6555	0.0732	0.0279	1.2419	0.1094	0.0587	0.0823	0.0885	0.0335	0.1822	0.0792	0.0299

		Copper (ρ = 8.96 g/	cm³)		Lead (<i>p</i> = 11.35 g	g/cm³)		Polyethy $(\rho = 0.93 \text{ g})$	lene :/cm³)	Co (oncrete, ordin $\rho = 2.3 \text{ g/cm}$	nary 1 ³)
Energy (keV)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ[ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ[ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ[ρ (cm²/g)	μ _{en} /ρ (cm²/g)
800	0.5918	0.0661	0.0268	1.0067	0.0887	0.0464	0.0751	0.0808	0.0330	0.1662	0.0723	0.0294
1000	0.5287	0.0590	0.0256	0.8061	0.0710	0.0365	0.0675	0.0726	0.0319	0.1494	0.0650	0.0284
1173 ^[a]	0.4840	0.0540	0.0246	0.7020	0.0619	0.0315	0.0621	0.0668	0.0310	0.1374	0.0598	0.0276
1250	0.4714	0.0526	0.0243	0.6669	0.0588	0.0299	0.0604	0.0650	0.0305	0.1336	0.0581	0.0272
1333 ^[a]	0.4553	0.0508	0.0239	0.6369	0.0561	0.0285	0.0584	0.0628	0.0300	0.1291	0.0561	0.0268
1500	0.4303	0.0480	0.0232	0.5927	0.0522	0.0264	0.0550	0.0591	0.0291	0.1216	0.0529	0.0260
2000	0.3768	0.0421	0.0216	0.5228	0.0461	0.0236	0.0471	0.0506	0.0268	0.1048	0.0456	0.0240
3000	0.3225	0.0360	0.0202	0.4806	0.0423	0.0232	0.0376	0.0405	0.0233	0.0851	0.0370	0.0212
4000	0.2973	0.0332	0.0199	0.4764	0.0420	0.0245	0.0320	0.0344	0.0209	0.0740	0.0322	0.0195
5000	0.2847	0.0318	0.0200	0.4849	0.0427	0.0260	0.0283	0.0305	0.0192	0.0669	0.0291	0.0184
6000	0.2785	0.0311	0.0203	0.4984	0.0439	0.0274	0.0257	0.0276	0.0179	0.0620	0.0270	0.0176
6129 ^[a]	0.2781	0.0310	0.0203	0.5002	0.0441	0.0276	0.0254	0.0273	0.0178	0.0616	0.0268	0.0175
7000 ^[a]	0.2757	0.0308	0.0206	0.5141	0.0453	0.0287	0.0236	0.0254	0.0169	0.0585	0.0254	0.0171
7115 ^[a]	0.2755	0.0307	0.0207	0.5161	0.0455	0.0289	0.0235	0.0252	0.0168	0.0582	0.0253	0.0170
10,000	0.2780	0.0310	0.0217	0.5643	0.0497	0.0318	0.0199	0.0215	0.0151	0.0524	0.0228	0.0162
a Coeff	ficients for the	ese energies we	ere interpolate	d using polyn	omial regres	sion.						

Table 8-	 Exposul tx (for vari 	re buildur ious absol	hactors f rbers).	or photo	ns of ene	rgy E					Table 8-	4. Continu	ed.							ر.	
	E norm	Meth.										Energy (I	deV)								
	Energy (I	mev)									XI	0.1	0.5	-	2		4	5	9		0
Xrl	D.0	0.5	-	3	m	4	ò	9	8	10											55
14											20.0	3.33	55.4	41.3	24.6	19.4	16.8	15.2	14.2	12.9	12.3
2 2			ļ	1							25.0	3.61	79.9	57.0	32.5	25.4	22.1	20.3	19.3	18.2	18.1
0.5	1.91	1.57	1.45	1.37	1.33	1.32	1.28	1.26	1.22	1.19	30.0	3.86	108	74.5	40.9	31.7	27.9	25.9	25.1	24.5	25.7
1.0	2.86	2.28	1.99	1.78	1.68	1.62	1.54	1.49	1.41	1.35	Sn										
2.0	4.87	4.07	3.26	2.66	2.38	2.19	2.04	1.94	1.76	1.64	0.5	1.35	1.32	1.33	1.27	1.29	1.28	1.31	1.31	1.33	1.31
3.0	7.07	6.35	4.76	3.62	3.11	2.78	2.54	2.37	2.11	1.93	1.0	1.38	1.61	1.69	1.57	1.56	1.51	1.55	1.54	1.6	1.57
4.0	9.47	9.14	6.48	4.64	3.86	3.38	3.04	2.81	2.46	2.22	2.0	1.41	2:15	2.4	2.17	2.07	1.96	1.97	1.94	2.04	2.05
5.0	12.1	12.4	8.41	5.72	4.64	3.99	3.55	3.26	2.82	2.52	3.0	1.43	2.68	3.14	2.82	2.64	2.45	2.43	2.38	2.51	2.61
6.0	14.9	16.3	10.5	6.86	5.44	4.61	4.08	3.72	3.18	2.83	4.0	1.45	3.16	3.86	3.51	3.25	3.0	2.54	2.87	3.05	3.27
7.0	18.0	20.7	12.9	8.05	6.26	5.24	4.61	4.19	3.55	3.14	5.0	1.47	3.63	4.6	4.23	3,92	3.6	3.52	3.43	3.69	4.09
8.0	21,3	25.7	15.4	9.28	7.1	5.88	5.14	4.66	3.92	3.46	6.0	1.49	4.14	5.43	5.03	4.68	4.29	4.19	4.09	4.45	5.07
10.0	28.7	37.6	21.0	11.9	8.83	7.18	6.23	5.61	4.68	4.12	7.0	1.5	4.64	6.27	5.87	5.48	5.04	4.93	4.83	5.34	6.26
15.0	51.7	78.6	37.7	18.9	13.4	10.5	9.03	8.09	6.64	5.87	8.0	1.52	5.13	7.11	6.74	6.32	5.84	5.74	5.65	6.36	7.69
20.0	81.1	137	57.9	26.6	18.1	14.0	11.9	10.7	8.68	7.74	10.0	1.54	6.13	8.88	8.61	8.19	7.65	7.63	7.63	8.94	11.5
25.0	117	213	81.3	34.9	23.0	17.5	14.9	13.3	10.8	9.74	15.0	1.58	8.74	13.8	14.0	13.8	13.5	14.1	14.9	19.7	29.6
30.0	159	307	107	43.6	28.1	21.0	18.0	16.0	13.0	11.8	20.0	1.61	11.4	19.1	20.1	20.5	21.1	23.5	26.4	40.7	72.1
Fe			• .								25.0	1.64	14.0	24.5	26.9	28.1	30.6	36.2	43.9	7.67	168
0.5	1.26	1.48	1.41	1.35	1.32	1.3	1.27	1.25	1.22	1.19	30.0	1.66	16.5	30.0	34.2	36.6	42.1	53.0	69.3	150	377
1.0	1.4	1.99	1.85	1.71	1.64	1.57	1.51	1.47	1.39	1.33	Pb										
2.0	1.61	3.12	2.85	2.49	2.28	2.12	1.97	1.87	1.71	1.59	0.5	1.51	1.14	1.2	1.21	1.23	1.21	1.25	1.26	1.3	1.28
3.0	1.78	4.44	4	3.34	2.96	2.68	2.46	2.3	2.04	1.86	1.0	2.04	1.24	1.38	1.4	1.4	1.36	1.41	1.42	1.51	1.51
4.0	1.94	5.96	5.3	4.25	3.68	3.29	2.98	2.76	2.41	2.16	2.0	3.39	1.39	1.68	1.76	1.73	1.67	1.71	1.73	1.9	2.01
5.0	2.07	7.68	6.74	5.22	4.45	3.93	3.53	3.25	2.81	2.5	3.0	5.6	1.52	1.95	2.14	2.1	2.02	2.05	2.08	2.36	2.63
6.0	2.2	9.58	8.31	6.25	5.25	4.6	4.11	3.78	3.24	2.87	4.0	9.59	1.62	2.19	2.52	2.5	2.4	2.44	2.49	2.91	3.42
7.0	2.31	11.7	10.0	7.33	60.9	5.31	4.73	4.33	3.71	3.27	5.0	17.0	1.71	2.43	2.91	2.93	2.82	2.88	2.96	3.59	4.45
8.0	2.41	14.0	11.8	8.45	6.96	6.05	5.38	4.92	4.2	3.71	6.0	30.6	1.8	2.66	3.32	3.4	3.28	3.38	3.51	4.41	5.73
10.0	2.61	19.1	15.8	10.8	8.8	7.6	6.75	6.18	5.3	4.69	7.0	54.9	1.88	2.89	3.74	3.89	3.79	3.93	4.13	5.39	7.37
15.0	3.01	35.1	27.5	17.4	13.8	11.9	10.7	9.85	8.64	7.88	8.0	94.7	1.95	3.1	4.17	4.41	4.35	4.56	4.84	6.58	9.44

Table 8	4. Contin	ued.									Table 8	4. Continu	ed.								
	Energy	(MeV)					-					Energy (N	leV)				ð				
XI	L.0	0.5	-	2	3	4	5	ور	8	10	ă	1.0	0.5	-	2	3	4	S	ور	00	0L
10.0	294	2.1	3.51	5.07	5.56	5.61	6.03	6.61	9.73	15.4	7.0	137	32.7	15.8	8.65	6.43	5.3	4.58	4.12	3.48	3.07
15.0	5800	2.39	4.45	7.44	8.91	9.73	11.4	13.7	25.1	50.8	8.0	187	41.5	19.0	9.97	7.27	5.92	5.07	4.54	3.8	3.34
20.0	1.33×1	105 2.64	5.27	9.98	12.9	15.4	19.9	26.6	62.0	161	10.0	321	62.9	26.1	12.7	8.97	7.16	6.05	5.37	4.44	3.86
25.0	3.34 × 1	106 2.85	5.98	12.6	17.5	23.0	32.9	49.6	148	495	15.0	938	139	47.7	20.1	13.3	10.3	8.49	7.41	5.99	5.14
30.0	8.87×1	107 3.02	6.64	15.4	22.5	32.6	52.2	88.9	344	1470	20.0	2170	252	74.0	28	17.8	13.4	10.9	9.42	7:49	6.38
. U											25.0	4360	403	104	36.5	22.4	16.5	13.3	11.4	8.96	7.59
0.5	1.04	1.11	1.17	1.19	1.2	1.19	1.23	1.24	1.28	1.27	30.0	0/6/	594	139	45.2	27.1	19.7	15.7	13.3	10.4	8.78
1.0	1.06	1.19	1.31	1.35	1.35	1.32	1.37	1.38	1.48	1.49.	Air									n ¹	
2.0	1.08	1.3	1.53	1.65	1.64	1.6	1.64	1,66	1.85	1.97	0.5	2:35	1.6	1.47	1.38	1.34	1.31	1.29	1.27	1.23	1.2
3.0	1.1	1.39	1.73	1.95	1.95	1.89	1.94	1.98	2.27	2.56	1.0	4.46	2.44	2.08	1.83	1.71	1.63	1.57	1.52	1.43	1.37
4.0	11.1	1.45	1.9	2.25	2.28	2.21	2.27	2.33	2.78	3.31	2.0	11.4	4.84	3.6	2.81	2.46	2.25	2.09	1.97	1.8	1.68
5.0	1.12	1.52	2.07	2.56	2.62	2.55	2.63	2.74	3.39	4.26	3.0	22.5	8.21	5.46	3.86	3.22	2.85	2.6	2.41	2.15	1.97
6.0	1.13	1.58	2.23	2.88	2.99	2.93	3.04	3.19	4.11	5.43	4.0	38.4	12.6	7.6	4.96	4	3.46	3.11	2.85	2.5	2.26
7.0	1.14	1.63	2.38	3.19	3.38	3.33	3.49	3.71	4.96	6.9	5.0	59.9	17.9	10.0	6.13	4.79	4.07	3.61	3.28	2.84	2.54
8.0	1.14	1.68	2.52	3.51	3.78	3.76	3,99	4.28	5.97	8.73	6.0	87.8	24.2	12.7	7.35	5.6	4.69.	4.12	3.71	3.17	2.82
10.0	1.16	1.77	2.78	4.17	4.64	4.72	5.14	5.68	8.61	13.9	7.0	123	31.6	15.6	8.61	6.43	5.31	4.62	4.14	3.51	3.1
15.0	1.18	1.96	3.35	5.84	7.06	7.72	9.1	11.0	20.8	43.4	8.0	166	40.1	18.8	9.92	7.26	5.94	5.12	4.57	3.84	3.37
20.0	1.2	2.11	3.82	7.54	9.8	11.6	15.1	20.1	48.6	131	10.0	282	60.6	25.8	12.6	8.97	7.19	6.13	5.42	4.49	3.92
25.0	1.22	2.23	4.23	9.27	12.8	16.5	23.7	35.4	110	385	15.0	800	134	47.0	20	13.4	10.3	8.63	7.51	6.08	5.25
30.0	1.23	2.33	4.59	11.0	16.0	22.5	36.0	60.4	244	1100	20.0	1810	241	72.8	27.9	17.9	13.5.	11.1	9.58	7.64	6.55
H2O											25.0	3570	385	103	36.2	22.5	16.7	13.6	11.6	9.17	7.84
0.5	2.37	1.6	1.47	1.38	1.34	1.31	1.28	1.27	1.23	1.2	30.0	6430	267	136	45	27.2	19.9	16.1	13.6	10.7	9.11
1.0	4.55	2.44	2.08	1.83	1.71	1.63	1.56	1.51	1.43	1.37	Concret	ţ						*			
2.0	11.8	4.88	3.62	2.81	2.46	2.24	2.08	1.97	1.8	1.68	0.5	1.89	1.57	1.45	1.37	1.33	1.31	1.27	1.26	1.22	1.19
3.0	23.8	8.35	5.5	3.87	3.23	2.85	2.58	2.41	2.15	1.97	1.0	2.78	2.27	1.98	1.77	1.67	19.1	1.53	1.49	1.41	1.35
4.0	41.3	12.8	7.68	4.98	4	3.46	3.08	2.84	2.46	2.25	2.0	4.63	4.03	3.24	2.65	2.38	2.18	2.04	1.93	1.76	1.64
5.0	65.2	18.4	10.1	6.15	4.8	4.07	3.58	3.27	2.82	2.53	3.0	6.63	6.26	4.72	3.6	3.09	2.77	2.53	2.37	2.11	1.93
6.0	96.7	25.0	12.8	7.38	5.61	4.68	4.08	3.7	3.15	2.8	4.0	8.8	8.97	6.42	4.61	3.84	3.37	3.03	2.8	2.45	2.22

Neutron energy (eV)	Fluence rate (n/o	:m² s) for 1 mrem/h
	10 CFR 20 ^[a]	NCRP-112 ^[b]
0.025 (thermal)	272	112
0.1	272	112
1	224	112
10	224	112
10 ²	232	116
10 ³	272	112
104	280	120
10 ⁵	46.0	16.0
5 × 10 ⁵	10.8	6.40
106	7.6	3.88
5×10^{6}	6.4	3.88
107	6.8	3.20
1.4×10^{7}	4.8	2.72
6 × 10⁷ .	4.4	-
108	5.6	<u> </u>

Table 14-4. Fluence rates for monoenergetic neutrons that correspond to a dose equivalent rate of 1 mrem/h.

a Adapted from Title 10, Code of Federal Regulations, Part 20 (1993) by the US Nuclear Regulatory Commission (the rates incorporate neutron quality factors of 2.0 for thermal and lowenergy neutrons and 2.5–11 for higher energy neutrons).

b These fluence rates are based on NCRP Report 112 (1987) which recommends increasing *Q* for neutrons by a factor of 2.5 for thermal neutrons and 2.0 for all other energies.

Medium	Σ _{nr} (cm ⁻¹)
Sodium	0.032
Graphite	0.078
Carbon	0.084
Concrete (6% H ₂ O)	0.089
D ₂ O	0.092
Zirconium	0.101
H ₂ O	0.103
Paraffin	0.106
Polyethylene	0.111
ead	0.118
Beryllium	0.132
ron	0.156
Copper	0.167
Uranium	0.182
lungsten	0.212

Table 14-5. Neutron removal coefficients Σ_{nr} for fission neutrons in several common materials surrounded by sufficient hydrogenous material to absorb neutrons that are degraded in energy due to scattering interactions.

Source: Report TID-25951, 1973.