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Random Graphs

3.1 Introduction

The theory of random graphs began in the late 1950s with the seminal paper by Erdös and Rényi [3],
devoted to graphs whose edges are i.i.d, with a fixed probability between any pair of vertices.

As we shall see shortly, a random graph with constant p is not a very interesting object to study for
our purposes, as the graph is so richly connected that every node is only two hops away from every
other node. In fact, with constant p, the degree (i.e., the number of edges per vertex) grows linearly
with n, while many real networks are much sparser. As we will see, interesting behavior (such as
phase transitions from many small components to one dominating giant component) occurs within
much sparser random graphs.

To focus on such graphs, it is necessary to let p = p(n) depend on n; specifically, we will let p(n)
go to zero in different ways, which will give rise to several interesting regimes, separated by phase
transitions. Contrast this with percolation theory, where the phase transition occurred for p = pc
independent of the lattice size. For this reason, it was not necessary to work out results on a finite
lattice of size n and then to study the limit n → ∞; we could directly study the infinite lattice. In
random graph theory, on the other hand, we need to perform the extra step of going to the limit,
and we will be interested in properties of RGs whose probability goes to one when n → ∞. Such
a property Q is said to occur asymptotically almost surely (a.a.s.), although many authors use the
somewhat imprecise term almost every graph has property Q (a.e.), or also property Q occurs with
high probability (w.h.p.).

Definition 3.1 (Random graph). Given n and p, a random graph G(n, p) is a graph with labeled
vertex set [n] = {1, . . . , n}, where each pair of vertices has an edge independently with probability p.

As the node degree has a binomial distribution Binom(n−1, p), this random graph model is sometimes
also referred to as the binomial model. We point out that various other types of random graphs have
been studied in the literature; we will discuss random regular graphs, another class of random graphs,
in the next chapter.
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14 CHAPTER 3. RANDOM GRAPHS

Figure 3.1: Three realizations of G(16, p), with increasing p.

3.2 Preliminaries

Theorem 3.1 (Almost every G(n, p) is connected). For constant p, G(n, p) is connected a.a.s.

Proof:

If G is disconnected, then there exists a bypartition of V (G) = S ∪ S̄ such that there are no edges
between S and S̄. We can union-bound the probability that there is no such partition (S, S̄) by
summing over all possible partitions.

Fix |S| = s. There are s(n − s) possible edges connecting a node in S to a node in S̄, so
P
{

S and S̄ are disconnected
}

= (1− p)s(n−s).

The probability that G(n, p) is disconnected is at most
∑n/2

s=1

(

n
s

)

(1 − p)s(n−s) (note that we

do not need to sum beyond n/2). Using the bounds

(

n
s

)

≤ ns and (1− p)n−s ≤ (1− p)n/2, we

find P {G(n, p)disconnected} <
∑n/2

s=1(n(1− p)n/2)s.

For n large enough, x = n(1 − p)n/2 < 1, and the sum above is a convergent geometric series
∑n/2

k=1 x
s < x/(1− x). Since x → 0, the probability that G(n, p) is disconnected → 0 as well.

�

The above union bound is very loose, as graphs with many components are counted several times. We
now illustrate two methods that are used frequently to prove results of the above type. Specifically,
we often face the task of proving that a graph G(n, p) has some property either with probability going
to zero or to one. We assume here that Xn is an integer ≥ 0.

Theorem 3.2 (First Moment Method). If E [Xn] → 0, then Xn = 0 a.a.s.

Proof:

Apply the Markov inequality P {X ≥ x} ≤ E [X ] /x with x = 1.

�

Theorem 3.3 (Second Moment Method). If E [Xn] > 0 for n large and Var [Xn] /(E [Xn])
2 → 0,

then Xn > 0 a.a.s.

Proof:

Chebyshev’s inequality states that if Var [X ] exists, then P {|X − E [X ] | ≥ x} ≤ Var [X ] /x2, x > 0.
The result follows by setting x = E [X ].
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�

We now illustrate the use of this approach by deriving the following result that implies the preceding
result, but is stronger because it also establishes that the diameter of G(n, p) is very small.

Theorem 3.4 (Almost every G(n, p) has diameter 2). For constant p, G(n, p) is connected and has
diameter 2 a.a.s.

Proof:

Let X be the number of (unordered) vertex pairs with no common neighbor. To prove the theorem,
we need to show that X = 0 a.a.s.

We apply the first-moment method of Theorem 3.2 above. Let Xu,v an indicator variable with
Xu,v = 1 if u and v do not have a common neighbor, and Xu,v = 0 if they do.

For a vertex pair u, v, Xu,v = 1 if and only if none of the other n − 2 vertices is adjacent to

both u and v. Therefore, P {Xu,v = 1} = (1 − p2)n−2, and therefore E [X ] = E

[

∑

u,v Xu,v

]

=
(

n
2

)

(1− p2)n−2. This expression goes to zero with n for fixed p, establishing P {X = 0} → 1.

�

Figure 3.2: An instance of G(100, 0.5), a very dense graph with diameter 2.

Definition 3.2 (Increasing property and threshold function). An increasing property is a graph prop-
erty conserved under the addition of edges. A function t(n) is a threshold function for an increasing
property if (a) p(n)/t(n) → 0 implies that G(n, p) does not possess the property a.a.s., and if (b)
p(n)/t(n) → ∞ implies that it does a.a.s.

Note that threshold functions are never unique; for example, if t(n) is a threshold function, then so is
ct(n), c > 0. Examples of increasing properties are:

1. A fixed graph H appears as a subgraph in G.

2. There exists a large component of size Θ(n) in G.

3. G is connected.
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4. The diameter of G is at most d.

A counterexample is the appearance of H as an induced subgraph of G (that is, a subset of the vertex
set of G together with all the edges of G whose end-vertices are both in this subset): indeed, the
addition of edges in G can destroy this property.

Definition 3.3 (Balanced graph). The ratio 2e(H)/|H | for a graph H is called its average vertex
degree. A graph G is balanced if its average vertex degree is larger than or equal to the average vertex
degree of any of its induced subgraphs.

Note that trees, cycles, and complete graphs are all balanced.

Definition 3.4 (Automorphism group of a graph). An automorphism of a graph G is an isomorphism
from G to G, i.e., a permutation Π of its vertex set such that (u, v) ∈ E(G) if and only if (Π(u),Π(v)) ∈
E(G).

Figure 3.3: Two graphs with 6 vertices and 6 edges, the first with an automorphism group of size
a = 12, the second with a = 1.

Lemma 3.1 (Chernoff bounds for Binomial RVs). For X ∼ Binom(n, p),

P {X ≥ E [X ] + x} ≤ exp

(

−
x2

2(np+ x/3)

)

P {X ≤ E [X ]− x} ≤ exp

(

−
x2

2np

)

(3.1)

We will also need the following theorem, which counts the number of different trees with n vertices.

Theorem 3.5 (Cayley’s Formula). There are nn−2 labeled trees of order n.

3.3 Appearance of a subgraph

We now study the following problem: given an unlabeled graph H , what is the probability that this
graph H is a subgraph of G(n, p) when n → ∞? This question has a surprisingly simple answer: we
identify a threshold function for the appearance of H in G(n, p) that only depends on the number of
vertices and edges in H , with the caveat that H has to be balanced.

Theorem 3.6 (Threshold function for appearance of balanced subgraph). For a balanced graph H
with k vertices and l edges (l ≥ 1), the function t(n) = n−k/l is a threshold function for the appearance
of H as a subgraph of G.

To be a bit more precise, a graph H appears in G if and only if there is at least one subgraph of G
that is isomorphic to H .
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Proof:

The proof has two parts. In the first part, we show that when p(n)/t(n) → 0, the H is not contained
in G(n, p) a.a.s.In the second part, we show that when p(n)/t(n) → ∞, then the opposite is true.

Part 1: p(n)/t(n) → 0.

Set p(n) = onn
−k/l, where on goes to zero arbitrarily slowly. LetX denote the number of subgraphs

of G isomorphic to H (i.e., the number of “copies” of H in G).

We need to show that P {X = 0} → 1. Let A denote the set of labeled graphs H ′ isomorphic to
H , whose vertex label set [n] is the same as that of G.

|A| =

(

n
k

)

k!

a
≤ nk, (3.2)

where a is the size of H ’s automorphism group.

E [X ] =
∑

H′∈A

P {H ′ ⊂ G} . (3.3)

As H ′ is a labeled graph, the probability of it appearing in G is simply the probability that all
edges of H ′ are present, i.e.,

P {H ′ ⊂ G} = pl. (3.4)

E [X ] = |A|pl ≤ nkpl = nk(onn
−k/l)l = oln. (3.5)

By the First Moment Method,

P {H ∈ G} = P {X ≥ 1} ≤ E [X ] ≤ oln → 0. (3.6)

Therefore, H does not appear in G(n, p) a.a.s.

Part 2: p(n)/t(n) → ∞.

Set p(n) = ωnn
−k/l, where ωn goes to ∞ arbitrarily slowly.

We need to show that P {X = 0} → 0. For this, we bound the variance of X .

E
[

X2
]

= E





(

∑

H′∈A

1{H′⊂G}

)2


 =
∑

(H′,H′′)∈A2

P {H ′ ∪H ′′ ⊂ G} . (3.7)

As the labeled graph H ′ ∪H ′′ has 2l− e(H ′ ∩H ′′) links, so P {H ′ ∪H ′′ ⊂ G} = p2l−e(H′∩H′′).

As H is balanced, we know that any subgraph (induced or not) of H , including H ′ ∩ H ′′, has
e(H ′ ∩H ′′)/|H ′ ∩H | ≤ e(H)/|H | = l/k. Therefore, if |H ′ ∩H ′′| = i, then e(H ′ ∩H ′′) ≤ il/k. We
partition the set A2 into classes A2

i with identical order of the intersection, i.e.,

A2
i = {(H ′, H ′′) ∈ A2 : |H ′ ∩H ′′| = i} (3.8)

Si =
∑

(H′,H′′)∈A2

i

P {H ′ ∪H ′′ ⊂ G} . (3.9)
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We will show that E [X ] is dominated by i = 0, i.e., H ′ and H ′′ are disjoint. In this case, the
events {H ′ ∈ G} and {H ′′ ∈ G} are independent, as they have no edges in common. Thus,

S0 =
∑

(H′,H′′)∈A2

0

P {H ′ ∪H ′′ ⊂ G}

=
∑

(H′,H′′)∈A2

0

P {H ′ ⊂ G}P {H ′′ ⊂ G} (H ′ and H ′′ disjoint)

≤
∑

(H′,H′′)∈A2

P {H ′ ⊂ G}P {H ′′ ⊂ G}

= (E [X ])2. (3.10)

We now examine the contribution to E
[

X2
]

of the terms i ≥ 1. For this, note that for a fixed
graph H ′, the number of H ′′ such that |H ′ ∩H ′′| = i is given by

(

k
i

)(

n− k
k − i

)

k!

a
, (3.11)

as we need to select i nodes from H ′ to form the intersection, and k − i nodes from the vertices
outside H ′ for the rest; then there are k!/a labelings for H ′′ isomorphic to H . Also note that it is
easy to see that this expression is O(nk−i).

We now use this to compute Si.

Si =
∑

(H′,H′′)∈A2

i

P {H ′ ∪H ′′ ⊂ G}

=
∑

H′∈A

∑

H′′∈A:|H′∩H′′|=i

P {H ′ ∪H ′′ ⊂ G}

≤
∑

H′∈A

(

k
i

)(

n− k
k − i

)

k!

a
p2lp−il/k (as e(H ′

∩H ′′) ≤ il/k)

= |A|

(

k
i

)(

n− k
k − i

)

k!

a
p2l(ωnn

−k/l)−il/k

≤ |A|plc1n
k−i k!

a
plω−il/k

n ni (because

(

k
i

)(

n− k
k − i

)

= O(nk−i))

= E [X ] c1n
k k!

a
plω−il/k

n (using (3.5))

≤ (E [X ])c2

(

n
k

)

k!

a
plω−il/k

n (because nk = Θ

(

n
k

)

)

= (E [X ])2c2ω
−il/k
n (using (3.2))

≤ (E [X ])2c2ω
−l/k
n (3.12)

for n large enough.

E
[

X2
]

/(E [X ])2 = S0/(E [X ])2 +

k
∑

i=1

Si/(E [X ])2 ≤ 1 + kc2ω
−l/k
n , (3.13)

and therefore Var [X ] /E [X ]
2 → 0. Therefore, by Theorem 3.3, X > 0 a.a.s.

�
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Figure 3.4: An instance of G(1000, 0.2/1000). The graph consists only of small trees.

Corollary 3.1 (Appearance of trees of order k). The function t(n) = n−k/(k−1) is a threshold function
for the appearance of trees of order k.

Proof:

A tree of order k has k nodes and k− 1 edges, and it is balanced. The result follows directly from
Theorem 3.6 and the fact that there are finitely many trees of order k.

�

Corollary 3.2 (Appearance of cycles of all orders). The function t(n) = 1/n is a threshold function
for the appearance of cycles of any fixed order.

Corollary 3.3 (Appearance of complete graphs). The function t(n) = n−2/(k−1) is a threshold func-
tion for the appearance of the complete graph Kk with fixed order k.

3.4 The giant component

After studying the class of threshold functions of the form n−k/l for the appearance of subgraphs, we
now focus in more detail on p(n) = c/n. Note that this edge probability corresponds to the threshold
function for the appearance of cycles of all orders, which suggests that something special is happening
at this p(n).

We set p(n) = c/n, and study the structure of G(n, p) as a function of c. Specifically, we consider the
set of components and their sizes that make up G(n, p). As it turns out, a phase transition occurs at
c = 1: when c goes from c < 1 to c > 1, the largest component jumps from O(log n) to Θ(n) (this
actually occurs as a “double jump”, which we do not consider in more detail); the largest component
for c > 1 is unique.

Let Cv denote the component that vertex v belongs to.

Theorem 3.7 (Small components for c < 1). If c < 1, then the largest component of G(n, p) has at
most

3

(1− c)2
logn (3.14)
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Figure 3.5: An instance of G(1000, 0.5/1000). The graph still only consists of trees, but trees of higher
order are appearing.

vertices a.a.s.

Proof:

Let c = 1 − ǫ. We consider a vertex v in G(n, p) and study the following iterative process to
successively discover all the vertices of the component that v belongs to. At step i, let the set Ai

denote active vertices, and the set Si denote saturated vertices, with A0 = {v}, and S0 = ∅. At the
ith step, we select an arbitrary vertex u from Ai. We move u from the active to the saturated set,
and mark all neighbors of u that have not been touched yet as active. In this manner, we touch
all the vertices in v’s component until Ai = ∅, which is equivalent to |Cv| = |Si| = i.

Let Yi = |Ai ∪ Si| = |Ai| + i denote the total number of vertices visited by step i, and define
T = min{i : Yi = i}, i.e., we have visited all nodes and Ai = ∅. Then Yi is a Markov chain with
Yi+1 − Yi ∼ Binom(n − Yi, p), because an edge exists from u to each of the n− Yi vertices not in
Ai ∪ Si independently with probability p, and T is a stopping time for this Markov chain.

We can stochastically upper-bound the process (Yi) with a random walk (Y +
i ) with increments

X+
i ∼ Binom(n, p). The corresponding stopping time T+ for the random walk stochastically

dominates T .

We want to bound the probability that vertex v belongs to a component of size at least k. As
|Cv| ≥ k ⇔ Yk = |Ak ∪ Sk| ≥ k,

P {|Cv| ≥ k} = P {T ≥ k} ≤ P
{

T+ ≥ k
}

≤ P
{

Y +
k ≥ k

}

. (3.15)

The random walk has Y +
k ∼ B(kn, p). Using the Chernoff bound (Lemma 3.1) for the binomial

distribution and setting k = (3/ǫ2) logn, we find
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Figure 3.6: An instance of G(1000, 1.5/1000), slightly above the threshold for the appearance of the
giant component.

P

{

max
v

|Cv| ≥ k
}

≤ nP
{

Y +
k ≥ k

}

= nP
{

Y +
k ≥ ck + ǫk

}

≤ n exp

(

−
(ǫk)2

2(ck + ǫk/3)

)

≤ n exp

(

−
ǫ2

2
k

)

= n−1/2 = o(1). (3.16)

�

Theorem 3.8 (Unique giant component for c > 1). If c > 1, then the largest component of G(n, p)
has Θ(n) vertices, and the second-largest component has O(log n) vertices a.a.s.

Proof:

We will study the same process as in the previous proof, starting at an arbitrary vertex v. The
proof has three parts. In the first part, we show that it is very likely that the process either dies
out early, i.e., T ≤ an a.a.s., resulting in a small component, or continues for at least bn steps,
resulting in a large component. In the second part, we show that there is only one large component
with k ≥ bn. In the third part, we confirm that the size of the largest component is of order n.

Part 1: each component is either small or large. Let c = 1 + ǫ, an = 16c
ǫ2 logn, and bn = n2/3. We

wish to show that the Markov chain Yk either dies out before an (i.e., T < an), or that for any
an < k < bn, we have a large number of active nodes Ak left to continue the process, specifically
(ǫ/2)k nodes.
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n

slope c slope c+1
2

slope 1

Yk

kan bn

c+1
2 bn

n− Yk: potential new vertices

|Ak|: active set

Figure 3.7: An illustration of the different variables involved in the proof for c > 1.

The event that we have many vertices left at stage k is
{

|Ak| ≥
c− 1

2
k

}

=

{

Yk ≥
c+ 1

2
k

}

. (3.17)

Fix a starting vertex v, and consider a step an ≤ k ≤ bn. Conditional on Yk < c+1
2 bn (otherwise the

event “many vertices left” occurs), there remain at least n− c+1
2 bn unexplored vertices. Therefore,

we can stochastically lower-bound Yi with a random walk Y −
i with increments X−

i ∼ Binom(n−
c+1
2 bn, p). Therefore,

P

{

Yk ≥
c+ 1

2
k

}

≥ P

{

Y −
k ≥

c+ 1

2
k

}

(3.18)

Using this bound, we find

P {∃v : an ≤ |Cv| ≤ bn} ≤ n

bn
∑

k=an

P

{

Y −
k < k +

ǫ

2
k
}

≤ n

bn
∑

k=an

exp

(

−
ǫ2k2

9ck

)

≤ nbn exp

(

−
ǫ2

9c
an

)

= o(1). (3.19)

Part 2: large component is unique. We now show that the largest component is unique, by
considering two vertices u and v that both belong to a component of size larger than bn, and
showing that the probability that they lie in different components in asymptotically zero.

Assume that we run the above process twice, starting from u and from v. We had shown in Part
1 that starting at v, the set Abn(v) will be of size at least ǫbn/2. The same holds for the set of
active vertices starting at u.
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Now assume that the two processes have not “touched” yet, i.e., have no vertices in common. The
probability that they touch at a later step (after bn) is larger than the probability that they touch
in the next step, i.e., that there exists at least one vertex that is adjacent to both active sets
Abn(u), Abn(v).

P {processes do not touch in next step} = (1− p)|Abn
(u)||Abn

(v)|

≤ (1− p)(ǫbn/2)
2

≤ exp

(

−
ǫ2

4
cn1/3

)

= o(n−2). (3.20)

Taking the union bound over all pairs of vertices (u, v) shows that the probability that any two
vertices lie in different large components goes to zero, i.e., the giant component is unique a.a.s.

Part 3: large component has size Θ(n). Recall that bn = n2/3. Therefore, to show that the unique
giant component is of size Θ(n), we need to show that all the other vertices only make up at most
a constant fraction of all the vertices. For this, we consider a vertex v, and find an upper bound
of the probability that it belongs to a small component.

Let N be the number of vertices in small components. Then the size of the giant component
is n − N . By definition, each small component is smaller than an. The probability ρ that Cv

is small, i.e., that the process dies before an vertices have been reached, is smaller than ρ+ =
P {BP(Binom(n− an, p)) dies}, and larger than ρ− = P {BP(Binom(n, p)) dies} − o(1), where the
o(1) term corresponds to the probability that the process dies too late (after more than an vertices
have been discovered).

Note that Binom(n − o(n), c/n) → Poisson(c) in distribution. The probability that the process
dies out before an vertices have been reached is asymptotically equal to P {BP(Poisson(c)) dies},
which is given by ρ = 1− β, with β < 1 the solution of β + e−βc = 1.

Therefore,

P {Cvsmall} → ρ, (3.21)

and E [N ] /n → ρ.

To show the result, we need to show that E
[

N2
]

∼ (E [N ])2 and use Chebyshev’s inequality to
bound the probability that N is small. For this, write

E
[

N2
]

= E





(

∑

v

1{Cv small}

)2




=
∑

u,v

P {Cu, Cv both small}

=
∑

v

P {Cv small}+
∑

u6=v

P {Cu, Cv small}

≤ nρ+ n(n− 1)
(

ρ
an
n

+ ρ2
)

≤ nρ+ nρan + n2ρ2 (3.22)

and therefore E
[

N2
]

≤ (1 + o(1))n2ρ2. Thus, Var [N ] = o((E [N ])2), which shows (through
Chebyshev) that N is concentrated around its mean. This completes the proof.

�
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3.5 Connectivity

We have seen in the preceding section that a unique giant component appears around np = 1. It is
much harder to achieve full connectivity, such that the graph possesses a single component encom-
passing all vertices. We will now show that the threshold for connectivity is t(n) = logn/n, i.e., when
the average node degree hits logn.

It is also interesting to understand what happens between the critical probability for the giant com-
ponent and the threshold for full connectivity. In fact, it can be shown that as we increase p(n),
the giant component consumes the remaining smaller components in descending order. The small
components are in fact small trees, and there are threshold functions for the disappearance of trees
of given order between the thresholds for giant component and that for full connectivity, in analogy
with the appearance of trees in order below the threshold for the giant component.

Figure 3.8: An instance of G(1000, 2/1000), in between the critical average degree for the giant
component and for full connectivity.

Just before we hit full connectivity, the only remaining small components are isolated vertices, which
we establish next. Theorem 3.10 below then shows that t(n) = logn/n is a threshold function for
G(n, p) to be connected.

Theorem 3.9. The function t(n) = logn/n is a threshold function for the disappearence of isolated
vertices in G(n, p).

Proof:

Let Xi denote the indicator for vertex i to be isolated, and X is the sum of all Xi. We have
E [X ] = n(1− p)n−1.

First, let p(n) = ωn logn/n, with ωn → ∞. We have

E [X ] ≤ ne−ωn logn

= n1−ωn → 0. (3.23)

By the First Moment Method, there are a.a.s. no isolated vertices.

Second, let p(n) = on logn/n, with on → 0.
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Figure 3.9: An instance of G(1000, 5/1000), slightly below the threshold for full connectivity. The
only remaining small components are isolated vertices.

E
[

X2
]

= E





∑

i,j

XiXj





= E [X ] + E





∑

i6=j

XiXj





= E [X ] + n(n− 1)(1 − p)2(n−2)+1

∼ E [X ] + n2(1−on) ∼ E [X ] + E [X ]
2
. (3.24)

As E [X ] → ∞, this shows that E
[

X2
]

∼ E [X ]
2
, proving the result through the Second Moment

Method.

�

Note that this result can actually easily be sharpened by setting p(n) = c logn/n, and studying the
phase transition as a function of c, in analogy to the way the giant component appeared.

Theorem 3.10. The function t(n) = logn/n is a threshold function for connectivity in G(n, p).

Proof:

Theorem 3.9 shows immediately that if p(n) = o(t(n)), then the graph is not connected, because
it still has isolated vertices.

To show the converse, set p(n) = ωn logn/n, with ωn → ∞ arbitrarily. We know that the RG does
not contain isolated vertices. We now show that it does not contain any other small components
either, i.e., specifically components of size k at most n/2.

We bound the probability that a small component of size between 2 ≤ k ≤ n/2 appears. The case
k = 2 is left as an exercise. For k > 2, we note that such a component contains necessarily a tree
of order k, which means it contains at least k − 1 edges, and none of the the k(n − k) possible
edges to other vertices exist.



26 CHAPTER 3. RANDOM GRAPHS

Figure 3.10: An instance of G(1000, 8/1000), slightly above the threshold for full connectivity.

P {G(n, p) contains component of order k}

≤

(

n
k

)

kk−2pk−1(1− p)k(n−k) (using Cayley’s Formula, c.f. Theorem 3.5)

≤ k−2 exp

[

k(logn+ 1) + (k − 1) (log(ωn logn)− logn)− kωn logn+
k2

n
ωn logn

]

≤ nk−2 exp

[

k + k log(ωn logn)−
1

2
kωn logn

]

≤ nk−2 exp [−(1/3)kωn log n] (for n large enough)

= k−2n1−kωn/3, (3.25)

using

(

n
k

)

= (n)k/(k)k ≤ nk/(k/e)k = (ne/k)k (from Stirling’s approximation), and using

log(1 − p) ≤ −p.

P {G(n, p) contains components of order 3 ≤ k ≤ n/2}

≤

n/2
∑

k=2

k−2n1−kωn/3 = O(n2−2ωn/3) = o(1). (3.26)

Therefore, the RG contains no components smaller than n/2.

�

The following figures illustrate the evolution between p(n) = 1/n and p(n) = logn/n. Figure 3.8
shows an instance of G(1000, 0.002), roughly halfway between the two thresholds.

Figures 3.9 and 3.10 show instances of G(n, p) just below and just above the threshold (of approx.
6.9/1000) for full connectivity.


