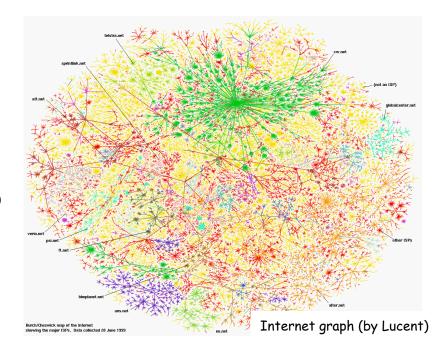


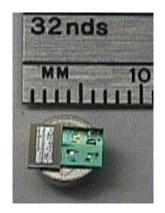
# Models and Methods for Random Networks

Elisa Celis and Patrick Thiran (Matthias Grossglauser)

#### Communication and Social Networks

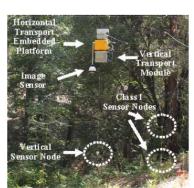
- Size explosion
- Small, simple, low-cost components
- Lack of control: self-organize!
- Adversarial conditions, prone to failures, dynamically changing.
- Data representation
- Information processing and propagation





SmartDust (Berkeley)

Network Info-mechanical System (Cens: UCLA)





ExScal (Ohio State Univ)

#### New Models and Tools Needed

- Percolation: random graphs embedded in geometric space
  - Bond percolation (square lattice embedding)
  - Site percolation (square lattice embedding)
  - Boolean Poisson model (continuum percolation)
- Random graphs: not constrained by an underlying geometric space
  - Erdös-Rényi model (i.i.d edges)
  - Random regular graph (constant node degree)
  - Small world graph (small diameter, high clustering)
  - Scale free model (power law of node degree)
- Game-Theoretic graphs: considers node preferences and decisions
  - Homophily and Affiliation networks (similar nodes form connections)
  - Network formation games (nodes build edges to satisfy global or local connectivity goals)

#### New Models and Tools Needed

- How does Information Propagates on Networks?
  - Gossip and voting algorithms.
  - Epidemics: SI, SIR, SIS models.
  - Information Cascades.
- How to find Information on a Network?
  - Network Navigation
  - Decentralized Search.

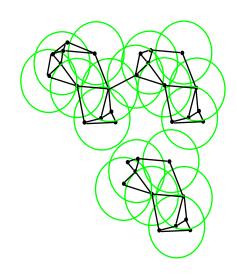
#### **Program**

- Models and methods: Random graphs (8h)
  - Erdös-Rényi model (i.i.d edges)
  - Random regular graph
  - Small World Networks, Scale Free Networks
- Models and methods: percolation and game theory (8h)
  - Bond percolation on trees and lattices.
  - Continuum percolation.
  - Full connectivity vs percolation.
  - Network formation games
  - Affiliation Networks and homophily.
- Network and Dynamics Applications to wireless, social (and biological) networks (10h)
  - Connectivity and capacity of wireless multi-hop networks,
  - Navigation, network search discovery
  - Information cascades and epidemics on graphs

#### **About Scaling Laws**

- Performance metrics for large random networks:
  - Connectivity
  - Delay
  - Robustness
  - Routing
  - Coverage (wireless multi-hop networks)
  - Troughput
  - Delay
  - Lifetime...
- How do these metrics scale when number of nodes becomes large?
- In this course, we will see some tools and methods to answer this question.
- An example: the existence of a phase transition

#### **Example 1: Wireless Networks**

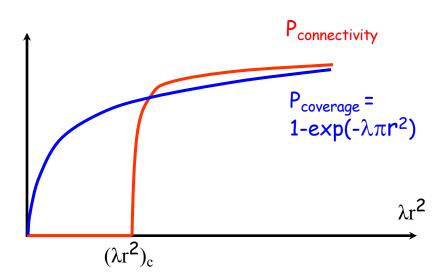


- A simple model: Poisson Boolean model: nodes follow a random spatial distribution with density
- Boolean model: fixed radio range r. Nodes i and j, at positions  $x_i$  and  $x_j$ , are directly connected iff

$$||x_i - x_j|| < r$$

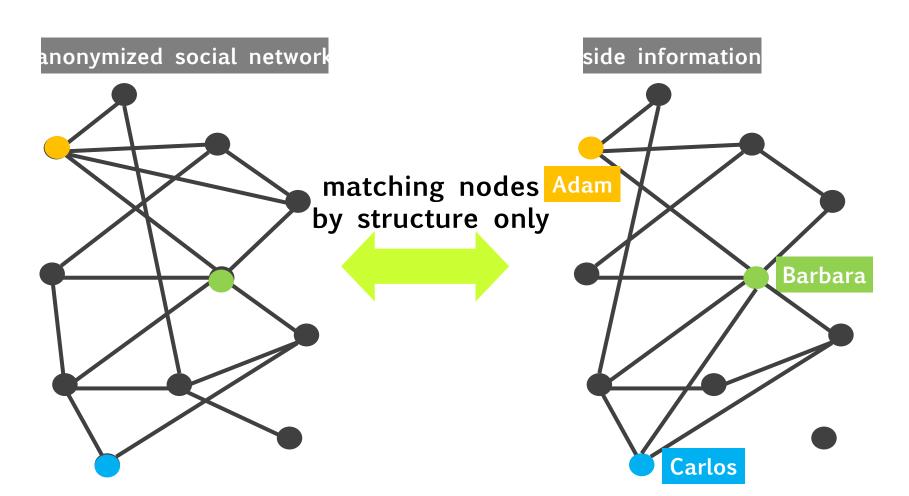
### Coverage vs Connectivity

- Ad hoc network : connectivity
- Sensor network: connectivity (probability that an arbitrary node is connected to the base station) and coverage (probability that an arbitrary point is covered by a node).
- Phase transition for connectivity, not for coverage.



#### **Example 2: Privacy of Networks**

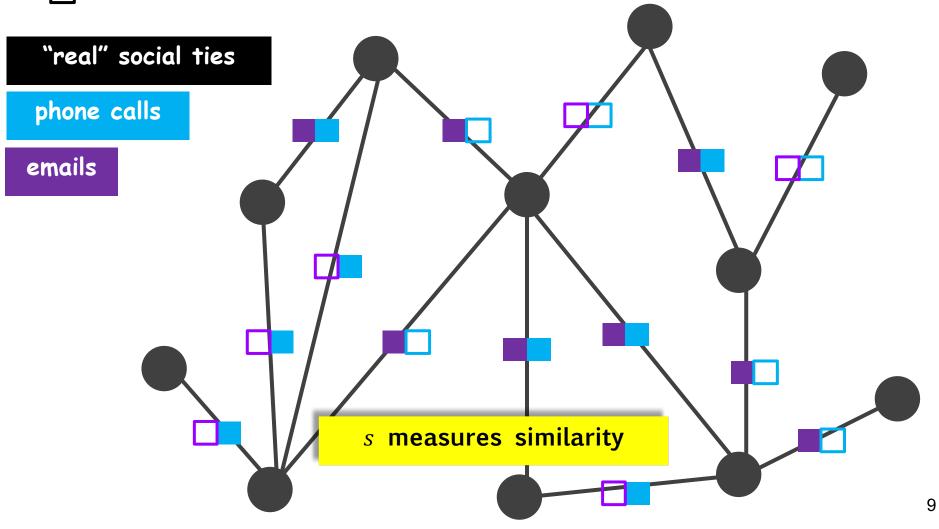
- Adversary has:
  - Anonymized network: unlabeled graph
  - Side information: labeled graph similar but not identical



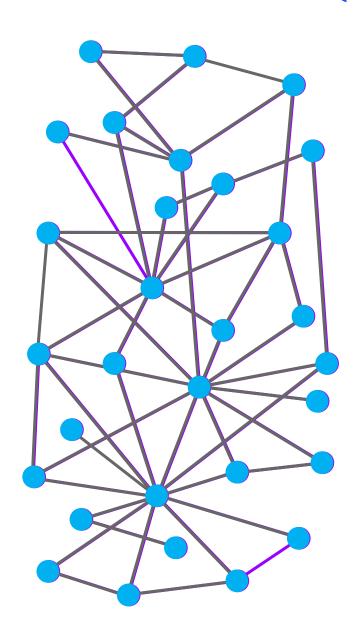
#### G(n, p; s) Sampling Model

Generator G = G(n, p)sampled (s)

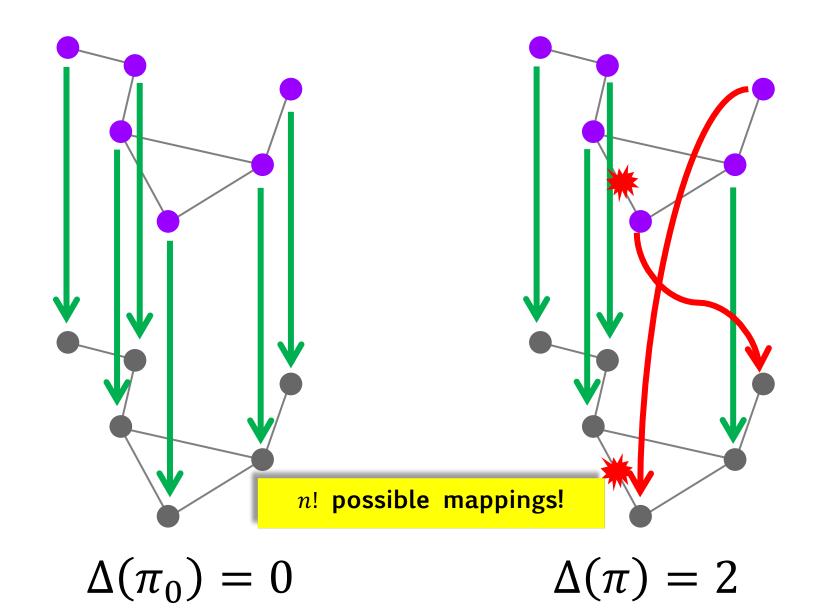
 $\bigcap$  not sampled (1-s)



# G(n, p; s): Two Correlated G(n, ps)'s



## Mappings and Edge Mismatch



#### **Approach**

- Assumption:
  - Attacker has infinite computational power
  - Can try all possible mappings  $\pi$  and compute edge mismatch function  $\Delta(\pi)$
- Question:
  - Are there conditions on p,s such that

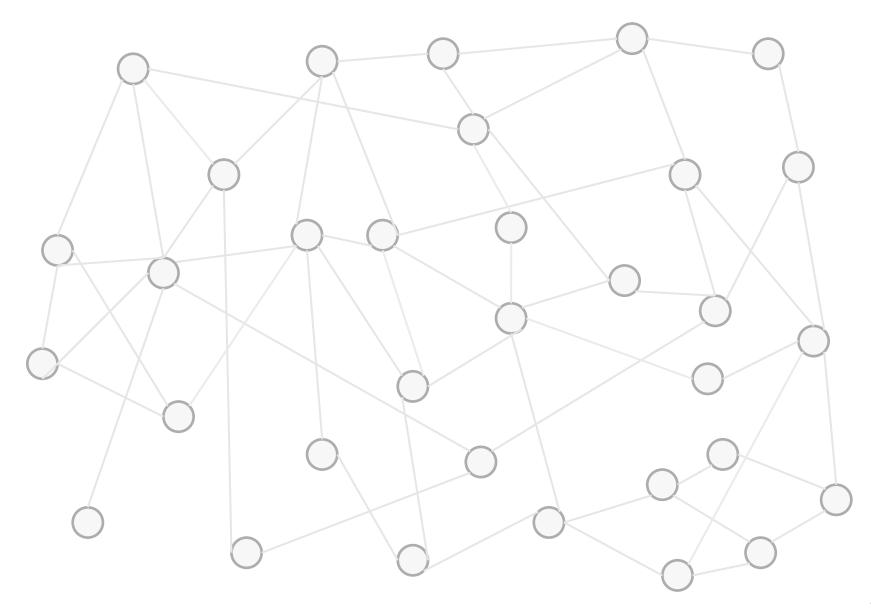
$$P\{\pi_0 \text{ unique min of } \Delta(\pi)\} \rightarrow 1$$

- If yes: adversary would be able to match vertex sets only through the structure of the two networks!
- Note:
  - G(n,p;s) model: statistically uniform, low clustering, degree distribution not skewed -> conjecture: harder than real networks

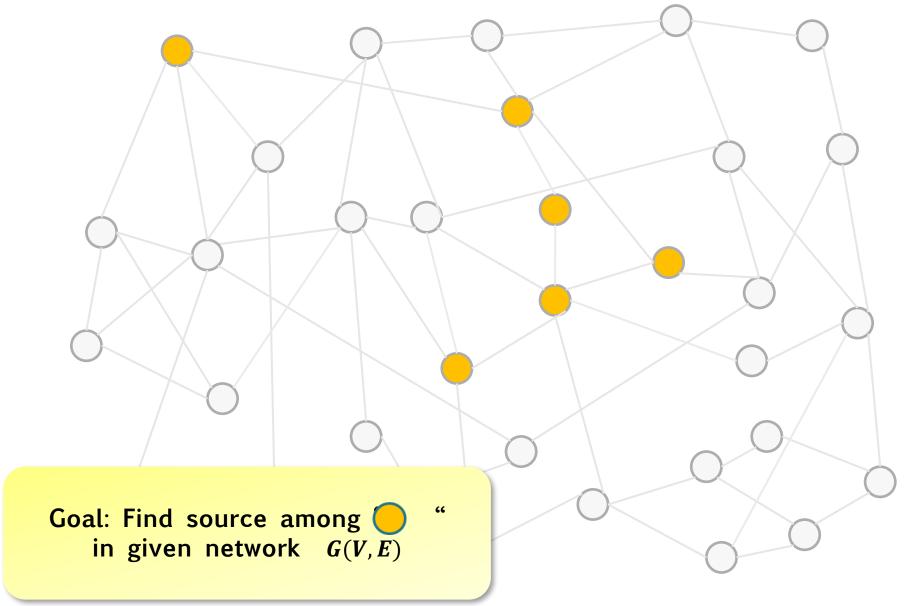
#### **Example 3: Rumor Models**

- Application: detecting source of an epidemic
  - Who leaked document X into the blogosphere?
  - Which bank started the financial crisis?
  - Who spread a rumor among your circle of friends?
  - Who is patient zero?
- Models of epidemics
  - Infected nodes infect susceptible neighbors = spreading the rumor
  - Network model: contacts, influence, dependence

# Susceptible-Infected (SI) Rumor Model



#### SI Rumor Model



## **Summary**

- Random networks:
  - Capture uncertainty, decentralized organization, unplanned growth of many social, biological, and technical networks
  - Engineering for such networks: macroscopic, not microscopic
- Asymptotics:
  - Little focus on details (e.g., routing algorithm for small networks), but focus on scale: fundamental relationships for very large networks
- Two large classes ←→ global connectivity constraint:
  - Geometric (must be close to be linked): percolation
    - Wireless; forest fire
  - Unconstrained: random graphs
    - Social net; Internet
- Structural properties; evolution of...; processes on...
- Main tools:
  - Probability
  - Random processes
  - Combinatorics
  - Geometry
  - Game Theory

### Organization

- Class notes
  - Moodle
- Instructors:
  - Elisa Celis (BC 249) and Patrick Thiran (BC 201)
- Teaching Assistant:
  - Head TA: Farnood Salehi (BC 250)
  - Amedeo Esposito
- Grading:
  - 4 to 6 homework sets. Max 10 pts.
  - Term paper (presented during the (two) last week(s) of the semester) Max 40 pts.
  - Final exam (session). Max 50 pts.