

Models and Methods for Random Networks

Elisa Celis and Patrick Thiran (Matthias Grossglauser)

Communication and Social Networks

- Size explosion
- Small, simple, low-cost components
- Lack of control: self-organize!
- Adversarial conditions, prone to failures, dynamically changing.
- Data representation
- Information processing and propagation

SmartDust (Berkeley)

Network Info-mechanical System (Cens: UCLA)

ExScal (Ohio State Univ)

New Models and Tools Needed

- Percolation: random graphs embedded in geometric space
 - Bond percolation (square lattice embedding)
 - Site percolation (square lattice embedding)
 - Boolean Poisson model (continuum percolation)
- Random graphs: not constrained by an underlying geometric space
 - Erdös-Rényi model (i.i.d edges)
 - Random regular graph (constant node degree)
 - Small world graph (small diameter, high clustering)
 - Scale free model (power law of node degree)
- Game-Theoretic graphs: considers node preferences and decisions
 - Homophily and Affiliation networks (similar nodes form connections)
 - Network formation games (nodes build edges to satisfy global or local connectivity goals)

New Models and Tools Needed

- How does Information Propagates on Networks?
 - Gossip and voting algorithms.
 - Epidemics: SI, SIR, SIS models.
 - Information Cascades.
- How to find Information on a Network?
 - Network Navigation
 - Decentralized Search.

Program

- Models and methods: Random graphs (8h)
 - Erdös-Rényi model (i.i.d edges)
 - Random regular graph
 - Small World Networks, Scale Free Networks
- Models and methods: percolation and game theory (8h)
 - Bond percolation on trees and lattices.
 - Continuum percolation.
 - Full connectivity vs percolation.
 - Network formation games
 - Affiliation Networks and homophily.
- Network and Dynamics Applications to wireless, social (and biological) networks (10h)
 - Connectivity and capacity of wireless multi-hop networks,
 - Navigation, network search discovery
 - Information cascades and epidemics on graphs

About Scaling Laws

- Performance metrics for large random networks:
 - Connectivity
 - Delay
 - Robustness
 - Routing
 - Coverage (wireless multi-hop networks)
 - Troughput
 - Delay
 - Lifetime...
- How do these metrics scale when number of nodes becomes large?
- In this course, we will see some tools and methods to answer this question.
- An example: the existence of a phase transition

Example 1: Wireless Networks

- A simple model: Poisson Boolean model: nodes follow a random spatial distribution with density
- Boolean model: fixed radio range r. Nodes i and j, at positions x_i and x_j , are directly connected iff

$$||x_i - x_j|| < r$$

Coverage vs Connectivity

- Ad hoc network : connectivity
- Sensor network: connectivity (probability that an arbitrary node is connected to the base station) and coverage (probability that an arbitrary point is covered by a node).
- Phase transition for connectivity, not for coverage.

Example 2: Privacy of Networks

- Adversary has:
 - Anonymized network: unlabeled graph
 - Side information: labeled graph similar but not identical

G(n, p; s) Sampling Model

Generator G = G(n, p)sampled (s)

 \bigcap not sampled (1-s)

G(n, p; s): Two Correlated G(n, ps)'s

Mappings and Edge Mismatch

Approach

- Assumption:
 - Attacker has infinite computational power
 - Can try all possible mappings π and compute edge mismatch function $\Delta(\pi)$
- Question:
 - Are there conditions on p,s such that

$$P\{\pi_0 \text{ unique min of } \Delta(\pi)\} \rightarrow 1$$

- If yes: adversary would be able to match vertex sets only through the structure of the two networks!
- Note:
 - G(n,p;s) model: statistically uniform, low clustering, degree distribution not skewed -> conjecture: harder than real networks

Example 3: Rumor Models

- Application: detecting source of an epidemic
 - Who leaked document X into the blogosphere?
 - Which bank started the financial crisis?
 - Who spread a rumor among your circle of friends?
 - Who is patient zero?
- Models of epidemics
 - Infected nodes infect susceptible neighbors = spreading the rumor
 - Network model: contacts, influence, dependence

Susceptible-Infected (SI) Rumor Model

SI Rumor Model

Summary

- Random networks:
 - Capture uncertainty, decentralized organization, unplanned growth of many social, biological, and technical networks
 - Engineering for such networks: macroscopic, not microscopic
- Asymptotics:
 - Little focus on details (e.g., routing algorithm for small networks), but focus on scale: fundamental relationships for very large networks
- Two large classes ←→ global connectivity constraint:
 - Geometric (must be close to be linked): percolation
 - Wireless; forest fire
 - Unconstrained: random graphs
 - Social net; Internet
- Structural properties; evolution of...; processes on...
- Main tools:
 - Probability
 - Random processes
 - Combinatorics
 - Geometry
 - Game Theory

Organization

- Class notes
 - Moodle
- Instructors:
 - Elisa Celis (BC 249) and Patrick Thiran (BC 201)
- Teaching Assistant:
 - Head TA: Farnood Salehi (BC 250)
 - Amedeo Esposito
- Grading:
 - 4 to 6 homework sets. Max 10 pts.
 - Term paper (presented during the (two) last week(s) of the semester) Max 40 pts.
 - Final exam (session). Max 50 pts.