
EPFL CS-309, PrSoC

1
René Beuchat, Philémon Favrod, Sahand Kashani

Lab 1.1
PWM Hardware Design

Lab 1.0 – PWM Control Software (recap)
In lab 1.0, you learnt the core concepts needed to understand and interact with simple systems. The key

takeaways were the following:

 Hardware components are categorized as masters or slaves, and communicate through a bus.

 Masters initiate transactions on the bus, and slaves respond to transactions.

 Masters instruct a bus to route transactions towards a specific slave by means of addressing.

 Each master has an address map that indicates where a slave can be found in its address range (of

course, only if the slave is connected to the master).

 Each slave has a register map that indicates what each byte in the slave’s addressable space actually

corresponds to.

Finally, you put all these concepts together by writing control software for a simple slave programmable

interface: a PWM generator.

Lab 1.1 – PWM Hardware Design
Goal
In lab 1.0, we provided you with a black-box implementation of a complete FPGA system containing a CPU, an

on-chip memory, a UART, and 2 PWM generators. The goal of lab 1.0 was to tackle one end of the system, i.e.

the control software for the PWM generators (given their register map).

Now that you have a functional application to control the PWM generators, it is time to tackle the other end

of the system, i.e. the hardware that makes up the PWM generator itself. Therefore, the goal of this lab is for

you to write the VHDL code of the PWM generator.

Note that we are looking at the two endpoints of the system at this stage, but that there is a huge gap in the

middle which we have skipped: the bus which interconnects the masters and slaves. For simplicity, let’s assume

for now that the bus somehow exists, but we do not know how it is created. We will come back to how one

creates this bus more in detail in lab 2.1.

EPFL CS-309, PrSoC

2
René Beuchat, Philémon Favrod, Sahand Kashani

Theory

Interconnect motivation
Any system must provide a way to connect components together, otherwise the system wouldn’t be able to

do much of anything. The question is how do we perform this interconnection? In his “fundamental theorem

of software engineering”, David Wheeler states that “all problems in computer science can be solved by

another layer of indirection”. Let’s see how to apply this theorem to the hardware realm.

On one hand, each hardware component solves a very specific problem with custom hardware, so each

hardware component has its own unique set application-specific ports. On the other hand, hardware

components must communicate with each other, so their ports must somehow match up. This hardware

interconnection problem is solved by separating a hardware component’s ports into application-specific ports,

and interconnection ports. The application-specific ports allow each component to do its custom task, whereas

the interconnection ports are used to connect various components together through a new layer of indirection:

the bus.

When hardware components want to communicate, they do not talk directly to each other, but instead talk

exclusively to the bus. The bus then takes care of relaying messages from one component to the other

according to the bus protocol. This decouples all hardware components from each other, so hardware

component X doesn’t need to know any implementation details of hardware component Y with which it wants

to communicate. All X needs to know is that Y shares the same bus interface, so they can communicate through

that medium. Essentially, all hardware components conceptually look as in Figure 1.

FIGURE 1. ABSTRACT HARDWARE COMPONENT

Now that we know a bus is needed, let’s look into some desirable properties. An interconnect should ideally

have high throughput and low latency in order to minimize communication overheads and maximize

computation time. An easy solution for FPGAs would be to use the same high-performance interconnects that

are present in commodity systems, and, as a matter of fact, this is the case in some FPGAs today (Xilinx FPGAs

use the AXI4 bus: a high-performance interconnect designed by ARM for use with their processors). However,

such high-performance interconnects come at a large area cost. This may be justifiable today as FPGAs have

become huge and can easily absorb the area cost of these interconnects, however, it is easy to imagine this

was not the case in the early days of FPGAs when the devices did not have many resources available.

Altera solved this problem back then by introducing the Avalon bus: a simple and small bus targeted specifically

at their FPGA product line. Despite its simplicity, the bus is able to perform I/O at around 300 MB/s, which is

not bad at all considering its simplicity.

EPFL CS-309, PrSoC

3
René Beuchat, Philémon Favrod, Sahand Kashani

Avalon bus

Introduction

The Avalon bus specification supports 7 different types of interfaces, but in this course we will only be

interested in 4 of them:

 Avalon Clock interface

 Avalon Reset interface

 Avalon Conduit interface

 Avalon Memory-Mapped (MM) interface

The clock and reset interfaces literally describe what they correspond to, so they don’t need any explanations.

The interesting interfaces are the conduit and memory-mapped interfaces.

 An Avalon conduit interface groups an arbitrary collection of signals. You can specify any role for

conduit signals. However, when you connect conduits, the roles and widths must match and the

directions must be opposite. An Avalon Conduit interface can include input, output, and bidirectional

signals. Conduit interfaces typically used to drive off-chip device signals (e.g. a PWM generator’s

output). There is nothing much more that can be said about conduit interfaces.

 An Avalon memory-mapped interface specifies a standard collection of signals that can be used to

implement a read/write interface between masters and slaves. The interface can be customized to be

write-only or read-only if needed by omitting the corresponding signals. The minimum set of ports

needed for a slave to use a read/write Avalon-MM interface are as follows:

o address

o read

o write

o readdata

o writedata

The width of the readdata and writedata ports specify the component’s word size (very important!),

and both ports must have the same width. Finally, note that all signals in an Avalon-MM interface are

synchronous to the hardware component’s clock interface.

To summarize, a generic hardware component with an Avalon-MM slave interface would look like Figure 2.

FIGURE 2. AVALON HARDWARE COMPONENT

EPFL CS-309, PrSoC

4
René Beuchat, Philémon Favrod, Sahand Kashani

Avalon-MM slave example

All this talk is nice, but we need an example to seal the deal . Figure 3 shows the interface schematic of an

adder implemented as an Avalon-MM slave unit. Note that this example is excessively simple and is here for

educational purposes only: the design is actually quite inefficient as the area used for the bus logic is larger

than the actual application logic (just an adder). BUT, it is compatible with the Avalon-MM interface!

FIGURE 3. DEMO ADDER

The complete VHDL code used to implement this Avalon-MM slave unit is shown in Figure 4. Please take the

time to read it in detail and understand every line as you will need to understand how the bus works in order

to implement your own Avalon-MM slave PWM generator later on during this lab.

Note that, in any form of programming (especially in hardware design), it is important to write documentation

for each module you develop. Figure 4 gives an example of documentation for our adder design that we add

to the top-most part of the design file. We highly recommend you follow a similar approach for all your designs.

The next person who reads your code (probably yourself) will be infinitely grateful!

-- ###
-- demo_adder.vhd
-- ==============
-- This component describes a simple adder with an Avalon-MM slave interface.
-- The operands can be written to register 0 and 1, and the result of the
-- addition can be read back from register 2.
--
-- Register map
-- +--------+------------+--------+------------------------------------+
-- | RegNo | Name | Access | Description |
-- +--------+------------+--------+------------------------------------+
-- | 0 | INPUT_1 | R/W | First input of the addition. |
-- +--------+------------+--------+------------------------------------+
-- | 1 | INPUT_2 | R/W | Second input of the addition. |
-- +--------+------------+--------+------------------------------------+
-- | 2 | RESULT | RO | Result of the addition. Writing to |
-- | | | | this register has no effect. |
-- +--------+------------+--------+------------------------------------+
--
-- Author : Sahand Kashani-Akhavan [sahand.kashani-akhavan@epfl.ch]
-- Revision : 2
-- Last updated : 2018-02-28
-- ###

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity demo_adder is
 port(
 -- Avalon Clock interface

EPFL CS-309, PrSoC

5
René Beuchat, Philémon Favrod, Sahand Kashani

 clk : in std_logic;

 -- Avalon Reset interface
 reset : in std_logic;

 -- Avalon-MM Slave interface
 address : in std_logic_vector(1 downto 0);
 read : in std_logic;
 write : in std_logic;
 readdata : out std_logic_vector(31 downto 0);
 writedata : in std_logic_vector(31 downto 0)
);
end demo_adder;

architecture rtl of demo_adder is

 constant REG_INPUT_1_OFST : std_logic_vector(1 downto 0) := “00”;
 constant REG_INPUT_2_OFST : std_logic_vector(1 downto 0) := “01”;
 constant REG_RESULT_OFST : std_logic_vector(1 downto 0) := “10”;

 signal reg_input_1 : unsigned(writedata'range);
 signal reg_input_2 : unsigned(writedata'range);

begin

 -- Avalon-MM slave write
 process(clk, reset)
 begin
 if reset = '1' then
 reg_input_1 <= (others => '0');
 reg_input_2 <= (others => '0');
 elsif rising_edge(clk) then
 if write = '1' then
 case address is
 when REG_INPUT_1_OFST =>
 reg_input_1 <= unsigned(writedata);

 when REG_INPUT_2_OFST =>
 reg_input_2 <= unsigned(writedata);

 -- RESULT register is read-only
 when REG_RESULT_OFST => null;

 -- Remaining addresses in register map are unused.
 when others => null;
 end case;
 end if;
 end if;
 end process;

 -- Avalon-MM slave read
 process(clk, reset)
 begin
 if rising_edge(clk) then
 if read = '1' then
 case address is
 when REG_INPUT_1_OFST =>
 readdata <= std_logic_vector(reg_input_1);

 when REG_INPUT_2_OFST =>
 readdata <= std_logic_vector(reg_input_2);

 when REG_RESULT_OFST =>
 readdata <= std_logic_vector(reg_input_1 + reg_input_2);

 -- Remaining addresses in register map are unmapped => return 0.
 when others =>
 readdata <= (others => '0');
 end case;

EPFL CS-309, PrSoC

6
René Beuchat, Philémon Favrod, Sahand Kashani

 end if;
 end if;
 end process;

end architecture rtl;

FIGURE 4. DEMO_ADDER.VHD

Practice
Enough reading, more doing! It’s time for you to work! The goal of this lab is for you to write the VHDL code

for the PWM generator we had provided you in lab 1.0 as a black box. The box will just be a lot more transparent

this time as you’ll be implementing it .

Before continuing, you should download and extract the lab template (lab_1_1_template.zip) from the course

website. REMEMBER THAT THERE MUST BE NO SPACES IN THE PATH LEADING TO THE PROJECT! WE WILL REMIND YOU THIS UNTIL

YOU MEMORIZE IT.

PWM generator interface schematic
Figure 5 shows the interface schematic of the unit you need to develop. Note that, unlike the demo adder

shown in Figure 3, your PWM unit contains an additional Avalon conduit interface as the PWM output signal

of your slave is an application-specific signal.

FIGURE 5. PWM GENERATOR

PWM generator register map
Table 1 shows the PWM unit’s register map (identical to the one shown in lab 1.0). Pay close attention to the

semantics of the period and duty cycle registers, specifically regarding the current and new period values.

Byte offset
(from base)

Name Access Description

0 PERIOD RW Period in clock cycles (2 ≤ period ≤ 232 – 1).

This value can be read/written while the unit is in the middle of an
ongoing PWM pulse. To allow safe behaviour, one cannot modify
the period of an ongoing pulse, so we adopt the following
semantics for this register:

 Writing a value in this register indicates the new period to
apply to the next pulse.

 Reading a value from this register indicates the current
period of the ongoing pulse.

http://moodle.epfl.ch/mod/resource/view.php?id=913924

EPFL CS-309, PrSoC

7
René Beuchat, Philémon Favrod, Sahand Kashani

4 DUTY_CYCLE RW Duty cycle of the PWM (1 ≤ duty cycle ≤ period)

This value can be read/written while the unit is in the middle of an
ongoing PWM pulse. To allow safe behaviour, one cannot modify
the duty cycle of an ongoing pulse, so we adopt the following
semantics for this register:

 Writing a value in this register indicates the new duty
cycle to apply to the next pulse.

 Reading a value from this register indicates the current
duty cycle of the ongoing pulse.

8 CTRL WO Writing 0 to this register stops the PWM once the ongoing
pulse has ended. Writing 1 to this register starts the PWM.

 Reading this register always returns 0.

TABLE 1. PWM REGISTER MAP

Draw PWM generator schematic on paper
Every RTL design you write during this course should be drawn on paper before you touch the VHDL code as it

helps sharpen your digital design skills and greatly helps when debugging design errors (design errors are

difficult to spot in VHDL, but easy on a diagram). In any case, you will have to include the RTL diagrams in the

reports you write, so you will eventually have to do it (so better do it now).

Implement PWM generator schematic in VHDL
Once your RTL diagram is ready, you can proceed to implement it in VHDL. The VHDL file you need to complete

is “hw/hdl/pantilt/hdl/pwm.vhd”. Some constants are defined in “hw/hdl/pantilt/hdl/pwm_constants.vhd”

for your convenience (i.e. use them!).

Use a text editor to edit the file and fill in the implementation of a PWM generator with an Avalon-MM slave

interface that satisfies the register map shown in Table 1. You’ll need to apply what you learnt in the previous

sections, especially the sample VHDL code for the demo adder.

Compiling the hardware design
You must now compile your VHDL to see if it is synthesizeable.

 Launch Quartus Prime then go to File > Open Project… and open file “hw/quartus/lab_1_1.qpf”. At

this point, you should see the following files in the Project Navigator. Pay attention to the fact that the

VHDL files of your PWM unit are not visible in the Project Navigator, but are rather hidden somewhere

within the “soc_system.qsys” file (we will see why in lab 2.1, you can ignore this for now).

EPFL CS-309, PrSoC

8
René Beuchat, Philémon Favrod, Sahand Kashani

FIGURE 6. QUARTUS PROJECT NAVIGATOR

 Compile the project by going to Processing > Start Compilation, or by pressing the button. If you

receive errors about your design while compiling, you can double-click on the log entry in the messages

view to open the file at the position of the error. ATTENTION: for reasons we will see in lab 2.1, the VHDL

files of your PWM generator are copied to a temporary directory inside your Quartus project’s working

directory before being compiled. As such, the errors flagged by Quartus will point to the copied file,

not to the original. Be sure to modify your original VHDL file each time you fix an error, otherwise you

won’t be correcting anything as Quartus recopies your original over the copy each time it compiles!

This leads to much frustration if you are not aware of this “feature”.

Testing the PWM generator with a testbench
If all went well and no VHDL errors were reported during synthesis, you must now check if the PWM unit

adheres to the specification of its register map. There are 2 ways to do this:

 You are a lazy engineer who feels super lucky, so you proceed to “try” your luck by running your control

software from lab 1.0 directly on your design and seeing if the servomotors work as expected.

 You are a hardcore engineer and decide to simulate your circuit with a testbench to see if it respects

the specifications of its register map.

For obvious reasons, we are going with the second option (if the reasons are not obvious, please ask the course

staff so we can guide you back to the light). For this first VHDL lab of the course, we provide you with a short

(non-exhaustive) testbench which checks the functionality of your PWM generator. You can find the testbench

in “hw/hdl/pantilt/tb/tb_pwm.vhd” and can run it in ModelSim.

If you are unfamiliar with writing testbenches in VHDL or using ModelSim, we highly recommend you read the

VHDL Testbench Tutorial available on the course website prior to continuing. Indeed, an engineer’s job does

not end after having found a “solution” to a problem, but he/she must be able to demonstrate, to various

degrees of certitude, that the solution is correct. This is especially valid in the hardware industry as components

can generally not be fixed once delivered to customers.

Furthermore, we will not be providing testbenches for the various components in the future labs, so you will

have to write them yourselves if you need them, so it is essential you grasp the concept early to ease your life

later.

Programming the FPGA
If all is good and no assertion failures are reported in the testbench, you can finally proceed to program your

FPGA with your custom design.

http://moodle.epfl.ch/mod/resource/view.php?id=944226

EPFL CS-309, PrSoC

9
René Beuchat, Philémon Favrod, Sahand Kashani

1. Plug your FPGA to your computer with a USB Blaster cable.

2. Open the Quartus Programmer.

3. Click on the "Auto Detect" button on the left-hand side of the Quartus Programmer.

4. Choose 5CSEMA4.

5. Once you get back in the Quartus Programmer's main window, you will see 2 devices listed in the

JTAG scan chain. One of them corresponds to the HPS (ARM CPU), and the other to the FPGA.

6. Right-click on the FPGA entry, and go to Edit > Change File.

7. Select the compiled “lab_1_1.sof” file in the "hw/quartus/output_files" directory.

8. Enable the "Program/Configure" checkbox for the FPGA entry, then click on the "Start" button on

the left-side menu.

Creating the software project
The FPGA is now programmed with your custom design. You can now create a software project for your design.

The software is intended to run on the Nios II CPU.

1. Copy the source file you completed in lab 1.0 (“lab_1_0/sw/nios/application/pantilt/pwm/pwm.c”)

to the same location in lab 1.1. We will use this to test if your implementation of the PWM generator

functions as expected with the same application code as in lab 1.0.

2. Launch the Nios II Software Build Tools.

3. Go to File > New > Nios II Application and BSP from Template.

4. Select “hw/quartus/soc_system.sopcinfo” as the SOPC Information File name.

5. Name your software project “lab_1_1”.

6. We invite you to uncheck the "Use default location" checkbox and to choose

“sw/nios/application” instead. We encourage this practice to properly separate software from

hardware design files.

7. Choose "Blank Project" as the Project Template.

8. Click Finish.

9. Right-click on app.c, pantilt.c and pwm.c in the Project Explorer and select Add to Nios II Build.

10. You can now run your software and see if the PWM unit behaves as expected.

	Lab 1.0 – PWM Control Software (recap)
	Lab 1.1 – PWM Hardware Design
	Goal
	Theory
	Interconnect motivation
	Avalon bus
	Introduction
	Avalon-MM slave example

	Practice
	PWM generator interface schematic
	PWM generator register map
	Draw PWM generator schematic on paper
	Implement PWM generator schematic in VHDL
	Compiling the hardware design
	Testing the PWM generator with a testbench
	Programming the FPGA
	Creating the software project

