
EPFL CS-309, PrSoC

1
René Beuchat, Philémon Favrod, Sahand Kashani

Lab 1.2
Joystick Interface

Lab 1.0 + 1.1 – PWM Software/Hardware Design (recap)
The previous labs in the 1.x series put you through the following progression:

 Lab 1.0 – You learnt some theory behind how one interacts with a hardware peripheral, then went on

to practice what you learnt by means of a programming exercise. The practical task involved writing

the control software in C for a black-box PWM generator connected to a pan-tilt module.

 Lab 1.1 – The control software written in lab 1.0 was left untouched, but you replaced the black-box

PWM generator with a custom hardware design you wrote yourself in VHDL. You also learnt how to

write a VHDL testbench so you can test the hardware components you will be developing throughout

the course.

Lab 1.2 – Joystick Interface
Theory

Introduction
The previous labs were centered around output devices, so it’s now time to switch gears and explore input

devices. We use the scenario below as motivation for this lab:

Until this point, the control software was issuing the movement pattern of the servomotors by means of a

hard-coded algorithm in the C source code. We now want to allow the user to provide the position of the

servomotors by means of an input device, a PlayStation 2 joystick. We follow the steps below to this end:

1. Remove the hard-coded movement pattern from the control software and push the burden of

providing the expected position of the servomotors to the user. This can be done by adding a new

layer of indirection by means of an input device.

2. The user interactively manipulates the input device to provide his/her desired position for the

servomotors.

3. The control software reads the input device to obtain the user’s desired position.

4. The control software uses the desired position to update the position of the servomotors accordingly

by writing to the PWM unit’s registers.

Essentially, our control software will be movement-pattern-agnostic with these changes as it no longer has any

hard-coded pattern in its source code since the user provides the pattern at runtime.

EPFL CS-309, PrSoC

2
René Beuchat, Philémon Favrod, Sahand Kashani

Joysticks
The input device we will use in this lab the PlayStation 2 joystick shown in Figure 1. I sense nostalgia must

already be building up!

FIGURE 1. PLAYSTATION 2 JOYSTICK

The device consists simply of an input-controlled resistor on each axis, where the resistance ranges from

approximately 30 Ω to 3.6 kΩ depending on the position of the joystick. The device has a 5-pin connector with

the following connections:

 GND

 +5V

 VRx: Analog X-axis

 VRy: Analog Y-axis

 nSW: Digital button active-low

Analog to Digital Conversion

Hardware

Since we want to connect the joystick to our FPGA’s digital GPIO

pins, we need to convert the analog output of the VRx and VRy pins

to a digital signal before we can do anything with it. We will use an

Analog to Digital Converter (ADC) for this purpose.

The extension board has 2 joysticks, each with 2 analog outputs, so

we will need a 4-channel ADC. The extension board used in this

course uses the MCP3204, a 4-channel, 12-bit ADC. Figure 2 shows

the MCP3204’s package, and Figure 3 shows how the joysticks are

connected to it on the extension board.
FIGURE 2. MCP3204

http://moodle.epfl.ch/mod/resource/view.php?id=945125

EPFL CS-309, PrSoC

3
René Beuchat, Philémon Favrod, Sahand Kashani

FIGURE 3. JOYSTICKS + MCP3204 CONNECTIONS ON EXTENSION BOARD

Communication protocol

The ADC interfaces with the analog outputs of the joysticks and converts the analog value to a digital one. What

remains to be determined is how this digital value is transmitted to the FPGA. This problem occurs quite often

in computer systems and manufacturers have, over time, proposed standard communication protocols for this

purpose. There are numerous communications protocols out there (SPI, I2C, 1-Wire, UART, …), and every device

provides one or more such interfaces in order to be compatible with as many SoCs as possible.

The communication interface available on the MCP3204 is the Serial Peripheral Interface (SPI) bus. Figure 4

shows the details of the communication protocol between the ADC (SPI slave) and the FPGA (SPI master)1.

FIGURE 4. MCP3204 SPI COMMUNICATION PROTOCOL

1 Note that the terms “master” and “slave” come up often in this field and are not Avalon-specific.

EPFL CS-309, PrSoC

4
René Beuchat, Philémon Favrod, Sahand Kashani

In the specific case of the MCP304, the same SPI bus is used both for commands and data. To obtain the digital

value corresponding to one of the analog channels, you need to send a sequence of commands to the device,

then the device responds with the corresponding data. Table 1 shows the configuration bits of the command

sequence that needs to be sent to the MCP3204.

TABLE 1. CONFIGURATION BITS FOR THE MCP3204

FPGA-ADC interface

Top-level design

In order to communicate with the ADC, we need to design a VHDL module that can supply commands to the

ADC and that can read the converted values back through the SPI bus. We implement the Avalon-MM slave

module shown in Figure 5 for this purpose.

FIGURE 5. MCP3204 TOP-LEVEL AVALON-MM SLAVE BLOCK DIAGRAM

The module consists of 2 parts:

 MCP3204 Manager: this unit interfaces with the host processor through an Avalon-MM slave interface

and forwards requests to a custom SPI controller which then communicates with the MCP3204 and

returns the conversion results. Table 2 shows the details of the unit’s register map. Note that all the

unit’s registers are read-only, as it is impossible to “write” to the joysticks, so we can omit any write-

related signals from the Avalon bus to simplify the design. The unit is supplied with a 50 MHz clock.

EPFL CS-309, PrSoC

5
René Beuchat, Philémon Favrod, Sahand Kashani

Byte offset

(from base)

Register

Number
Name Access Description

0x0 0 CHANNEL_0 RO 12-bit digital value of channel 0

0x4 1 CHANNEL_1 RO 12-bit digital value of channel 1

0x8 2 CHANNEL_2 RO 12-bit digital value of channel 2

0xC 3 CHANNEL_3 RO 12-bit digital value of channel 3

TABLE 2. MCP3204 MANAGER REGISTER MAP

 MCP3204 SPI Controller: this unit is responsible for performing the actual SPI communication to

retrieve the converted values from the ADC. The unit is supplied with a 50 MHz clock, but all SPI

communication must be done at 1 MHz.

Note that conversions are not done when a request arrives through the Avalon-MM slave interface, but are

rather done continuously in the background: The Manager contains a state machine where it constantly

instructs the SPI controller to perform a conversion when it is idle. The result of each conversion is stored in

one of the Manager’s 4 internal registers and incoming requests on the Avalon-MM slave interface are served

directly from the contents of these registers. This results in a more reactive system, as the master

communicating with the MCP3204 Avalon-MM slave unit does not have to wait for a complete conversion

cycle.

SPI controller

Your goal in this lab is to implement the SPI controller, so it is important to understand how it works. The SPI

controller works in 2 conceptual phases:

1. The Manager instructs it which channel to convert.

2. The SPI controller communicates with the MCP3204 to obtain a converted value, then sends the

received data back to the Manager.

Figure 6 explains the first phase of SPI controller’s operating procedure in more detail:

 The Manager waits as long as needed for the SPI Controller to be ready. The SPI Controller is considered

unavailable if the busy signal is asserted.

 As soon as the SPI controller deasserts busy, it means that it is ready, so the Manager instructs it to

start a new conversion. A new conversion is started by asserting the start pulse and supplying a 2-bit

channel to the SPI controller. The SPI Controller captures the new instruction and becomes busy again

since it starts converting the appropriate channel.

FIGURE 6. SPI CONTROLLER — PHASE 1

EPFL CS-309, PrSoC

6
René Beuchat, Philémon Favrod, Sahand Kashani

Figure 7 explains the second phase of the SPI controller’s operating procedure.

 Once your SPI Controller has successfully converted a value, it passes the data to the Manager simply

by asserting data_valid and putting the value on the data bus during one cycle.

FIGURE 7. SPI CONTROLLER — PHASE 2

Important: Note that the start signal is a 50 MHz pulse, whereas the data_valid and data signals are 1 MHz

pulses. You can see this due to the “clk” signal in Figure 6, whereas Figure 7 uses “SCLK”. We’ll see how to

achieve something like this in the next section.

Clock dividers

The SPI controller is clocked at 50 MHz, but the SPI communication itself must be done at 1 MHz, so we need

to figure out some way to slow down the clock frequency inside the SPI controller.

Students generally make the mistake of generating a slow “clock” by using logic inside the FPGA. For example,

to generate a clock that runs 3x slower than clk_in, they would generate the clk_out waveform shown in

Figure 8 and connect components as shown in the schematic below.

FIGURE 8. INCORRECT CLOCK DIVIDER (3X)

However, this is not the correct way to do things on FPGAs. Indeed, clock signals are routed through special

channels to guarantee that the clock arrives at all components roughly at the same time (avoids clock skew). If

you instead decide to “create” a clock manually by using logic within the FPGA, your clock will not be routed

on the dedicated clock channels and will suffer from clock skew, therefore causing all logic driven by the custom

clock to be unstable.

EPFL CS-309, PrSoC

7
René Beuchat, Philémon Favrod, Sahand Kashani

The correct way to generate slow clocks in FPGAs is to not generate a clock, but to instead generate a clock

divider. A clock divider is a component that periodically generates a pulse which is then fed to the slower

components. Figure 9 shows an example waveform and schematic of a correct divider that divides the clock

frequency by 3.

FIGURE 9. CORRECT CLOCK DIVIDER (3X)

Each component that requires a slow clock takes as input the standard clock of the FPGA (the one correctly

routed through dedicated clock channels) along with the enable_out pulse generated by the clock divider. This

pulse acts as an activation signal and triggers the operation of a component requiring a slow clock.

Note: We are telling you this, because you will be using a clock divider we provide you later on in the

assignment, so it is important to understand how they work so you can use them correctly.

ADC output

The converted digital value you obtain as the output of the ADC depends on the position of the joystick when

a conversion occurs. Figure 10 shows the values the ADC you should obtain when performing conversions.

FIGURE 10. MCP3204 DIGITAL OUTPUT DEPENDING ON JOYSTICK POSITION. THE CONCRETE BEHAVIOR OF THE MCP3204 IS

SHOWN ON THE LEFT, WHEREAS THE EXPECTED BEHAVIOR WE WANT OUR API TO EXHIBIT IS SHOWN ON THE RIGHT).

EPFL CS-309, PrSoC

8
René Beuchat, Philémon Favrod, Sahand Kashani

Practice
There is a lot to do in this lab, so let’s list the things so you can advance incrementally.

1. Implement the hardware design of the SPI controller in “hw/hdl/joysticks/hdl/mcp3204_spi.vhd”.

a. We gave you all the details you need to know in the assignment above, but you should still

read section 5 of the MCP3204 datasheet to let everything sink in and to be sure you

understand the protocol.

b. To help you out, we provide the clock divider used for the SPI communication (and all

associated signals). We suggest you read and make sense of the existing design before

continuing.

c. Draw the finite state machine (FSM) of your SPI controller on PAPER.

d. Implement your FSM in the process named “STATE_LOGIC” in mcp3204_spi.vhd.

i. HINT 1: Using ModelSim can truly be beneficial when implementing your design. You

can use the stimulus generation file “tb_mcp3204_spi.vhd” we provide to generate

instructions for the controller. Note that the file is not a testbench, but rather just

generates instructions for the SPI controller, so you’ll have to compare the output of

your design against Figure 4 to see if it is functioning correctly.

ii. HINT 2: Pay attention to the fact that some signals need to be sent out on the falling

edge of the SPI clock (SCLK), while others on the rising edge of SCLK. This can lead to

difficult problems to debug! Use the “reg_rising_edge_sclk” and

“reg_falling_edge_sclk” flags provided in mcp3204_spi.vhd to detect the correct

edge!

2. Implement the control software for the MCP3204 Avalon-MM slave.

a. Fill-in the following function in “sw/nios/application/joysticks/mcp3204/mcp3204.c”. This

function is responsible for reading one of the 4 registers in the MCP3204’s Avalon-MM slave

unit. HINT: It’s a 1-liner (or 2-liner to be safe).

uint32_t mcp3204_read(mcp3204_dev *dev, uint32_t channel);

b. Fill-in the following 4 functions in “sw/nios/application/joysticks/joysticks.c”. These

are helper functions which wrap around the low-level “mcp3204.c” implementation and

provide functionality at the joystick level of abstraction.

uint32_t joysticks_read_left_vertical(joysticks_dev *dev);

uint32_t joysticks_read_left_horizontal(joysticks_dev *dev);

uint32_t joysticks_read_right_vertical(joysticks_dev *dev);

uint32_t joysticks_read_right_horizontal(joysticks_dev *dev);

We want the values obtained from the 4 functions above to satisfy the API shown on the right

diagram of Figure 10 (values increase from left to right, bottom to top). However, the physical

readings obtained from the ADC are similar to the left diagram of Figure 10 (values decrease

from bottom to top), so you’ll need to find an algorithm (in software) to invert the reading of

the Y axis for it to match the expected behavior of the system.

http://moodle.epfl.ch/mod/resource/view.php?id=945125

EPFL CS-309, PrSoC

9
René Beuchat, Philémon Favrod, Sahand Kashani

c. Fill-in the following function in “sw/nios/application/app.c”.

uint32_t interpolate(uint32_t input,

 uint32_t input_lower_bound,

 uint32_t input_upper_bound,

 uint32_t output_lower_bound,

 uint32_t output_upper_bound);

This function is used to map the range of values obtained from the ADC readings of the

joysticks to the range of values used by the PWM generator. This is a generic function which

takes as arguments the upper and lower bounds of the input and output domains.

HINT: If you are skilled in the art of “Google-fu”, you will find implementations of this function

on stackoverflow (under other names of course), but we suggest you try to write it yourself.

Conclusions
At the end of this lab, you should have a system capable of controlling the direction of a servomotor based on

the live position of a joystick. Congratulations for making it this far . More cool stuff coming up in the next

weeks.

FIGURE 11. EXPECTED JOYSTICK & SERVOMOTOR MOVEMENT BEHAVIOR

	Lab 1.0 + 1.1 – PWM Software/Hardware Design (recap)
	Lab 1.2 – Joystick Interface
	Theory
	Introduction
	Joysticks
	Analog to Digital Conversion
	Hardware
	Communication protocol

	FPGA-ADC interface
	Top-level design
	SPI controller
	Clock dividers
	ADC output

	Practice
	Conclusions

