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Exercise 1: Cable equation

1.1 We need to verify that u(t, x) = G∞(t, x) fulfils Eq. 1 for a short current pulse injected at
t = 0 and x = 0, i.e rT iext(t, x) = δ(x)δ(t).

∂

∂t
u(t, x)− ∂2

∂x2
u(t, x) = −u(t, x) + rT iext(t, x) , (1)

We re-write it and substitute G∞(t, x) and the current δ-pulse

∂

∂t
u(t, x)− ∂2

∂x2
u(t, x) + u(t, x) = rT iext(t, x)

∂

∂t
G∞(t, x)− ∂2

∂x2
G∞(t, x) +G∞(t, x) = δ(x)δ(t) (2)

We need to show that Eq. 2 is valid. Let’s define K(t, x) = 1√
4πt

exp
(
−t− x2

4t

)
. Then we have

G∞(t, x) = Θ(t)K(t, x). We then work on the left-hand side of the equation and find

∂

∂t
Θ(t)K(t, x)− ∂2

∂x2
Θ(t)K(t, x) + Θ(t)K(t, x) =

K(t, x)
∂

∂t
Θ(t) + Θ(t)

∂

∂t
K(t, x)− ∂2

∂x2
Θ(t)K(t, x) + Θ(t)K(t, x) =

K(t, x)δ(t) + Θ(t)(
∂

∂t
K(t, x)− ∂2

∂x2
K(t, x) +K(t, x)) =

δ(t)K(t, x) + Θ(t)LK(t, x)

where we defined an operator L = ∂
∂t −

∂2

∂x2 + 1.

For t 6= 0 the term δ(t)K(t, x) vanishes. We need to consider the limit t→ 0 and we have

lim
t→0

K(t, x) = lim
t→0

1√
4πt

exp

(
−t− x2

4t

)
= δ(x).

The above comes by the definition of the δ(x) as a Gaussian whose width goes to 0.

After a few calculations we can find that

LK(t, x) =
∂

∂t
K(t, x)− ∂2

∂x2
K(t, x) +K(t, x) = 0

Taking the left-hand side of Eq. 2 we therefore have

∂

∂t
G∞(t, x)− ∂2

∂x2
G∞(t, x) +G∞(t, x) =

δ(t)K(t, x) + Θ(t)(LK(t, x)) = δ(t)K(t, x) = δ(t)δ(x) q.e.d.



Remarks :

• You can also have a look at section 3.2.2 of the book [1] (in HTML format on
http://neuronaldynamics.epfl.ch/online/Ch3.S2.html).

• G∞ is called the Green’s function of the given partial differential equation. It is the solution
of a linear differential equation for a Dirac δ-pulse as input. With such functions we can
write the general solution of the inhomogeneous equation for any input

Lu(t, x) = I(t, x)

in terms of an integral (superposition) of Green’s functions, due to linearity. Indeed the
solution can be written

u(t, x) =

∫ t

−∞
dt′
∫ +∞

−∞
dx′G∞(t− t′, x− x′)I(t′, x′) (3)

(i) & (ii) The solution of the diffusion equation ∂u
∂t −

∂2u
∂x2 = 0 is given by u(t, x) = 1√

4πt
exp

(
−x2

4t

)
.

In this case, there is transport (the width of the Gaussian increases with time) but there is no
dissipation of energy (

∫
u(t, x)dx = constant). In the cable equation it is the term ”1” in the

differential operator L = ∂
∂t −

∂2

∂x2 + 1 which is responsible of the dissipation of energy. This term
represents the voltage loss due to the leaks through the membrane, and gives the exponentially
decaying term in the solution.

1.2 We are looking for a solution of the equation

Lu = rT qδ(x− x0)δ(t) + rT qδ(x+ x0)δ(t)

which corresponds to an instantaneous injection of a charge q at time t = 0 at position x = x0 and
to an instantaneous injection of an imaginary ”virtual” charge q at time t = 0 at position x = −x0.
The ”virtual” charged is placed in order to account for the boundary condition du

dx |x=0= 0, i.e.
i(t, x = 0) = 0.

Since the cable equation is linear we can find the solution of the above equation by superposition
of the Green’s functions for each of the two input current pulses. The solution is then

u(t, x) = rT q [G∞(t, x− x0) +G∞(t, x+ x0)]

We can indeed verify that the derivative satisfies du
dx |x=0= 0. Therefore, if we restrict ourselves to

the interval x ≥ 0, u(t, x) satisfies both Lu = rT qδ(x− x0)δ(t) and du
dx |x=0= 0. It is the solution

we were looking for.

(i) & (ii) If x = 0 represents the soma (i.e the cell body), the flat derivative boundary condition
expresses the fact that no charge can diffuse any further. The electrical charges accumulate there.
If we substitute G∞(t, x− x0) and G∞(t, x+ x0) and calculate the solution at x = 0 we have

u(t, x = 0) =
2rT qΘ(t)√

4πt
exp

(
−t− x20

4t

)
(4)

One can therefore see that the further the injection point in the dendrite, the weaker the resulting
potential at the soma. This phenomenon is indeed present in neurons; without any mechanisms for
active amplification, input in distal dendrites leads to weak and broad responses at the cell body.
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Figure 1: Time-dependence of the somatic potential following a 1 µC charge at a distance x0
from the soma. In this example λ = 1 mm et τ = 10 ms.


