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Random Regular Graphs

4.1 Introduction

Another model for random graphs is the random regular graph G(n, r), in which every vertex has
degree r.

Definition 4.1 (Random regular graph). Consider the set G(n, r) of all labeled r-regular graphs of
size n with nr even, i.e., the set of labeled (simple) graphs with vertex label set [n] and constant degree
r. Then the random regular graph G(n, r) is a uniform random element of G(n, r).1

In contrast to the previous model G(n, p), the existence of different edges is not independent, and this
leads, not surprisingly, to some additional difficulties in the analysis. Even defining the probability
space is not as straightforward as before: we would like to assign the same probability to every labelled
graph over vertex set [n] = {1, 2 . . . , n} with degree r. In order to build up to this, we will first analyze
a relaxation of this model in which we sample from a larger class of graphs G⋆(n, r), by allowing for
the possibility of loops and multiple edges.

1We observe that G(n, r) has n vertices and rn/2 edges, which is why rn must always be even.
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Figure 4.1: An instance of G(10, 3).

4.2 Preliminaries

We need a few tools from combinatorial analysis which are well suited to the study of random regular
graphs G(n, r) and their extensions G⋆(n, r). Let

(X)m = X(X − 1)(X − 2) · · · (X −m+ 1).

The mth factorial moment of a random variable X is

E [(X)m] = E [X(X − 1)(X − 2) · · · (X −m+ 1)] . (4.1)

For instance, if X ∼ Poisson(λ), then
E [(X)m] = λm. (4.2)

As a result, given a random vector (X1, . . . , Xl), where the Xi ∼ Poisson(λi) are independent, we
have that

E [(X1)m1
· · · (Xl)ml

] = λm1

1 · · ·λml

l .

Moreover, we will use (without proof – see [] for a proof) the following converse convergence result
when the random vector depends on n ∈ N.

Theorem 4.1 (Method of factorial moments for Poisson random variables). Let (Xn1, . . . , Xnl) be a
random vector, where l ≥ 1 is fixed. If λ1, . . . , λl ≥ 0 are such that for n → ∞, E [(Xn1)m1

· · · (Xnl)ml
] →

λm1

1 · · ·λml

l for every m1, . . . ,ml ≥ 0, then (Xn1, . . . , Xnl) → (Z1, . . . , Zl), where Zi ∼ Poisson(λi)
are independent.

4.3 The matching model G⋆(n, r)

Consider the set of stubs S = [n] × [r]; each stub is one endpoint of a potential edge. We will again
assume nr is even. To generate a random regular multigraph G⋆(n, r), we first generate a matching
M (also called a pairing) of the nr stubs, which results into nr/2 edges. More formally, a matching
is a function M : S → S such that if M(s1) = s2 then M(s2) = s1 for all stubs s1 = (u, e) and
s2 = (v, f) ∈ S. Then, the edge set of the graph G⋆(n, r) given by the matching M as follows:

E = {(u, v) : ∃ e, f such that (u, e) = M(v, f)}.
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Figure 4.2: An instance of G(100, 2). The graph G(n, 2) is a.a.s. not connected (we do not prove this
here), and is the union of several disjoint cycles.

Note that G⋆(n, r) may not be a simple graph, because it could have self-loops if the matching
has M(u, e) = (u, f) for some e 6= f ∈ [k], or it could have multiple edges if the matching has
M(u, e1) = (v, f1) and M(u, e2) = (v, f2) for some e1 6= e2 and f1 6= f2 ∈ S.

This matching model is interesting because

1. If we condition on the random matching being a simple graph, then the graph is sampled
uniformly from G(n, r),

2. the probability that the sampled graph is simple is bounded away from zero and hence a property
that holds a.a.s. for G⋆(n, r) also holds a.a.s. for G(n, r), and

3. it is often easier to prove many properties of interest in G⋆(n, r) than in G(n, r) directly.

We will sketch the proof of the claim 1 here: Note that there are (nr − 1)!!
def
= (nr − 1)(nr − 3) · · · 3

distinct matchings. If we condition on G⋆ being a simple graph, then each element of G(n, r) is
equally probable. This is because each element of G(n, r) corresponds to the same number of distinct
configurations, namely (r!)n each. Hence the first property holds. Note that this holds only conditional
on G⋆ being simple; unconditionally, graphs with loops and/or multiple edges appear with smaller
probability than a simple graph.

In the next subsection we will illustrate claim 3 by showing how to prove a property of interest in
G⋆(n, r) (where no clear approach for proving in G(n, r) is present); we will then leverage this result
to prove claim 2 in the following subsection.

4.4 Appearance of a fixed subgraph in G⋆(n, r)

Let the family of random variables (Zk)
∞
k=1 denote the number of cycles of size k in G⋆(n, r). In

particular, Z1 is the number of self-loops (1-cycles), and Z2 is the number of pairs of edges between
the same vertices (2-cycles).



30 CHAPTER 4. RANDOM REGULAR GRAPHS

Theorem 4.2 (Convergence in distribution of the number of all cycles in G⋆(n, r)). The random
variables (Zk) for k ∈ Z

+ converge in distribution to a collection of independent random variables,
with Zk → Poisson((r−1)k/2k).

Proof:

Consider a sample of G⋆(n, r) and consider the matching M of stubs S that produced it. Note
that a cycle of size k in G⋆ is formed by 2k stubs (2 for each vertex in the cycle) that are matched
appropriately. While many sets of stubs could satisfy this (in fact,

(

k,2

)

for each vertex), given a
specific pair of stubs we call the edge it produces a labeled edge, and consider the labeled cycle that
gives rise to a given cycle in G⋆(n, k). We will use labeled cycles to compute the moments of Zk,
and then apply the method of moments to establish convergence in distribution.

First we need the probability pk that a set of k labeled edges is in a random matching. This is

pk =
(rn− 2k − 1)!!

(rn − 1)!!
=

1

(rn− 1)(rn− 3) · · · (rn− 2k + 1)
, (4.3)

because each labeled edge blocks two stubs, which leaves (rn − 2k − 1)!! configurations for the
remaining stubs once the k pairs are fixed.

Expected number of k-cycles. We count the number of ways a k-cycle can appear in G⋆. As
in Theorem 3.6, the number of distinct vertex-labeled k-cycles is

(

n
k

)

k!

2k
, (4.4)

where 2k is the size of the automorphism group of the k-cycle.

The k-cycle obtained is a sequence of k edges ((vi, qi), (vi+1, qi+1)), with 1 ≤ i ≤ k (and indices
taken modulo k) between distinct vertices. Hence, it is defined by a sequence of k distinct vertices
v1, . . . , vk, and for each vertex there are two distinct labels pi, qi ∈ [r] in the matching. Hence the
total number of distinct k-cycles is

(

n
k

)

k!

2k
(r(r − 1))k ∼

(nr(r − 1))k

2k
. (4.5)

For large n we also have pk ∼ (rn)−k, and therefore E [Zk] ∼ (r − 1)k/2k.

Expected number of other graphs H. Note that a similar argument shows that the expected
number of copies of a graph is in general Θ(nv(H)−e(H)). We will study higher-order moments
next, which amounts to counting the number of copies of graphs H where H is the union of several
cycles. Note that if all cycles are are disjoint, then v(H) = e(H). Otherwise, H contains at least
one component which is the union of several intersecting cycles; H then has v(H) < e(H).

Second factorial moment. Before studying higher-order joint moments in their full generality,
we consider the second factorial moment E [(Zk)2], i.e., (Zk)2 is the number of ordered pairs of
distinct k-cycles in G. We can express this number as a sum of two terms S0 and S>, where
S0 counts the number of ordered pairs of two distinct disjoint k-cycles, and where S> counts
the number of ordered pairs of two intersecting k-cycles. We now show that S0 asymptotically
dominates.

Similar to Theorem 3.6, we can express S> as a sum of terms Se,f according to the number of
vertices i and edges j in the intersection between the two k-cycles. Obviously, the number of terms
does not depend on n.

Each Se,f counts the number of copies of an unlabeled graph He,f , which is the union of two
intersecting k-cycles, and thus v(H) < e(H). Therefore, S> is O(nv(H)−e(H)) = o(1).
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To compute S0,

(

n
k

)

k!

2k

(

n− k
k

)

k!

2k
(r(r − 1))2k ∼

(

nkrk(r − 1)k

2k

)2

. (4.6)

Combining this with pk ∼ (rn)−k, we obtain, as needed, E [(Zk)2] → λ2
k.

Higher-order moments of number of k-cycles. We now generalize this argument to larger
cycles and joint moments, of the form

E [(Z1)m1
(Z2)m2

· · · (Zl)ml
] . (4.7)

Now H denotes an unlabeled graph resulting from the union of m1 1-cycles, m2 2-cycles, etc. A
similar argument as before shows that all the terms corresponding to H where not all cycles are
disjoint go to zero. The sum S0 is easily shown to factor, so that

E [(Z1)m1
(Z2)m2

· · · (Zl)ml
] → λm1

1 · · ·λml

l . (4.8)

Theorem 4.1 shows the result.

�

4.5 The random regular graph G(n, r)

We can now go back to the original model G(n, r). Consider once again the same random variables
(Zk)

∞
k=1, the number of cycles of size k, but in G(n, r) instead of in G⋆(n, r). Obviously, this forces

Z1 = Z2 = 0. The following theorem is then a direct consequence of Theorem 4.2 attianed by
conditioning on Z1 = Z2 = 0.

Corollary 4.1 (Convergence in distribution of number of all cycles in G(n, r)). The random variables
(Zk), k ≥ 3 converge in distribution to a collection of independent random variables, with Zk →
Poisson((r − 1)k/2k).

We can now show that the probability that G⋆(n, r) is simple is bounded away from zero.

Theorem 4.3 (Probability that random regular multigraph is simple). P {G⋆(n, r) is simple} →

exp
(

− r2−1
4

)

.

Proof:

P {G⋆(n, r) is simple} = P {Z1 = Z2 = 0}.

�

This gives an efficient way of generating G(n, r): simply generate random matchings of stubs until a
simple graph is found. Unfortunately, however, the probability of success decreases quite quickly with
r.

Theorem 4.4 (Properties of G⋆(n, r) are properties of G(n, r) almost sureley). Any property Q that
holds a.a.s. for G⋆(n, r) also holds a.a.s. for G(n, r).

Proof:



32 CHAPTER 4. RANDOM REGULAR GRAPHS

Figure 4.3: An instance of G(100, 3).

P {G does not have Q} = P {G⋆ does not have Q|G⋆ is simple}

=
P {G⋆ does not have Q,G⋆ is simple}

P {G⋆ is simple}

≤
P {G⋆ does not have Q}

P {G⋆ is simple}
→ 0. (4.9)

�

This theorem allows us to try to prove properties of interest of the model G⋆; the model G then has
the same property. Clearly, the converse is not true; e.g., G has no cycles of size 1 and 2, but G⋆ does.

4.6 Connectivity of G(n, r)

A random regular graph G(n, r) is connected a.a.s. for r ≥ 3. While this might seem surprising at
first when we compare with G(n, p), where connectivity required about logn average vertex degree,
recall that the main challenge there was to eliminate isolated vertices; the majority of vertices have
already been connected at a much lower average vertex degree of c = np > 1. In this sense, we should
not be surprised that a constant r is enough to ensure connectivity in G(n, r), as isolated vertices are
a priori impossible in this model. We will in fact show a much stronger result, which is that G(n, r) is
a.a.s. k-connected, which means that there are (at least) k vertex-disjoint paths connecting any pair
of vertices. We note in passing that G(n, 2) is not connected a.a.s. , and consists of a collection of
cycles, and G(n, 1) is simply a random matching.

Theorem 4.5 (Connectivity of G(n, r)). For r ≥ 3, G(n, r) is r-connected a.a.s. .

Proof:

We partition the set of vertices into three sets A, S, and B. If there are no edges between A and
B, we say that S separates A and B. The graph is r-connected if and only if the smallest set S
that separates the graph is of size at least r. We denote by T the subset of vertices of S adjacent
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to a vertex in A. Let H be the subgraph spanned by A ∪ T , and let s = |S| and t = |T |. We will
argue that for every A, s ≥ t ≥ r.

Small component. Fix an arbitrarily large natural number a0. We first consider a small component
A, i.e., of fixed size a = |A| < a0. For a = 1, the assertion is immediate. For a = 2, A = {u, v},
we distinguish two cases. If there is no edge (u, v), there are r edges incident to u that need to
go to distinct vertices in T . If there is an edge (u, v), then there can be at most one vertex in T
adjacent to both u and v, as otherwise v(H) < e(H) (which implies that H does not appear a.a.s.
, c.f. the proof of Theorem 4.2). So for both cases, t ≥ r.

For a > 2, we lower-bound t and therefore s. The subgraph H contains a+ t vertices and at least
(ra + t)/2 edges, because there are by definition ar stubs in A and t stubs in T in the spanned
subgraph H (recall that every vertex in T has at least one edge into A).

Therefore, the condition v(H) ≥ e(H) becomes

s ≥ t ≥ a(r − 2). (4.10)

This shows that s ≥ r a.a.s. for a fixed a ≥ 3 and r ≥ 3, and therefore this holds over all 3 ≤ a ≤ a0
by a union bound.

Large component. We have shown the above result only for fixed a. The proof for large a > a0 is
left as an exercise. The only difficulty is that the number of terms grows with n.

�

In fact, it is possible to show much more than that: that the size of the separating set is in fact much
larger than r for large a.

It is also worth pointing out that many of the results in this chapter allow for a degree r = r(n) that
grows slowly with n.

4.7 General degree distributions

We close this chapter with a brief discussion of an elegant result that generalizes our study of the
emergence of the giant component in the models G(n, p) and G(n, r). In this model, the empirical
degree distribution λ = {λi} is given a priori. A graph from G(n, λ) has nλi vertices of degree i.
Clearly, G(n, p) = G(n,Binom(n, p)), and G(n, r) = G(n, {λr = 1}).

The model to sample from G(n, λ) generalizes the matching model we studied above for G(n, r): we
generate stubs for each vertex, then randomly connect the stubs to form a matching, then project
and condition on the graph being simple. What is different is that we generate classes of vertices with
different degrees, to match the empirical distribution λ (i.e., we have roughly nλi vertices of degree i,
and niλi stubs adjacent to a degree i vertex).

Molloy and Reed [3] show the following simple criterion for the emergence of a giant component,
subject to some technical conditions that we do not discuss here. Define Q(λ) =

∑

i≥1 i(i − 2)λi. If
Q(λ) < 0, then G(n, λ) has only small components; if Q(λ) > 0, then it does have a giant component.

While proving this result is quite involved, we can easily develop an intuition of why the function Q(λ)
determines the appearance of a giant component. We consider for this the same component discovery
process as in the discussion of G(n, p), where Ak is the set of active vertices. We can then view Q(λ)
as the expected difference between Ak+1 and Ak. Suppose at the ith step, we saturate a vertex of
degree i; this means that we remove this vertex from the active set; there are i − 1 neighbors of this
vertex that are added, for a total change of (i − 2).

What is the probability of hitting a vertex of degree i? For this, it is important to note that this
probability is not proportional to λi, but rather to iλi. This is because we sample edges, rather than
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vertices, which gives a bias towards higher-degree vertices. The function Q(λ) is therefore proportional
to the expected change in the active set; if this change is positive, then the discovery process is likely
to either die early, or to give rise to a giant component, in analogy to the proofs in Section 3.4.


