Networks out of Control:

Homework Set 3

Exercise 1

Stirling's formula ($n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$) is very accurate approximation of n !, which is very helpful to obtain asymptotic scaling laws of different properties in large networks. For a random regular graph $G(n, r)$, we use a random matching model $G^{*}(n, r)$. We have seen that there are $(n r-1)!!=(n r-1)(n r-3) \ldots 3$ distinct matching, given that $n r$ is even. We want to find a similar approximation of $(n-1)!$!, given that n is even. Using Stirling's formula (after some manipulations on $(n-1)!!)$, show that

$$
(n-1)!!\sim \alpha n^{n / 2} e^{-n / 2}
$$

for some constant $\alpha>0$ that you need to find.

Exercise 2

Complete the proof of the a.a.s. r-connectivity of $G(n, r)$ when $r \geq 3$, for the case of large $a=|A|\left(a>a_{0}\right.$ where a_{0} is an arbitrarily fixed large natural number), where the set of vertices is partitioned into three sets A, S, and B, so that S separates A and B.
Hint: The graph is r-connected if and only if the smallest set S that separates the graph is of size at least r. Denote by T the subset of vertices of S adjacent to a vertex in A, and let H be the subgraph spanned by $A \cup T$. Let $s=|S|$ and $t=|T|$. Prove the theorem by contradiction, and assume thus that $t<r$. Observe that you can always choose a_{0} large enough so that the expected number of subgraphs H is less than n^{-2}. Show then that the probability of finding one such subgraph H is also less than n^{-2}, and conclude with a union bound on all possible values of $a>a_{0}$).

Exercise 3

We compare the sampling process of a graph from the $G(n, p)$ model, conditioned on being r-regular, with sampling it from the $G(n, r)$ model. Assume as usual that $n r$ is even.

1. Let us sample a graph from $G(n, p)$, the distribution of random graphs with vertex label set $[n]$ where each pair of vertices has an edge independently with probability p, conditioned on the graph being r-regular. Is this equivalent to sampling a graph uniformly from $\mathcal{G}(n, r)$, the set of labeled (simple) graphs with vertex label set $[n]$ and constant degree r ?

More precisely, let X be generated from the $G(n, p)$ model and Y be generated from the $G(n, r)$ model, i.e., sampled uniformly at random from the set of r-regular graphs $\mathcal{G}(n, r)$. If G is a r-regular graph, is $\mathbb{P}\{X=G \mid X$ is r-regular $\}$ the same as $\mathbb{P}\{Y=G\}$?

Hint: compute the probability of sampling a graph from the $G(n, p)$ model with a number $l=n r / 2$ of edges.
2. If your answer to the previous question is negative, give an example of a realization $G \in \mathcal{G}(n, r)$ for which $\mathbb{P}\{X=G \mid X$ is r-regular $\} \neq \mathbb{P}\{Y=G)\}$. If your answer is positive, then why do we not use this model to prove properties of $G(n, r)$?

