
7

Decentralized Navigation

We had seen in the previous chapter that a surprising feature of many real networks is the existence
of short paths between most pairs of vertices, and that random graphs share this feature with real
networks. Milgram’s experiments had discovered the existence of such paths by delivering letters along
social links from a sender to a target who did not know each other personally.

While the lengths of the paths in Milgram’s experiment is certainly surprising, we have been able to
convince ourselves that the randomness in social ties could explain their existence. However, a major
puzzle remains, which in fact may be much more challenging to explain: people were actually able
to find these paths. This fact is remarkable because every person typically has only full knowledge
of their own social ties. While we sometimes know a few of our friends’ friends, it is unlikely that
we have complete knowledge of our two-hop neighborhood - and certainly our knowledge decreases
further the more removed our indirect acquaintances.

A decentralized routing algorithm is allowed to make local forwarding decisions for a message based
only on local information. More specifically, we send one copy of the message from the source (sender)
to the destination (target), and the vertex holding the message has to decide which of its neighbors
(on the lattice or through a shortcut) to send the message to, based on the following information:

• the positions of the source, destination, and the current vertex in the lattice;

• the history of the message since it left the destination, i.e., all the information used to deliver
the message up to the current vertex;

• the position in the lattice of each of the current vertex’s neighbors.
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Figure 7.1: Image from Milgram’s original paper showing the average remaining distance from the
current vertex after i steps to the target [?].

The intuition behind such algorithms are clear from Milgram’s experiment: individuals clearly used
geographic information to zero-in on the target (see Figure 7.1). We are interested in the expected
number of iterations that the best possible decentralized routing algorithm can achieve, for a random
source s and destination t.

In particular, in this chapter, we discuss a class of models that has been proposed to explain why some
networks - and in particular, social networks - appear to be navigable, i.e., that it is possible to compute
efficient route from sources to destinations where each intermediate vertex only has information about
its neighbors. The models we discuss use an underlying geometry to provide a network-wide reference
system. This reference system provides a geometric addressing scheme for the destination; also, a
vertex knows its own location in the geometry and the locations of its neighbors, and it uses this
information to forward a message towards a destination.

These models bring out an interesting puzzle: navigability is not a robust property; rather, it requires a
particular way of forming shortcuts between vertices. Why actual social networks exhibit navigability
remains an open question, and suggests that we have only started to uncover the principles underlying
the structure of such networks, and the mechanisms that give rise to this structure.

7.1 Network Naviation with Watts-Strogatz Networks

Consider a variant of the Watts-Strogatz model on the square lattice [n]2 with n2 vertices, and define
distance d(u, v) between two vertices u and v as ℓ1 (i.e., Manhattan) distance. The graph will have
local edges and remote edges, also known as shortcuts as follows: Every vertex v has a local edges to
all vertices u with d(u, v) ≤ r. Every vertex v also has r ≥ 0 shortcuts, whose endpoints are selected
uniformly i.i.d. over the set of other vertices. See Figure 7.2 (a).

Theorem 7.1 (Inefficient Delivery in Watts-Strogatz Grid). The expected delivery time of any de-
centralized algorithm is Ω(n2/3).

Proof:

For the converse, we need to assume that every vertex has r shortcuts. The probability that the
current message holder u chooses vertex v as one of its r shortcuts is 1/n−1 (we do not worry about
multiple edges, and simply collapse them into a single edge).

Let δ = 2/3, and let the box B denote the set of vertices within lattice distance nδ of the target t.
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(a) The local and remote connections for the
highlighted vertex when r = 2 and k = 5.

(b) Small γ correspond to shortcuts
with longer reach.

(c) Large γ correspond to shortcuts
with shorter reach.

Figure 7.2: Images from [?].

There are at most 1 +
∑nδ

j=1 4j ≤ 4n2δ vertices in B.

B is difficult to hit. We first bound the probability that a set of vertices of a given size has at
least one shortcut into B. Consider an arbitrary vertex u. Let Ei be the event that at the ith
step, the message holder u has a shortcut into B. Let E be the event that any message holder in
the first λnδ steps has a shortcut into B,

E = ∪i≤λnδEi, (7.1)

where λ = 2−4
/r is a constant.

P {Ei} ≤ r
|B|
n2

≤ 4rn2δ

n2
, (7.2)

and by the union bound

P {E} ≤
∑

i≤λnδ

P {Ei} ≤ λnδ · 4rn2δ

n2
= 22λr ≤ 1/4. (7.3)

Cost is high if no shortcut into B. If s and t are chosen uniformly at random, then d(s, t) > λnδ

a.a.s. . However, from (7.3), with non-vanishing probability, there is no shortcut into B in the
first λnδ steps. This gives the desired result.

■

7.2 Distance-Dependent Networks

To remedy this, [1] introduced a variant that factors in the distance when considering remote links,
as suggested by Milgram’s experiment (see Figure 7.1). Again, start with a square lattice with n2

vertices. The graph will have local edges and remote edges as follows: Every vertex v has a local
edges to all vertices u with d(u, v) ≤ r. Every vertex v also has r ≥ 0 shortcuts, whose endpoints are
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selected i.i.d. over the set of other vertices from the distribution

d(u, v)−γ∑
v ̸=u d(u, v)

−γ
, (7.4)

with constant γ ≥ 0. This has a natural interpretation – shortcuts are more likely to occur with “ge-
ographically close” vertices. In other words, larger γ concentrate the shortcuts closer to v. Therefore,
γ controls how far-reaching the shortcuts are (See Figure 7.2 (b) and (c)).

In the remainder of this chapter, we considered the setting of r = 1; larger (constant) r do not affect
the results. The model can also be generalized to d-dimensional lattices; in such cases the critical
threshold (which we will see below) will occur at γ = d.

Of course, a lower bound is given by the decentralized algorithm that simply delivers the message
through lattice edges on a shortest path, which is guaranteed to succeed in time O(n); ideally we
can do better. However, we run up against an immediate negative result – note that when γ = 0 we
recover the Watts-Strogatz model on a square lattice introduced above. In fact, the above theorem
and proof can be generalized as follows:

Theorem 7.2 (Inefficient for 0 ≤ γ < 2). The expected delivery time of any decentralized algorithm
for 0 ≤ γ < 2 is Ω(nδ), with δ = (2− γ)/3 < 1.

Essentially, what the previous theorem says is that for small γ the shortcuts are too random. This
makes it difficult to find a shortcut that takes the message close to the target. Although a short path
may actually exist, the step-by-step discovery of a decentralized algorithm is unable to find this path,
given that it cannot zero in to the target.

In the next theorem, we consider the opposite case, where shortcuts are very local. Unfortunately,
this also turns out to be a negative result:

Theorem 7.3 (Inefficient for γ > 2). The expected delivery time of any decentralized algorithm is
Ω(nβ), where β = (γ − 2)/(γ − 1).

Proof:

Write ϵ = γ − 2, and λ = min(ϵ, 1)/8r < 1/2. As the normalizing constant is at least one,

P {d(u, v) > d} ≤
2n−2∑
j=d+1

4j · j−γ

= 4

2n−2∑
j=d+1

j1−γ

≤
∫ ∞

d

x1−γdx

≤ d2−γ

γ − 2
= d−ϵ/ϵ. (7.5)

Let Ei denote the event that at step i the message reaches a vertex u that has a shortcut of length
at least n1−β . Let E = ∪i≤λnβEi be the event that any of the first λnβ vertices has such a shortcut.

By the union bound,

P {E} ≤
∑

i≤λnβ

P {Ei}

≤ λrnβn−ϵ(1−β)/ϵ (combining (7.5) and def. of Ei)

= λr/ϵ ≤ 1/8. (ϵ(1− β) = β) (7.6)
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(a) A sample shortest path in a lattice-
induced topology with γ = 1. The path
is short, but does not follow the geom-
etry of the underlying lattice.

(b) A sample shortest path in a lattice-
induced topology with γ = 2, the crit-
ical exponent. The path is short, and
most shortcuts make progress towards
the destination.

(c) A sample shortest path in a lattice-
induced topology with γ = 3. Note
that the shortest path is quite long,
even though most hops on the shortest
path are in the direction of the destina-
tion.

Figure 7.3: Lattice topologies for r = 1, k = 1 and various γ.

As in the previous proof, we choose s and t uniformly at random, so that they are at typical
distance Θ(n). We want to show that on average, the algorithm requires more than O(nβ) steps
to complete. It follows from (7.6) that with non-vanishing probability, the message can only find
shortcuts of distance less than n1−β in the first λnβ steps, for a total progress of order λn. In that
case, the message cannot reach the target within the required number of steps.

■
Here, the problem is not that the geometry is not a useful guide towards the target, rather that
shortcuts are simply too short to get to the target efficiently.

Is there a sweet-spot in-between? Indeed there is!

Theorem 7.4 (Efficient for γ = 2). There exists a decentralized algorithm whose expected delivery
time is O((log n)2) for n large enough.

Proof:

We show the result for r = 1 and k = 1; it is obvious that larger r and k can only help.

The proof is constructive: we define an algorithm to forward a message from the source s to the
target t, and show that this algorithm has expected cost of O((log n)2).

In this algorithm, the current message holder selects the neighbor (on the lattice or through a
shortcut) that is closest to the target. Note that it is always possible to make progress towards
the target through the lattice; therefore, the algorithm always terminates correctly.

The algorithm is loop-free because, by definition, the message always makes progress. Therefore,
by the Principle of Deferred Decisions, we can assume that the shortcuts are generated at a vertex
u when that vertex receives the message.

Define the annuli Uj as the set of points at lattice distance in [2j + 1, 2j+1]. Also, the box Bj is
the set of points at lattice distance at most 2j . The algorithm is in phase j while the message is
in Uj . Thus, the initial value of j is at most log2 n.

Consider phase j, log log n ≤ j < log n. We bound the probability that the algorithm finishes
phase j in the next step, and moves into phase j + 1. This requires that the message is passed to
a vertex in Bj in the next step. The size of the box Bj is at least

|Bj | ≥ 22j−1, (7.7)
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(a) α = 2. This network has mostly local links. (b) α = 0.5. This network has many long-range links.

Figure 7.4: Tree-induced networks with n = 1024, b = 2, and different αs.

and the maximum lattice distance between u ∈ Uj and a vertex in Bj is 2j+1 + 2j < 2j+2. The
probability of hitting a vertex in Bj is at least

qj ≥
|Bj |

(2j+2)γ4 ln(6n)
, (7.8)

where 4 ln(6n) is an upper bound of the normalizing constant
∑

v ̸=u d(u, v)
−γ . Therefore, the

message enters Bj with probability at least

qj ≥
22j−1

4 ln(6n)22j+4
=

1

128 ln(6n)
(7.9)

We next bound the expected number of steps in phase j. Let Xj denote this number. Note that
Xj is stochastically upper-bounded by a geometric random variable with mean 1/qj , and therefore

E [Xj ] ≤ 128 ln(6n) (7.10)

Now the total cost of the algorithm is at most
∑logn

j=0 Xj = O(log2 n).

■

7.3 Tree-induced Networks

The network model underlying the results on decentralized routing in the previous section is arguably
quite peculiar. In particular, there is a priori no reason why a network should “live” in a Euclidean
space, which is crucial to allow decentralized routing at γ = 2. It would therefore be desirable to
study a more general class of networks to shed insight.

In a subsequent paper [2], Kleinberg introduces two additional models. The first model uses a balanced
tree instead of a lattice as the underlying generator. The probability model to generate shortcuts is the
same as in the lattice model, with d(u, v) the tree distance rather than the lattice distance. In contrast
to the lattice model, the network on which a message is forwarded only consists of the generated edges,
not the underlying tree (as otherwise a path of length O(log n) always exists on the tree).

The results are similar to those for the lattice case:
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Theorem 7.5 (Efficient for γ = 1). There exists a tree-induced model with exponent γ = 1 and
outdegree of Θ(log n) such that a decentralized routing algorithm can achieve search time O(log n).

Theorem 7.6 (Inefficient for 0 ≤ γ < 1: no hierarchical clues). There does not exist a tree-induced
model with exponent γ < 1 and outdegree O(log n) such that a decentralized routing algorithm can
achieve polylogarithmic search time.

Theorem 7.7 (Inefficient for γ > 1: shortcuts too local). There does not exist a tree-induced model
with exponent γ > 1 and outdegree O(log n) such that a decentralized routing algorithm can achieve
polylogarithmic search time.
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