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Social Networks

6.1 Introduction

A social network has people as its vertices, and social connections representing, e.g., friendships,
acquaintances, or business relationships, as its edges. In this chapter we explore two key properties
exhibited by many social networks: the small-world phenomenon, which says that any two individuals
are connected via a short path, and high clustering, i.e., If two people in a social network have a friend
in common, then they are more likely to have an edge between them (as compared with two randomly
selected nodes).
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Figure 6.1: An exponential growth in the k-hop neighborhood. Image from [1].

6.2 Small-World Phenomena

The term small world network was coined by the sociologist Stanley Milgram in the 1960s in the
context of his experiments on the structure of social networks. Milgram was interested in determining
the distance in hops separating two arbitrary persons. In an ingenious experiment, Milgram mailed
letters to randomly chosen individuals in Nebraska. The task of these individuals was to send a letter
to a target individual living near Boston, but the letter could be sent only through chains of social
acquaintances.

The outcome of these experiments was surprising: a relatively large fraction of these letters did indeed
arrive at their target; furthermore, they did so after traversing only a small number of social edges;
in fact, the median number of edges traversed was 6, the finding now canonised as “six degrees of
separation”. It is rather surprising to think that in a country with a population on the order of 108

people, two completely unrelated, arbitrarily chosen individuals, who might lead very different lives,
belong to different social classes, and live thousands of kilometers apart, would nevertheless be so
close in the social network.

However, on second thought, the intuition behind this finding is not so surprising. Let us assume all
people in the network have degree d. Then, you will have d friends, and if you extrapolate out, you
see that you would have approximately d2 friends of friends. This is your “two-hop” neighborhood.
Similarly, you would expect your “k-hop” neighborhood to have approximately dk friends. Hence, the
farthest person in the network would be approximately logd(n) ≈ log(n)/ log(d) steps away. In fact,
as we will discuss in Section 6.5, for random graphs such as G(n, p) and G(n, r) this intuition is largely
correct.

More formally, consider a graph G of maximum degree ∆ and of diameter D. We can establish the
following inequality bounding the order of G. A vertex v can have at most ∆ neighbors. Each of these
neighbors in turn can have at most ∆− 1 new neighbors, and so forth. Therefore

n ≤ 1 + ∆

(
D∑
i=1

(∆− 1)(i−1)

)
= 1 +∆

(∆− 1)D − 1

∆− 2
. (6.1)

Graphs that have equality in (6.1) are called Moore graphs. Moore graphs exist only for particular
sets of values of ∆ and D.1

Informally, a small world graph (or, a graph with “small diameter”) has diameter close to the above
bound. Sometimes, the small world property is also defined in terms of the average distance, rather
than the diameter (i.e., the maximum distance). The key is that to achieve small diameter, it is
necessary for the size of the k-hop neighborhood to grow exponentially, as in (6.1) and the intuition
provided in Figure 6.1. This is in contrast to, e.g., regular lattices Ld of dimension d, whose k-hop

1Note that trees are not Moore graphs, as their diameter is twice their height.
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Figure 6.2: Social networks have high clustering – your friends are likely to also know each other.
Image from [1].

neighborhood only grows polynomially in kd, and whose diameter is therefore on the order of n1/d.
Do social networks have small diameter? Before we get back to this question, we first consider an
important property of social networks that could be a barrier to small diameters.

6.3 Clustering

A feature that many social networks have is high “clustering”, i.e., the likelihood that two vertices
have an edge between them is higher if they have a neighbor in common (see Figure 6.2). A natural
example is an square lattice of size n in which a vertex is connected to the eight vertices that surround
it. Clearly, two random nodes have probability 0 a.a.s. of having an edge between them as n goes to
infinity, but if two random vertices have a neighbor in common then there is a constant probability
that they have an edge between them regardless of n. Intuitively, this seems at odds with the small
world property – indeed, in the example above, one can easily see that average distances between
nodes are Ω(

√
n) as opposed to O(log(n)). Hence, one would imagine that high clustering could also

slow down the k-hop growth in social networks, however, that is not the case – networks can have
high clustering as still exhibit the small world property! Before we explain one such network model,
let us formalize our definition of clustering.

We first define the clustering coefficient Cv of a vertex:

Cv =
number of edges between neighbors of v

number of possible edges between neighbors of v

=
|{(u,w) ∈ E(G) : (u, v) ∈ E(G), (w, v) ∈ E(G)}|(

d(v)
2

) (6.2)

Using this, two distinct definitions of the clustering coefficient of a graph are common in the literature.
The first, also known as the local clustering coefficient is simply an average clustering coefficient of
all vertices in the graph:

Clocal(G) =
1

n

∑
v∈V (G)

Cv(G).

The second, known as the global clustering coefficient, considers what fraction of “potential triangles”
(i.e., paths of length two) in a graph actually form a triangle.
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Figure 6.3: Examples of Watts-Strogatz networks for n = 20 and k = 4.

Cglobal(G) =
3 × number of triangles

number of pairs of adjacent edges
(6.3)

=

∑
v∈V (G)

(
d(v)
2

)
Cv(G)

∑
v∈V (G)

(
d(v)
2

)
(6.4)

As shown, this definition can also be re-written in terms of the vertex clustering coefficient.

Note that for the random graph G(n, p), every possible edge exists independently of everything else
with probability p. Therefore

E [Cv(G(n, p))] = p. (6.5)

Also, note that we had seen that for G(n, r), the number Z3 of triangles is asymptotically Poisson
with mean independent of n, which shows that the clustering coefficient would decrease at a rate of
1/n.

Note that the clustering coefficient is limited in that it only captures local connectivity within one
hop. It is easy to construct graphs that have rich local connectivity over more than one hop, but that
have C(G) = 0.2

6.4 Watts-Strogatz Networks

Watts-Strogatz networks [?] can simultaneously have high clustering and the small diameter. The
basic idea in this model is to start with a regular lattice, and then select each edge independently
with probability p to “rewire” it, i.e., change one of the (or in some variations, both) endpoints to
a vertex selected uniformly at random.3 This model can thus be viewed as an interpolation between
the lattice (when p = 0), and a random graph (when p = 1); see Figure 6.3.

More formally, we construct a Watts-Strogatz network WS(n, k, p) as follows:

• Arrange the n vertices in a cycle.

2As an example, consider transforming a graph by breaking every edge in half and “inserting” an additional vertex.
The transformed graph has C = 0, even though it has “almost” the same structure as the initial graph.

3In yet another variation which we will later use for ease of analysis, edges are not rewired, instead new random
edges are added to the existing lattice.
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• Form an edge between every vertex and the k vertices to it’s left and the k vertices to it’s right;
i.e., every vertex will have 2k edges.

• Rewire one endpoint of each edge to another vertex selected uniformly at random with proba-
bility p.

We can now consider the clustering coefficient of such a network. First, note that before rewiring, a
neighbor at distance i of v, for all 1 ≤ i ≤ k has 2k − 1− i edges to other neighbors of v. Therefore,
the number of edges between neighbors of v is 2

∑k
i=1(2k − 1− i) = 3k(k − 1). Hence, for p = 0, the

clustering coefficient is C(WS(n, k, 0)) = Cv = 3(k−1)
2(2k−1) For p > 0, we can approximate the clustering

coefficient by noting that a triangle survives rewiring with probability (1− p)3, and

C(WS(n, k, p)) ≈ C(WS(n, k, 0))(1− p)3. (6.6)

This confirms our intuition that if the fraction of rewired edges is low, the impact on the clustering
coefficient is quite small.

On the other hand, even for small p, the fact that the subgraph of rewired edges resembles a random
graph will allow the average distance and the diameter to drop very quickly even for small p. We will
give a formal proof for a variation of this model below, but to get an intuition as to how the diameter
could be small, let us first consider some p ≫ 1√

n
. First, let us split the cycle into “towns” of size

√
n

so there are
√
n towns in total. Before rewiring, there are approximately n edges in a town, each of

which is rewired with probability p to another town. Hence, in expectation, approximately 1 edge gets
rewired from every town to every other town. A path can then be found by walking within a town to
the cross-town edge, taking it, and then walking across that town to the desired node. Within a town,
as long as p is not too large, a path is of length at most O(

√
n) Hence, the entire path is similarly

of length O(
√
n); this is not quite the desired O(log n) (which will require much more mathematical

technology to prove), but still a vast improvement over the diameter n
k of the graph before rewiring!

Hence, intermediate values of p model the two features of real networks: small worlds (similar to
random graphs) and large clustering coefficients (similar to lattices).

6.5 Random Graphs have Small Diameter

The diameter of many randomly generated graphs, such as G(n, p) and G(n, r), are surprisingly small.
At the risk of making an overly sweeping statement, we can say that randomness produces rapidly
expanding, and hence compact, networks. In this section, we study a slightly different model from
the random graphs considered so far, to avoid certain technical difficulties. Specifically, we study a
random network obtained by adding a random matching to an n-cycle. This also similar to the Watts-
Strogatz network considered above with k = 1 where the rewiring is performed in a very controlled
manner.

Theorem 6.1 (Cycle + Random Matching has Small Diameter [?]). Let G be an undirected graph
formed by adding a random matching to an n-cycle. Then G has diameter diam(G) satisfying a.a.s.

log2 n− c ≤ diam(G) ≤ log2 n+ log2 log n+ c, (6.7)

for constant c ≤ 10.

Proof:

The idea of the proof is to show that most chords, i.e., edges in the random matching, lead to
new vertices that are sufficiently far away from any previously visited vertices when we explore the
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graph starting from a fixed vertex v. In the proof, we have to proceed in two phases. In the first
phase, we consider distances that are relatively short with respect to the diameter, and when most
vertices have not been visited yet; in the second, we consider distances above that threshold l.

Let C denote the n-cycle, and M the random matching, so that G = C ∪ M . Also, let dC(u, v)
denote the distance between u and v in C; note that dC(u, v) ≤ n/2. We start at a vertex v, and
define circles and balls around v as follows.

Si = {u : d(u, v) = i}, Bi = ∪j≤iSj = {u : d(u, v) ≤ i} (6.8)

Short distances i ≤ l1(n) = (1/5) log2 n. Consider a chord (u, v) where u ∈ Si and v ∈ Si+1.
We call such a chord local if v is close on the cycle to at least one other vertex in Bi+1, i.e., if
dC(v, v

′) ≤ 2 log2 n for any other v′ ∈ Bi+1.

Note that |Bi| ≤ 3 · 2i−1, because after the initial 3 neighbors of v, each node in the previous stage
gives rise to at most 2 children.

The probability that a new chord after step i is local is at most

2|Bi+1|2 log2 n
n

≤ 4 · 3 · 2i log2 n
n

, (6.9)

because in the worst case, there are 2 log2 n forbidden nodes on both sides for each node in Bi+1.

We now want to compute the probability that local chords are rare while i ≤ l1. Specifically,
consider all the chords traversed in the first l1 steps, of which there are |Bl1 |. Therefore, the
probability that there are two or more chords in this set is

P {at least two local chords} ≤
(

3 · 2l1
2

)(
12 · 2l1 log2 n

n

)2

= O(n−6/5(log2 n)
2) = o(n−1). (6.10)

A union bound over all n starting vertices v then shows that a.a.s. for every starting vertex v,
there is at most one local chord up to step l1. From now on, we condition on the event E1 that
this is true.

Fresh neighbors on one or two sides. We have shown that most chords lead to vertices that are at
least 2 log2 n from other already discovered vertices. We now use this property to define two sets
of vertices at step i. The set Ci contains vertices that have at least 2 log2 n untouched vertices on
one side (on the cycle), and there is a unique edge connecting each such vertex to Bi−1 (which
guarantees two new edges in the next step); the set Di contains vertices that have at least 2 log2 n
vertices on both sides, and a single connecting edge as well.

Consider a vertex v ∈ Ci. A neighbor u of v on the circle becomes an element of Ci+1, unless a
local chord falls into the interval of free vertices next to u at step i + 1 (or hits u itself). Also,
because v ∈ Ci, there is a fresh chord (v, u) to another u ∈ Di+1 unless (v, u) is a local chord.
Similarly, for v ∈ Di, both neighbors of v become elements of Ci+1, unless a local chord hits on
either side of v. Thus, in the absence of any local chords, the two sets Ci and Di satisfy

|Ci+1| = |Ci|+ 2|Di|
|Di+1| = |Ci|,

(6.11)

because each element of Di has two unexplored neighbors, giving rise to two elements in Ci+1;
each element of Ci has one neighbor and one chord emanating from it, giving rise to one element
in Ci+1 and one in Di+1.

If there are local chords, clearly Ci ∪Di ⊂ Si. Conditional on E1, the worst case (giving smallest
Ci and Di) is when the unique local chord goes to one of the neighbors of v. In that case,
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|C1| = 2, |D1| = 0, |C2| = 2, |D2| = 2, and generally

|Ci| ≥ 2i−2

|Di| ≥ 2i−3. (6.12)

Long distances l1(n) < i ≤ l2(n) = (3/5) log2 n. The probability that a chord is local is

p = P {chord local} ≤ 12 · 2i log2 n
n

< n−1/6. (6.13)

There are at most 2i chords leaving the set Si. The probability that there are at least 2in−1/10

local chords leaving Si is at most(
2i

2in−1/10

)
p2

in−1/10

≤ n−5. (6.14)

A union bound over all n starting vertices and all (2/5) log2 n time steps i shows that a.a.s. , at
most 2in−1/10 chords leave every Si. Call this event E2.

We now lower-bound the sizes of Ci and Di, conditional on the event E1 ∩ E2, i.e., of having at
most one local chord in the first phase, and at most 2in−1/10 local chords in each step of the second
phase.

A neighbor u of v ∈ Ci is sure to be an element of Ci+1, except if a local chord falls into the
interval of free vertices next to u at step i+1. The difference equations can be bounded as follows:

|Ci+1| ≥ |Ci|+ 2|Di| − 2i+1n−1/10

|Di+1| ≥ |Ci| − 2i+1n−1/10

(6.15)

Therefore, for n large enough, over the entire range of i ≤ l2(n),

|Ci| ≥ 2i−3

|Di| ≥ 2i−4 (6.16)

All vertices are close. Set i⋆ = (1/2)(log2 n+log2 log n+ c) ≤ (3/5) log2 n. Suppose we go through
the discovery process described above for two different starting vertices v′ and v′′, to generate two
sets Ci⋆(v

′) and Ci⋆(v
′′). Assuming that the two balls around v and v′′ have not touched yet, we

compute the probability that the set Ci⋆(v
′) and Ci⋆(v

′′) will be connected by one of the edges
generated in the next step. Specifically, we can conservatively focus only on the chords generated
in the next step by vertices in Ci⋆(v

′), and ask whether they will hit any vertex in Ci⋆(v
′′). The

probability that none hits is upper-bounded by

P {d(v′, v′′) > 2i⋆ + 1|E1 ∩ E2} ≤
(
1− 2i

⋆−3

n

)2i
⋆−3

≤ exp
(
−22i

⋆−7/n
)

using (p ≤ − log(1− p))

≤ exp
(
−2c−7 log n

)
≤ n−4 = o(n−2), (6.17)

for c ≥ 9.

We can now bound the diameter of the entire graph.

P {diam(G) > 2i⋆ + 1} ≤ P
{
Ē1

}
+ P

{
Ē2

}
+
∑
v′,v′′

P {d(v′, v′′) > 2i⋆ + 1|E1 ∩ E2} = o(1). (6.18)
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Therefore, G has diameter 2i⋆ + 1 = log2 n+ log2 log n+ 10 a.a.s.

■
Therefore, the addition of the random matching has decreased the diameter significantly, from n/2
to approximately log2 n. Similar results are known for other classes of random graphs; while the
techniques are similar, the proofs are typically (even) more involved than the one above. We give the
statement of two such results, for which the diameter diam(G) refers to the diameter of the largest
connected component of the graph.

Theorem 6.2 (Diameter of G(n, p) [?]). The diameter of the giant component of G(n, p) for logn >
np → ∞ satisfies

diam(G(n, p)) = (1 + o(1))
log n

log np
a.a.s. . (6.19)

Theorem 6.3 (Diameter of G(n, r) [?]). Let r ≥ 3 and ϵ > 0 be fixed. Then the diameter of the
largest connected component of G(n, r)

diam(G(n, r))

log n/ log(r − 1)
∈ (1− ϵ, 1 + ϵ) a.a.s. . (6.20)

Theorem 6.4 (Average Shortest Path Length of WS(n, k, p) [?]). Then the average shortest path
length of WS(n, k, p)

log(n/k)

log k
. (6.21)

Thus, random graphs do possess the small world property, in that their diameter behaves like logn.
In a sense, the absence of structure in random graphs, i.e., that edges are independent, ensure that
the k-hop neighborhood of a vertex v grows quickly with k, a fact we had explicitly used in the proof
of the emergence of the giant component for G(n, c/n).
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