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Lattice Bond Percolation

8.1 Lattice bond model; percolation probability

In this section, we formalize the bond model that will be the basis of the chapter, which follows
Grimmett’s textbook citeGrimmett1999; see also the definitions given in Chapter 2. We consider the d-
dimensional lattice Ld = (Zd,Ed), where the set of edges Ed connects sites (x, y) = ((x1, . . . , xd), (y1, . . . , yd))
located at the vertices of Zd for which the Manahattan distance, defined by

δ(x, y) =

d
∑

i=1

|xi − yi|

is no more than one: δ(x, y) ≤ 1. The edges of Ed connect thus adjacent vertices of Zd.

Let 0 ≤ p ≤ 1. We declare an edge of E
d to be open with probability p, and closed otherwise,

independently of all other edges.

We denote by C(x) the part of Ld containing the set of vertices connected by open paths to vertex x
and the open edges of Ed connecting such vertices. By translation invariance of the lattice and the
probability measure Pp, the distribution of C(x) does not depend on the vertex x. We therefore take
in general x = 0, and denote by C the open cluster at the origin: C = C(0).

If A and B are sets of vertices of Ld, we write A ↔ B to express the fact that there exists an open
path connecting some vertex of A to some vertex of B. For example, C(x) =

{

y ∈ Z
d | x↔ y

}

. We
write ∂A to denote the surface of A, which is the set of vertices of A which are adjacent to some
vertex that does not belong to A. A typical subset of vertices is a box, defined as

B(n) = [−n, n]d =

{

x ∈ Z
d | max

1≤i≤d
{|xi|} ≤ n

}

for some n ∈ N
∗ = N \ {0}. We write B(n, x) for the box x+ B(n) having side-length 2n and center

at x. We will also work often with “diamond” boxes

S(n) =
{

x ∈ Z
d | δ(0, x) ≤ n

}

or more general rectangular boxes. We also write S(n, x) for the diamond box x+S(n) centered in x.
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8.2 Percolation in the 2-dim Lattice

8.2.1 Percolation Probability and Existence of a Phase Transition

The main quantity of interest in percolation theory is the probability that the origin belongs to a
cluster with an infinite number of vertices, given by (2.1), which we recall here:

θ(p) = Pp(|C| = ∞). (8.1)

By space invariance, θ(p) is the probability that any node belongs to an infinite cluster.

Define the critical (or percolation) threshold by (2.2), which reads

pc = sup {p | θ(p) = 0} . (8.2)

We compute the exact value of pc and even θ(p) for the regular (binary) tree in Chapter 2. For the
lattice Ld, we will not be able to compute analytically θ(p). Computing the exact value of pc is already
a challenge, and still remains an open problem for dimensions larger than 2. In this chapter, we will
compute it for dimension d = 2, where Kesten closed the conjecture after more than two decades
of research. We can already frame here the value of pc within 1/3 and 2/3 thanks to the following
theorem.

Theorem 8.1 (Non trivial phase transition). The percolation threshold in L
2 is such that 1/3 ≤ pc ≤

2/3.

The proof makes use of a technique that will prove to be quite powerful in d = 2 dimensions, but that
does not generalize well to higher dimensions, which is to work with the planar dual graph. If G is a
planar graph, drawn in the plane in such a way that edges intersect only at their common vertices,
then the dual graph Gd is obtained by putting a vertex in every face of G, and by joining two such
vertices by an edge whenever the corresponding faces of G share a common edge. When G = L

2, its
dual Gd = L

2
d is isomorphic to L. The vertices of the dual lattice L

2
d are placed at the centers of the

squares of L2, i.e. are the set
{

(i + 1/2, j + 1/2) | (i, j) ∈ Z
2
}

, and its edges connect adjacent vertices.
To every edge of L2 corresponds exactly one edge of L2

d, and vice-versa. We declare an edge of the
dual lattice L2

d to be open (resp., close) if and only if its corresponding edge in the lattice L
2 is open

(resp., close), as shown in Figure 8.1. This results in a bond percolation process on the dual lattice
with the same open edge probability p.

Proof:

(i) We first prove that pc ≥ 1/3. Let σ(n) be the number of distinct, loop free paths (“self-avoiding
walks”) of Ld having length n and beginning at the origin. The exact value of σ(n) is very difficult
to compute for already moderate values of n, but an upper bound on σ(n) is 4 · 3n−1. Indeed,
walking from the origin, we have first 4 possible edges to take, and then, at each step, up to 3
different edges. Let N(n) be the number of such paths that are open. Since each path is open
with probability pn,

Ep[N(n)] =

σ(n)
∑

s=1

Ep

[

1{ path s is open}

]

= σ(n)pn.

The origin belongs to an infinite open cluster if there are open paths of all possible lengths beginning
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0

Figure 8.1: A portion of the lattice L
2 (whose vertices are represented by full circles, open edges by

plain lines) and its dual (whose vertices are represented by empty circles, and open edges by dashed
lines).

at the origin, hence for all n ∈ N
∗

θ(p) ≤ Pp(N(n) ≥ 1) =

σ(n)
∑

s=1

Pp(N(n) = s)

≤
σ(n)
∑

s=1

sPp(N(n) = s) = Ep[N(n)] = σ(n)pn

≤ 4

3
(3p)n.

Letting n→ ∞, we find that θ(p) = 0 if p < 1/3. Hence pc ≥ 1/3.

(ii) We next prove pc ≤ 2/3. Let m ∈ N
∗, and let Fm be the event that there exists a closed circuit

in the dual lattice L
2
d containing the box B(m) = [−m,m]× [−m,m] in its interior, and let Gm be

the event that all edges of B(m) are open. The origin belongs to an infinite cluster if Fm does not
occur and Gm does occur, see Figure 8.2. Since these events are defined on disjoint sets of edges,
they are independent and we have therefore that

θ(p) ≥ Pp(Fm ∩Gm) = Pp(Fm)Pp(Gm). (8.3)

Now, Pp(Gm) > 0 and so all we need to do is to show that Pp(Fm) > 0 for p ≥ 2/3.

Let γ(n) be the number of self-avoiding circuits in the dual lattice L2
d surrounding the origin and

of length n, and which consists of a single loop (In other words, the degree of every vertex of such a
closed circuit is 2: we will speak of a “self-avoiding circuit”). Each such circuit must pass through
a vertex of the form (i + 1/2, 1/2) for some 0 ≤ i ≤ n − 1, because (a) to surround the origin,
it has to pass through a vertex (i + 1/2, 1/2) for some i ≥ 0, and (b) it cannot pass through a
vertex (i + 1/2, 1/2) for some i ≥ n since it would then be at least 2n. Such a circuit contains
a self-avoiding walk of length n − 1 starting from one of the n vertices (i + 1/2, 1/2) for some
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0

Figure 8.2: A portion of the lattice L
2 (whose vertices are represented by full circles, open edges by

plain lines) and its dual (whose vertices are represented by empty circles, and closed edges by dashed
lines) Observe that there is a circuit of closed dual edges surrounding the origin (set in red bold on
the figure), which therefore belongs to a finite open cluster.

0 ≤ i ≤ n− 1. Therefore
γ(n) ≤ nσ(n− 1).

Now, the occurrence of the event Fm requires that there is at least one such closed circuit, with a
length of at least 8m hops to contain B(m):

Fm ⊆ {there is at least one closed circuit of length 8m surrounding 0}
=

⋃

circuit g of length at least 8m

{g is closed} .

Using the union bound, we get therefore that

Pp(Fm) ≤
∑

circuit g of length at least 8m

Pp (g is closed)

=

∞
∑

n=8m

∑

circuit g of length n

Pp (g is closed)

≤
∞
∑

n=8m

γ(n) (1− p)
n

≤ 4(1− p)

3

∞
∑

n=8m

n (3(1− p))n−1 . (8.4)

If p > 2/3, this sum converges to some finite value, and we take m large enough so that it is less
than 1/2. Consequently, from (8.3), we get

θ(p) ≥ Pp(Fm)Pp(Gm) ≥ Pp(Gm)/2 > 0,
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which proves the result.

�

For the 2-dim bond model, the exact value of pc is known, and we will compute it in a few chapters,
as it requires quite a lot of work. The simulations of Figure 8.3 show a 40× 40 lattice. Although non
infinite, the phase transition is already visible: all clusters are finite for p = 0.3 and p = 0.49, whereas
one giant cluster is present for p = 0.51 and clearly for p = 0.7.

Figure 8.4 displays an estimate of the percolation probability θ(p), for a 5000× 5000 lattice. Despite
the finite size of the lattice, the phase transition, which stricto sensu only occurs for an infinite lattice,
appears quite clearly on the figure.

In higher dimensions, the d-dim lattice Ld can always be embedded in a (d+1)-dim lattice Ld+1, and
therefore if the origin belongs to an infinite cluster in L

d, it also belongs to an infinite cluster in L
d+1.

Therefore, the percolation threshold is a decreasing function of d: pc(d+ 1) ≤ pc(d).

A direct corollary of Theorem 8.1 is that the probability that there exists an infinite open cluster,
which we denote by θ̂(p) follows a zero-one law (see Appendix 8.7).

Corollary 8.1. Existence of an open cluster The probability that there exists an open infinite cluster
is

θ̂(p) =

{

0 if p < pc
1 if p > pc.

We will however give a stronger result in the chapter on the super-critical phase.

8.2.2 Mean Cluster Size

The mean size of an open cluster (2.5) χ(p) = Ep[|C|], which by translation invariance is the expected
number of vertices in the open cluster at the origin, can be expressed as

χ(p) = Ep[|C|] =
∞
∑

n=1

nPp(|C| = n) +∞Pp(|C| = ∞).

If p > pc, then we see that χ(p) = ∞. The converse is not obvious, and it will require quite some
work to prove in the next chapter that if p < pc then χ(p) < ∞. Figure 8.5 displays an estimate of
the mean cluster size χ(p), for the 5000× 5000 lattice.

In the supercritical phase, since the mean cluster size is infinite, one is more interested in the mean
size of the finite clusters, which we denote χf (p) and which is defined as the mean of |C| on the event
that |C| is finite:

χf (p) = Ep[|C|; |C| <∞] = Ep

[

|C| 1{|C|<∞}

]

= Ep[|C| | |C| <∞](1 − θ(p)). (8.5)

8.3 Three Inequalities for Increasing Events

This section introduces three technical devices, which will be repeatedly used in the proofs of theorems
in the following sections. We need first the following definition.

Definition 8.1 (Increasing event). A random variable X is increasing on (Ω,F) if X(ω) ≤ X(ω′)
whenever ω ≤ ω′. It is decreasing if −X is increasing. An event A ∈ F is increasing whenever its
indicator function is an increasing variable, i.e. if 1A(ω) ≤ 1A(ω

′) whenever ω ≤ ω′.

It is easy to show that if A is an increasing event, then Pp(A) ≤ Pp′(A) whenever p ≤ p′.
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Figure 8.3: A simulation of bond percolation in a 40× 40 lattice for different values of the open edge
probability: p = 0.3 (upper left), p = 0.49 (bottom left), p = 0.51 (bottom right) and p = 0.7 (top
right). Only the open edges are shown. A careful inspection of the two graphs at bottom reveals the
emergence of a giant open cluster for p ≥ 0.51, which was absent when p ≤ 0.49.
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Figure 8.4: An estimation of the percolation probability θ(p), for a 5000× 5000 lattice, as a function
of p.
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Figure 8.5: An estimation of the mean cluster size χ(p), for the 5000× 5000 lattice, as a function of p.



66 CHAPTER 8. LATTICE BOND PERCOLATION

8.3.1 FKG inequality

The FKG inequality (named after Fortuin Kasteleyn and Ginibre) was first shown by Harris in 1960.
It expresses the fact that increasing events can only be positively correlated.

Theorem 8.2 (FKG inequality). If A and B are two increasing events, then

Pp(A ∩B) ≥ Pp(A)Pp(B).

We establish the FKG inequality in the case where A and B are depend on finitely many edges. The
proof of the FKG inequality when A and/or B depend on infinitely many edges is found in [7]. The
FKG inequality also holds when both A and B are two decreasing events.

Proof:

Let X = 1A and Y = 1B be the indicators of the increasing events A and B, which are increasing
random variables. We can then reformulate the FKG inequality as Ep[XY ] ≥ Ep[X ]Ep[Y ]. Suppose
that X and Y depend only on the state of edges e1, e2, . . . , en for some integer n. We prove the
FKG inequality by induction.

Suppose first that n = 1, so that X and Y are only functions of the state ω(e1) of the edge e1.
Pick any two states ω1, ω2 ∈ {0, 1}. Since both X and Y are increasing random variables,

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0

with equality if ω1 = ω2. Therefore

0 ≤
1
∑

ω1=0

1
∑

ω2=0

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2))Pp(ω(e1) = ω1)Pp(ω(e1) = ω2)

=

1
∑

ω1=0

X(ω1)Y (ω1)Pp(ω(e1) = ω1) +

1
∑

ω2=0

X(ω2)Y (ω2)Pp(ω(e1) = ω2)

−
1
∑

ω1=0

1
∑

ω2=0

(X(ω1)Y (ω2) +X(ω2)Y (ω1)Pp(ω(e1) = ω1)Pp(ω(e1) = ω2)

= 2 (Ep[XY ]− Ep[X ]Ep[Y ]) .

Let 1 < k ≤ n. Suppose now that the claim holds for all m < k, and that X and Y depend only
on the states ω(e1), . . . , ω(ek) of the edges e1, . . . , ek. Then, given ω(e1), . . . , ω(ek−1), X and Y
only depend on the state ω(ek) of the edge ek, and proceeding as above, we have that

Ep[XY | ω(e1), . . . , ω(ek−1)] ≥ Ep[X | ω(e1), . . . , ω(ek−1)]Ep[Y | ω(e1), . . . , ω(ek−1)]

and thus

Ep[XY ] = Ep [Ep[XY | ω(e1), . . . , ω(ek−1)]]

≥ Ep [Ep[X | ω(e1), . . . , ω(ek−1)]Ep[Y | ω(e1), . . . , ω(ek−1)]] .

Now, Ep[X | ω(e1), . . . , ω(ek−1)] and Ep[Y | ω(e1), . . . , ω(ek−1)] are increasing functions of the
state of the (k − 1) edges e1, . . . , ek−1. By induction, it implies that

Ep[XY ] ≥ Ep [Ep[X | ω(e1), . . . , ω(ek−1)]] · Ep [Ep[Y | ω(e1), . . . , ω(ek−1)]]

= Ep[X ]Ep[Y ].

�
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0

Figure 8.6: The box B(5) with a LR and a TB open crossing.

As an example of application of the FKG inequality, consider the 2-dim. box B(n), and let A be the
event that there is an open path joining a vertex of the top face of B(n) to the bottom face of B(n)
(we call such a path a TB (top-bottom) (open) crossing of B(n), and B be the event that there is an
open path joining a vertex of the left face of B(n) to the right face of B(n) (we call such a path a LR
(left-right) (open) crossing of B(n), as shown in Figure 8.6. Then the probability that there are both
a TB and LR open crossings of B(n) is at least the product of the probabilities that there is a TB
open crossing and that there is a LR open crossing.

8.3.2 BK inequality

The BK inequality (named after van den Berg and Kesten, who proved it in 1985) can be regarded as
the reverse of the FKG inequality, with one difference: it applies to the event A◦B that two increasing
events A and B occur on disjoint sets of edges, and not to the larger event A ∩B that events A and
B occur on any sets of edges. A ◦B is the set of configurations ω ∈ Ω for which there are disjoint sets
of open edges such that the first set guarantees the occurrence of A and the second set guarantees the
occurrence of B. The formal definition is as follows.

Definition 8.2 (Disjoint occurrence). Let A and B be two increasing events which depends on the
states ω(e1), . . . , ω(en) of n distinct edges e1, . . . en of Ld. Each such configuration is specified uniquely
by the subset K(ω) = {ei | ω(ei) = 1} of open edges among these n edges. Then A ◦ B is the set of
ω for which there exists a subset H ⊂ K(ω) such that any ω′ determined by K(ω′) = H is in A and
any ω′′ determined by K(ω′′) = K(ω) \H is in B.

Theorem 8.3 (BK inequality). If A and B are two increasing events, then

Pp(A ◦B) ≤ Pp(A)Pp(B).

We only sketch the intuition behind the proof of van den Berg when A and B are the existence of two
open paths between different sets of vertices. The full proof is given in [7]. The BK inequality also
holds when both A and B are two decreasing events.
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0e’e’’

Figure 8.7: Construction of two independent copies of the lattice

Proof:

(Sketch) Let G be a finite subgraph of Ld. Let A (respectively, B) be the event that there exists
an open path between vertices u and v (respectively, x and y). A ◦B is the event that there exist
two disjoint open paths from u to v and from x to y. Let e be an edge of G. Replace e by two
parallel edges e′ and e′′, having the same end vertices, each of which being open with the same
probability p, independently of each other and of all other edges. The splitting of edge e in the
two edges e′ and e′′ can only make our search for two disjoint open paths easier: indeed, if in
graph G two paths from u to v and from x to y had to use the same edge e, they now can replace
this common edge by the two distinct edges e′ and e′′. The probability of finding two disjoint
open paths from from u to v and from x to y can therefore only increase or remain equal after this
splitting. We continue this splitting process, as shown in Figure 8.7, replacing every edge f of G by
two parallel edges f ′ and f ′′. At each stage, we look for two open paths, the first one avoiding all
edges marked ′′ and the second one all edges marked ′. The probability of finding two such paths
can only increase or remain equal at each stage. When all edges of G have been split in two, we
end up with two independent copies of G, in the first of which we look for an open path connecting
u to v, and in the second of which we look for an open path connecting x to y. Since such paths
occur independently in each copy of G, the probability that they both occur is Pp(A)Pp(B).

�

As an example of application of the BK inequality, consider again the 2-dim. box B(n), and let A
be the event that there is an open TB crossing path of B(n) to the bottom face of B(n), and B be
the event that there is an open LR crossing, which is edge-disjoint with A. This event does not occur
in the example of Figure 8.6, but does occur for the example of Figure 8.8. Then the probability
that there are edge disjoint TB and LR open crossings of B(n) is no more than the product of the
probabilities that there is a TB open crossing and that there is a LR open crossing.
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0

Figure 8.8: The box B(5) with edge-disjoint LR and TB open crossings.

8.3.3 Multiplicity of edge-disjoint paths

A last result is useful to relate the probability that r edge-disjoint paths cross a given portion of the
lattice to the probability that at least one such path exists. It follows directly from Theorem 2.45 in
[7] and the remarks thereafter.

Lemma 8.1. Let An be the event that there exists an open path between the left and right sides of
B(n) and Ir(An) the event that there exist r edge-disjoint such LR crossings. We have

1− Pp(Ir(An)) ≤
(

p

p− p′

)r

[1− Pp′(An)]

for any 0 ≤ p′ < p ≤ 1.

Proof:

Let {X(e), e ∈ E
2} be a collection of i.i.d. random variables indexed by the edge set E2, uniformly

distributed on [0, 1]. Let ηp be the configuration of edges defined by

ηp(e) =

{

1 if X(e) < p
0 if X(e) ≥ p

for some 0 ≤ p ≤ 1 and all e ∈ E
d. Observe that

P(ηp(e) = 0) = P(X(e) ≥ p) = 1− p

P(ηp(e) = 1) = P(X(e) < p) = p.

Hence Pp(An) = P(ηp ∈ An).

Observe that the configuration of edges ηp does not have r LR edge-disjoint crossings of B(n) (in
other words, ηp /∈ Ir(An)), if and only if there is a (possibly empty) collection C of edges, with (i)
|C| ≤ r, (ii) ηp(e) = 1 for all e ∈ C, and (iii) the configuration (ηp \ C) obtained by declaring all
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edges in C closed does not have a LR open path that crosses B(n), i.e. (ηp \ C) /∈ An. Indeed,
there are less than r edge-disjoints LR crossings if and only if we can find at most r edges that
form the minimal cutset of the graph between the left and right sides of B(n).

Suppose that ηp /∈ Ir(An). Then

P(ηp′ /∈ An | ηp /∈ Ir(An)) = P(ηp′ /∈ An | there is a set C verifying (i) - (iii) above)

= P(ηp′ (e) = 0 for all e ∈ C | there is a set C verifying (i) - (iii) above)

=
P({there is a set C verifying (i) - (iii) above} ∩ {ηp′(e) = 0 for all e ∈ C})

P(there is a set C verifying (i) - (iii) above)

=
P({there is a set C verifying (i) - (iii) above} ∩ {p′ ≤ X(e) < p for all e ∈ C})

P({there is a set C verifying (i) - (iii) above} ∩ {X(e) < p for all e ∈ C})

≥
(

p− p′

p

)r

and

P({ηp′ /∈ An} ∩ {ηp /∈ Ir(An)}) ≥
(

p− p′

p

)r

P(ηp /∈ Ir(An)),

from which we deduce that

1− Pp(Ir(An)) = Pp(ηp /∈ Ir(An))

≤
(

p

p− p′

)r

P({ηp′ /∈ An} ∩ {ηp /∈ Ir(An)})

≤
(

p

p− p′

)r

P(ηp′ /∈ An)

=

(

p

p− p′

)r

[1− Pp′(An)].

�

This theorem is in fact much more general. First, it is not restricted to a portion of Ld, which is a
box B(n). Second, it applies to any increasing event A, if we define Ir(A) to be the interior of A with
depth r, defined as the set of configuration in A, which remain in A even if the states of up to r edges
is modified (see [7]).

8.4 Subcritical phase

In this section, we study the situation in the subcritical phase, when p < pc and d ≥ 2. In this case, we
know that the open cluster C containing the origin is almost surely finite since θ(p) = Pp(|C| = ∞) = 0.

The main result from this section is that the radius of the mean cluster size decreases exponentially
when p < pc. As a result, the mean cluster size is finite in the subcritical phase: χ(p) < ∞ when
p < pc.

8.4.1 Exponential decrease of the radius of the mean cluster size

Let S(n) be the diamond of radius n (i.e., the ball of radius n with the Manhattan distance), that is
the set of all vertices x ∈ Z

d for which δ(0, x) = |x| ≤ n. Let An = {0 ↔ ∂S(n)} be the event that
there exists an open path connecting the origin to any vertex lying on the surface of S(n), which we
denote by ∂S(n). Defining the radius of C by rad(C) = maxx∈C{|x|}, we see that An = {rad(C) ≥ n}.
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Theorem 8.4 (Exponential decay of the radius of an open cluster). If p < pc, there exists ψ(p) > 0
such that

Pp(rad(C) ≥ n) = Pp(0 ↔ ∂S(n)) = Pp(An) < exp(−nψ(p)).

The proof of this challenging theorem, due to Menshikov (1986) is long, and can be found in [7].

A number of easier results can be deduced from Theorem 8.4, which show that in the subcritical
phase, basically all metrics related to the size of the cluster containing the origin are exponentially
decreasing with the size.

8.4.2 Connectivity function and correlation length

We begin with the connectivity function Pp(x ↔ y) which is defined as the probability that two
vertices x and y are connected together by an open path. By translation invariance, we can take
y = 0. Moreover, in the sake of simplicity and without loss of generality, we assume that x is
positioned along the x-axis : x = xn where un is the d-dimensional vector un = (n, 0, . . . 0).

Theorem 8.5 (Exponential decay of connectivity function). If 0 < p < pc, there exists 0 < ξ(p) <∞
and a constant κ > 0 independent of p, such that

κpn4(1−d) exp(−n/ξ(p)) ≤ Pp(0 ↔ un) ≤ exp(−n/ξ(p)). (8.6)

This shows that
Pp(0 ↔ un) ≈ exp(−n/ξ(p)).

The function ξ(p) is called the correlation length, and one can show that ξ(p) = 1/ψ(p), where ψ(p)
is the exponent in Theorem 8.4.

We prove only the upper bound, the proof for the lower bound is longer but builds essentially on a
similar argument, based on the sub-additive limit theorem, which we recall here.

Lemma 8.2 (Sub-additive limit theorem). Let {xn, n ∈ N
∗} be a sub-additive sequence of real non

negative numbers, i.e. a sequence of real non negative numbers such that

xm+n ≤ xm + xn (8.7)

for all m,n ∈ N
∗, the limit

x = lim
n→∞

xn/n

exists and is finite. Moreover,
x = inf

n∈N∗

xn/n

and thus xm ≥ mx for all m ∈ N
∗.

Proof:

We prove only the upper inequality. The starting point is the observation (see Figure 8.9) that

{0 ↔ um+n} ⊇ {0 ↔ um} ∩ {um ↔ um+n}
and thus, by first using the FKG inequality and next by translation invariance,

Pp(0 ↔ um+n) ≥ Pp(0 ↔ um)Pp(um ↔ um+n) = Pp(0 ↔ um)Pp(0 ↔ un).

Letting xn = − lnPp(0 ↔ un), this inequality becomes (8.7), and therefore, by Lemma 8.2, the
limit

ξ−1(p) = lim
n→∞

(

− lnPp(0 ↔ un)

n

)

exists. Moreover, xn ≥ n/ξ(p) for all n ∈ N
∗, which yields the result.

�
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um un+m0

Figure 8.9: The event {0 ↔ um+n} is more likely than the joint occurrence of events {0 ↔ um} and
{um ↔ um+n}.

8.4.3 Cluster size distribution

It follows from Theorem 8.4 that the distribution number |C| of vertices contained in the open cluster
at the origin has an exponentially decreasing tail. A more accurate bound is as follows.

Theorem 8.6 (Exponential decay of the cluster size distribution). If 0 < p < pc, there exists λ(p) > 0
such that

Pp(|C| ≥ n) ≤ exp(−nλ(p)) (8.8)

and there exists 0 < ζ(p) <∞ such that

Pp(|C| = n) ≤ (1− p)2

p
n exp(−nζ(p)). (8.9)

for n ∈ N
∗.

One can moreover show that
Pp(|C| = n) ≈ exp(−nζ(p)).

The theorem is proven in [7].

8.5 Supercritical phase

In this section we study the situation in the supercritical phase, when p > pc and d ≥ 2. In this case,
we know that there is almost surely an open cluster of infinite size. But how many are there ? We
will first prove that there is exactly one such cluster. The next question will be to evaluate the size
of the other, finite clusters. We will see in that they decrease sub-exponentially fast. We will prove
the result only when d = 2, although it holds for d ≥ 3 as well.

8.5.1 Uniqueness of the infinite open cluster

We follow the approach of Burton and Keane (1989), as exposed in [7], to prove that the infinite open
cluster is unique in the supercritical phase.

Theorem 8.7 (Uniqueness of the infinite open cluster). If p > pc, then

Pp(there exists exactly one infinite open cluster) = 1.
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Proof:

Let Y be the number of infinite open clusters. Because the sample space Ω =
∏

e∈E
{0, 1}e is a

product space with a space invariant product measure Pp, Y is a translation-invariant function
on Ω. A property of translation-invariant functions under ergodic measures is to be almost surely
constant. Consequently, there exists some k ∈ N ∪ {∞} such that Pp(Y = k) = 1.

Since p > pc, k 6= 0. We will prove by contradiction that (i) k /∈ [2,∞[ and (ii) k 6= ∞, which
implies therefore that k = 1.

(i) Suppose first that 2 ≤ k <∞. As in the previous chapter, denote by S(n) = {x ∈ Z
d | δ(0, x) =

|x| ≤ n} the diamond of radius n (i.e., the ball of radius n with the Manhattan distance). Let
Y (0) be the number of infinite open clusters when all edges of S(n) are closed. As the probability
that all edges of S(n) are closed is strictly positive,

Pp(Y (0) = k) =
Pp({Y = k} ∩ {all edges of S(n) are closed})

Pp(all edges of S(n) are closed)
= 1.

Similarly, if Y (1) denotes the number of infinite open clusters when all edges of S(n) are open,
Pp(Y (1) = k) = 1, and therefore Pp(Y (0) = Y (1)) = 1. We always have that Y (0) ≥ Y (1), but
since there are only a finite number of open infinite clusters, we have Y (0) = Y (1) if and and only
if S(n) intersects exactly one such cluster. So, if MS(n) is the number of infinite open clusters
intersecting S(n), Pp(MS(n) ≥ 2) = 0 for all n ∈ N. Letting n → ∞, we have that the diamond

S(n) becomes the entire lattice L
d and therefore that

0 = lim
n→∞

Pp(MS(n) ≥ 2) = Pp(Y ≥ 2), (8.10)

a contradiction with P(Y = k) = 1 for some 2 ≤ k <∞.

(ii) Suppose next that k = ∞. We use a geometric argument to get a contradiction, which is based
on the following object. We call a vertex x a trifurcation (see Figure 8.10) if

1. x belongs to an infinite open cluster;

2. there exist exactly three open edges incident to x; and

3. the deletion of x and of the three open edges incident to x splits the infinite open cluster
containing x in exactly three disjoint infinite clusters and no finite cluster.

Because of the space invariance of Ld, the probability that a vertex x is a trifurcation is independent
of x, and therefore

Pp(x is a trifurcation) = Pp(0 is a trifurcation). (8.11)

Let us show that this probability is non zero. Let MS(n)(0) be the number of infinite open clusters
intersecting S(n) when all edges of S(n) are closed. Clearly, MS(n)(0) ≥MS(n). Therefore

Pp(MS(n)(0) ≥ 3) ≥ Pp(MS(n) ≥ 3) → Pp(Y ≥ 3) = 1

as n → ∞. Consequently, there is n ∈ N such that Pp(MS(n)(0) ≥ 3) ≥ 1/2, fix n to this value
from now on until we have shown the probability of having a trifurcation at the origin is non zero.
If MS(n)(0) ≥ 3, then there exists three vertices x, y, z ∈ ∂S(n) lying in three distinct infinite open
clusters. Moreover, there are three paths inside S(n) joining the origin to respectively x, y, z, such
that the origin is the unique vertex common to any two of them, and each touches exactly one
vertex on ∂S(n). For a configuration of edges ω ∈ {MS(n)(0) ≥ 3}, we pick x = x(ω), y = y(ω)
and z = z(ω) and the three paths as just described. Let Jx,y,z be the event that all edges in these
three paths are open and that all other edges in S(n) are closed. Then

Pp(Jx,y,z |MB(0) ≥ 3) ≥ (min{p, 1− p})R(n)
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0

x

y

z

x

y

z

Figure 8.10: A sufficient condition for 0 to be a trifurcation if the three paths from x, y and z are
open, and all all other edges in S(n) are closed, and x, y and z belong to three distinct infinite open
clusters. The arrows outside ∂S(n) represent connectivity to distinct infinite clusters.

where R(n) is the total number of edges in S(n). Now, if MS(n)(0) ≥ 3 and if Jx,y,z occurs, then
x is a trifurcation. Therefore

Pp(0 is a trifurcation) ≥ Pp(Jx,y,z |MB(0) ≥ 3)Pp(MS(n)(0) ≥ 3)

≥ (min{p, 1− p})R(n)
/2 > 0.

Because of (8.11), we have therefore that Pp(x is a trifurcation) > 0 for all vertices x ∈ Z
d. Let

T (m) denote the number of trifurcations in S(m). As

Ep[T (m)] = |S(m)|Pp(0 is a trifurcation),

it implies that T (m) grows in the manner of |S(m)| as m → ∞. The contradiction is obtained
by the following rough geometric argument (a more rigorous proof uses partitions, see [7]). Pick
a trifurcation in S(m), say t1, and take a vertex x1 ∈ ∂S(m) that is connected to t1 by an open
path in S(m). Pick a second trifurcation t2 ∈ S(m). By definition of a trifurcation, there must
be a vertex x2 ∈ ∂S(m), distinct from x1, such that t2 ↔ x2 in S(m) (See Figure 8.11). Repeat
this operation, at each stage picking a new trifurcation ti and a new vertex xi ∈ ∂S(m), with
ti ↔ xi in S(m). There are T (m) trifurcations in S(m), so we end up with T (m) distinct vertices
xi ∈ ∂S(m), which implies that |∂S(m)| ≥ T (m). But T (m) grows in the manner of |S(m)| for
large m, which would mean that |∂S(m)| would grow in the manner of |S(m)| for large m as well.
We have reached a contradiction, because |S(m)| grows in the manner of md while |∂S(m)| grows
in the manner of md−1.

�

8.5.2 Finite cluster size distribution

We are now interested in the size of the finite clusters. We only consider the 2-dim case, where the
proof is easier because of the use of duality. The theorem is however valid for d ≥ 2.
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Figure 8.11: Finding trifurcations in S(n).

Theorem 8.8 (Sub-exponential decay of the finite cluster size distribution). If pc < p < 1, there
exists η(p) > 0 such that

Pp(|C| = n) ≤ exp(−n(d−1)/dη(p)) (8.12)

for n ∈ N
∗.

We can also find a lower bound of the same form: there exists some γ(p) <∞ such that

Pp(|C| = n) ≥ exp(−n(d−1)/dγ(p)).

Proof:

We only prove a slightly weaker bound

Pp(|C| = n) ≤ n exp(−√
nη(p)),

and only for d = 2 and for 2/3 < p < 1. Once we will have computed the exact value of pc in the
next chapter, the proof is directly extended for pc < p < 1.

Suppose that that the origin belongs to a finite cluster of size n. Then there exists a closed circuit
in the dual lattice L2

d, having the origin in its interior. Clearly, this circuit has less than n vertices.
Moreover, it can be shown using topological arguments (see Kesten 1982) that there is some value
δ > 0 such that this closed circuit contains at least δ

√
n vertices. For the same reason as in part

(ii) of the proof of Theorem 8.1, it must pass through a vertex of the form (i+ 1/2, 1/2) for some
0 ≤ i ≤ n− 1, and therefore one of these n vertices must lie in a closed cluster of L2

d of size at least
δ
√
n. Let us called 0d this vertex, and Cd the closed cluster to which it belongs.

Now, each edge of L2
d is closed with probability (1−p), and 1−p < 1/3 ≤ pc because of Theorem 8.1.

In other words, the process of closed edges of L2
d is subcritical. Theorem 8.6 then yields that there

exists λ(p) > 0 such that
Pp(|Cd| ≥ δ

√
n) ≤ exp(−λ(p)δ√n).

Since

Pp

(

(i+ 1/2, 1/2) lies in a closed cluster of L2
d of size at least δ

√
n
)

= Pp(|Cd| ≥ δ
√
n),
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we have thus that

Pp(|C| = n) ≤
n−1
∑

i=0

Pp

(

(i + 1/2, 1/2) lies in a closed cluster of L2
d of size at least δ

√
n
)

= nPp(|Cd| ≥ δ
√
n)

≤ n exp(−λ(p)δ√n).

Setting η(p) = λ(p)δ finishes the proof.

�

8.6 Near the Critical Threshold

After having studied the key properties of the metrics associated to the cluster size distribution in the
sub-critical phase, we now move to the critical point pc.

8.6.1 Critical threshold for bond percolation on the 2-dim. lattice

The previous sections have equipped us with the necessary tools to eventually compute the value of
pc, which we will prove to be equal to 1/2.

We begin by proving that in 2 dimensions, the percolation probability is zero when p = 1/2. An
immediate consequence is that the critical percolation threshold pc ≥ 1/2.

The absence of infinite open cluster at the percolation threshold is also conjectured to hold in higher
dimensions.

Lemma 8.3 (Absence of infinite open cluster for p = 1/2). If d = 2, then θ(1/2) = 0.

Proof:

We proceed by contradiction, and follow Zhang (1988) as exposed in [7]. Suppose that θ(1/2) > 0.
Consider the square B(n) = [−n, n]× [−n, n], and let Al(n) (respectively, Ar(n), At(n), Ab(n)) be
the event that some vertex on the left (respectively, right, top, bottom) side of B(n) belongs to
an infinite open path of L2 that uses no other vertex of B(n). Clearly, these are four increasing
events that have equal probability (by symmetry) and whose union is the event that some vertex
on B(n) belongs to an infinite cluster. Since we assume that θ(1/2) > 0, the Kolmogorov zero-one
law implies that there is almost surely an infinite cluster, and therefore as n→ ∞,

P1/2

(

Al(n) ∪ Ar(n) ∪ At(n) ∪Ab(n)
)

→ 1. (8.13)

Now, using the “square root trick”, which states that if Bi, 1 ≤ i ≤ n, are increasing events having
the same probability,

Pp(Bi) ≥ 1−
(

1− Pp

(

n
⋃

i=1

Bi

))1/n

,

we get

P1/2(A
l(n)) ≥ 1−

(

1− P1/2

(

Al(n) ∪ Ar(n) ∪ At(n) ∪ Ab(n)
))1/4

.

It follows from (8.13) that, with u = l, r, t, b,

P1/2(A
u(n)) → 1
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as n→ ∞. Therefore there is n0 large enough such that for u = l, r, t, b

P1/2(A
u(n0)) > 7/8. (8.14)

Let us next consider the dual box Bd(n) defined as

Bd(n) = {(i+ 1/2, j + 1/2) | (i, j) ∈ B(n)} ,

and let Al
d(n) (respectively, Ar

d(n), A
t
d(n), A

b
d(n)) be the event that some vertex on the left (re-

spectively, right, top, bottom) side of Bd(n) belongs to an infinite closed path of L2
d that uses no

other vertex of Bd(n). Each edge of L2
d is closed with a probability 1/2, which is the same as the

open edge probability in L
2. Therefore P1/2(A

u(n)) = P1/2(A
u
d(n)) for u = l, r, t, b and all n ∈ N

∗.
In particular, for n = n0,

P1/2(A
u
d(n0)) > 7/8 (8.15)

for u = l, r, t, b because of (8.14).

We now consider the event A = Al(n0) ∩ Ar(n0) ∩ At
d(n0) ∩ Ab

d(n0), that there exist infinite open
paths of L2 connecting to some vertex on the left and right sides of B(n), without using any other
vertex of B(n), and that there exists infinite closed paths connecting to some vertex on the top and
bottom sides of Bd(n), without using any other vertex of Bd(n), as shown in Figure 8.12. Now,
using the union bound,

P1/2(A) = 1− P1/2

(

A
l
(n0) ∪ A

r
(n0) ∪ A

t

d(n0) ∪ A
b

d(n0)
)

≥ 1−
(

P1/2(A
l
(n0)) + P1/2(A

r
(n0)) + P1/2A

t

d(n0)) + P1/2(A
b

d(n0))
)

> 1/2

because of (8.14) and (8.15). If A occurs, then there must be two infinite open clusters in L
2\B(n0),

one containing the infinite open path connected to the left side of B(n) and the other one containing
the infinite open path connected to the right side ofB(n). Moreover, these two infinite open clusters
must be disjoint, because they are separated by two infinite closed paths in L

2
d \Bd(n0) connecting

to some vertex on the top and bottom sides of Bd(n). If there was an open path connecting the two
infinite clusters of L2 \B(n0) path, one of its (open) edges would cross a closed edge in L

2
d \Bd(n0),

which is impossible, as shown in Figure 8.12.

The same reasoning implies that there must be two disjoint infinite closed clusters in L
2
d \Bd(n0),

one containing the infinite closed path connected to the top side of Bd(n) and the other one
containing the infinite closed path connected to the bottom side of Bd(n), and separated by the
two infinite open paths of L2 \ B(n0). Now, as θ(1/2) > 0, Theorem 8.7 yields that the infinite
lattice L

2 contains (almost surely) one and only one infinite open cluster. Therefore, there must
be a left-right open crossing within B(n), which forms a barrier to any top-bottom closed crossing
of Bd(n). As a result, there must be (almost surely) at least two disjoint infinite closed clusters
in L

2
d. But since p = 1 − p = 1/2, the probability that there are two infinite closed clusters in

L
2
d is the same as the probability that there are two infinite open clusters in L

2, which is zero.
We have thus reached a contradiction, which means that P1/2(A) cannot be nonzero. The initial
assumption θ(1/2) > 0 cannot be valid, which establishes the result.

�

The previous theorem implies that pc ≥ 1/2. The following lemma is the main step in showing the
converse, namely pc ≤ 1/2.

Lemma 8.4 (Crossing of a square for p = 1/2). Let LR(n) be the even that there is a left-right open
crossing of the rectangle R(n) = [0, n+1]× [0, n] (that is, an open path connecting some vertex on the
left side of R(n) to some vertex on the right side of R(n). Then P1/2(LR(n)) = 1/2 for all n ∈ N

⋆.
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Figure 8.12: Infinite open paths of L2 \ B(n0) connecting to some vertex on the left and right sides
of B(n0) and infinite closed paths of L2

d \ Bd(n0) connecting to some vertex on the top and bottom
sides of Bd(n).

Proof:

The rectangle R(n) is the subgraph of L2 having vertex set [0, n + 1] × [0, n] and edge set com-
prising all edges of L

2 joining pairs of vertices in S(n), except those joining pairs (i, j), (k, l)
with either i = k = 0 or i = k = n + 1. Let Rd(n) be the subgraph of L2

d having vertex set
{(i+ 1/2, j + 1/2) | 0 ≤ i ≤ n, 1 ≤ j ≤ n} and edge set all edges of L2

d joining pairs of vertices in
Rd(n), except those joining pairs (i, j), (k, l) with either i = k = −1/2 or i = k = n+1/2. The two
subgraphs can be obtained from each other by a 90 degrees rotation, which relocates the vertex
labeled (0, 0) at the point (n+ 1/2,−1/2), see Figure 8.13 (left).

Let us consider the two following events: LR(n) is the event that there exists an open path of
R(n) joining a vertex on the left side of R(n) to a vertex on its right side, and TBd(n) is the event
that there exists a closed path of Rd(n) joining a vertex on the top side of Rd(n) to a vertex on
its bottom side.

If LR(n) ∩ TBd(n) 6= ∅, there is a left-right open path in R(n) crossing a top-bottom closed path
in Sd(n). But then, at the crossing of these two paths, there would be an open edge of L2 crossed
by a closed edge of L2

d, which is impossible, see Figure 8.13 (right). Hence LR(n) ∩ TBd(n) = ∅.
On the other hand, either LR(n) or TBd(n) must occur. Let D be the set of vertices that are
reachable from the left side of R(n) by an open path. Suppose that LR(n) does not occur. Then
there exists a top-bottom closed path of L2

d crossing only edges of R(n) contained in the edge
boundary of D, and so TBd(n) occurs. Consequently LR(n) and TBd(n) form a partition of the
sample space Ω, and

Pp(LR(n)) + Pp(TBd(n)) = 1. (8.16)

Now, since R(n) and Rd(n) are isomorphic (they can be obtained from each other by a 90 degrees
rotation, which relocates the vertex labeled (0, 0) at the point (n+1/2,−1/2)), flipping the polarity
of each edge of L2

d yields that Pp(TBd(n)) = P1−p(LR(n)). Plugging this equality in (8.16), the
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0 0

Figure 8.13: The box R(n) and its dual Rd(n) for n = 6 (left) and an illustration of the fact that
there is no left-right open crossing of R(n) is and only if there is a top-bottom closed crossing of Rd(n)
(right).

latter becomes
Pp(LR(n)) + P1−p(LR(n)) = 1.

Taking p = 1/2 in this equation proves the lemma.

�

We now deduce directly one of the most famous theorems of percolation theory.

Theorem 8.9 (pc = 1/2). The percolation threshold in L
2 is pc = 1/2.

Proof:

We know from Lemma 8.3 that pc ≥ 1/2. Suppose that pc > 1/2. Then the value p = 1/2 belongs
to the subcritical phase, and we know from Theorem 8.4 that there exists ψ(1/2) > 0 such that
for all n ∈ N

∗

P1/2(0 ↔ ∂rR(n)) ≤ P1/2(0 ↔ ∂S(n)) < exp(−nψ(1/2)),
where {0 ↔ ∂rR(n)} is the event that the origin is connected by an open path to a vertex lying on
the right side of R(n), defined as ∂rR(n) = {(n+1, k) ∈ Z

2 | 0 ≤ k ≤ n}, and where {0 ↔ ∂S(n)}
is the event that the origin is connected by an open path to a vertex lying on the perimeter of the
ball of radius n centered in 0. Consequently, since LR(n) is the event that there exists an open
path of R(n) joining a vertex on the left side of R(n) to a vertex on its right side,

P1/2 (LR(n)) ≤
n
∑

k=0

P1/2((0, k) ↔ ∂rR(n))

≤ (n+ 1)P1/2(0 ↔ ∂rR(n))

< (n+ 1) exp(−nψ(1/2)),

which yields that P1/2 (LR(n)) → 0 as n→ ∞, and therefore contradicts Lemma 8.4. Consequently
pc ≤ 1/2, which completes the proof.

�
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x

Figure 8.14: A left right open path crossing the box R(2n − 1) must hit the center vertical line at
some vertex x, which is therefore joined by two disjoint paths to respectively the left and right sides
of R(2n− 1).

8.6.2 Near the Critical Threshold: Power Laws

We know from Theorems 8.4 and 8.6 that the distributions of the radius and size of the cluster at
the origin C decrease exponentially fast when p < 1/2. What happens when p = 1/2 ? Lemma 8.3
indicates that the cluster C is almost surely finite at the critical threshold, like in the sub-critical
phase. The following theorem shows however that the distributions of the radius and size change
radically of nature, and are follow no longer an exponential law, but a power law. A consequence is
that the mean cluster size χ(1/2) = ∞, contrary to the subcritical case.

Theorem 8.10 (Power law inequalities at the critical threshold). In L
2, for all n ∈ N

∗,

P1/2(0 ↔ ∂B(n)) ≥ 1

2
√
n

(8.17)

P1/2(|C| ≥ n) ≥ 1

2
√
n
. (8.18)

Proof:

Since any open path connecting the origin to the perimeter of B(n) contains at least n vertices,
P1/2(|C| ≥ n) ≥ P1/2(0 ↔ ∂B(n)), and so we only need to prove (8.17).

As before, let LR(2n− 1) be the event that is an open path in the rectangle R(2n− 1) = [0, 2n]×
[0, 2n− 1] connecting some vertex on its left side to some vertex on its right side. This path must
cross the center line {(n, k) ∈ Z

2 | 0 ≤ k ≤ 2n − 1} in at least one vertex, which is therefore
connected by two disjoint paths to respectively the left and right sides of R(2n− 1), as shown in
Figure 8.14.

Denoting by An(k) the event that the vertex (n, k) is joined by an open path to the surface
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∂B(n, (n, k)) of the box B(n, (n, k)) having side-length 2n and centered at (n, k), we have therefore

P1/2(LR(2n− 1)) ≤
2n−1
∑

k=0

P1/2(An(k) ◦An(k))

and applying the BK inequality, we get

P1/2 (LR(2n− 1)) ≤
2n−1
∑

k=0

P
2
1/2(An(k))

= 2nP2
1/2(An(0))

= 2nP2
1/2(0 ↔ ∂B(n)).

Now, Lemma 8.4 states that P1/2 (LR(2n− 1)) = 1/2 for all n ∈ N
∗, from which we deduce (8.17).

�

We obtain directly that the tail of distribution of the radius rad(C) = maxx∈C{|x|} of the cluster size
C from (8.17) by noting that

Pp(0 ↔ ∂B(n/2)) ≤ Pp(0 ↔ ∂S(n)) = Pp(rad(C) ≥ n).

8.7 Appendix: Kolmogorov’s zero-one law and tail events

Let {Xn, n ∈ N
∗} be a sequence of independent random variables. A tail event is an event whose

occurrence or failure is determined by the values of these random variables, but which does not
depend probabilistically of any finite subsequence of these random variables.

For example, the event {∑n∈N∗ Xn converges } is a tail event, because if we remove any finite sub-
collection of Xn, it does not change the convergence property of the series. Likewise, the event
{lim supn→∞

1
n

∑n
m=1Xm ≤ 2} is a tail event. On the contrary, for if

∑

n∈N∗ Xn converges, the event
{∑n∈N∗ Xn ≤ 2} does change if we remove some finite subcollection of Xn, and thus is not a tail
event.

In the case of Corollary 8.1, let Xn denotes the state of an edge and A be the existence of an infinite
open cluster. Then A does not depend on any finite subcollection of variables Xn, and is therefore a
tail event.

Tail events enjoy the following property.

Theorem 8.11 (Kolmogorov’s zero-one law). If {Xn, n ∈ N
∗} is a sequence of independent variables,

then any tail event A satisfies P(A) = 0 or P(A) = 1.

The following corollary of the zero-one law will be useful later on (see [8]). Let Y be a random variable
which is a function of the variables Xn. Then Y is a tail function if, roughly speaking, it does not
depend crucially on any finite subcollection of Xn. More precisely, Y is a tail function if and only if
the event {ω ∈ Ω | Y (ω) ≤ y} is a tail event for all y ∈ R.

For example, the random variable

Y = lim sup
n→∞

1

n

n
∑

m=1

Xn

is a tail function of the independent variables Xn.

Tail functions are almost surely constant. Indeed, since {ω ∈ Ω | Y (ω) ≤ y} is a tail event for all
y ∈ R, P(Y ≤ y) can only take the values 0 and 1. Let k = inf{y | P(Y ≤ y) = 1}. Then for any
y ∈ R, P(Y ≤ y) = 0 when y < k and P(Y ≤ y) = 1 when y ≥ k.
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Theorem 8.12 (Constant tail functions). If Y is a tail function of the independent variables Xn, n ∈
N

∗, then there exists some k ∈ Z ∪ {−∞,∞} such that P(Y = k) = 1.



9

Discrete Percolation Models

9.1 Introduction

We have seen two discrete percolation models on the tree and the lattice. Tree percolation is the
simplest percolation model, because circuits are absent and there is now a unique path between any
two vertices of the tree. Bond percolation on L

d is a canonical representative of the class of percolation
models, and most result for this model are still valid for other, more general models. We will complete
our study of discrete percolation models by sitepercolation, which is at the same time more difficult
to handle than bond percolation, because it amounts to introduce dependencies between the edges,
but also more general, because to every bond model corresponds a site model, but not vice-versa.
Nevertheless, most findings of bond percolation carry over at least qualitatively to site percolation.

Before investigating the site percolation model, we will first examine some striking similarities between
bond and tree percolation, which lead physicists to consider universal scaling laws valid on different
graph topologies.

83



84 CHAPTER 9. DISCRETE PERCOLATION MODELS

9.1.1 Scaling theory

Scaling theory has been used by mathematical physicists to study the behavior of quantities such as
θ(p), ξ(p), Pp(|C| = n) near the critical point pc.

For bond percolation in L
2, Theorem 8.10 suggests that they follow a power law distribution in

that transition region, and indeed this is taken as starting assumption (ansatz in Physics) for such
quantities. In other words, scaling theory assumes that

θ(p) ≈ (p− pc)
β as p ↓ pc (9.1)

χ(p) ≈ (p− pc)
−γ as p ↑ pc (9.2)

ξ(p) ≈ (p− pc)
−ν as p ↑ pc (9.3)

Ppc
(|C| = n) ≈ n−1−1/δ as n→ ∞ (9.4)

Ppc
(rad(C) ≥ n) ≈ n−1/ρ as n→ ∞ (9.5)

where the “critical exponents” β > 0, γ > 0, ν > 0, δ > 1 and ρ > 0 depend on the dimension d. The
notation f(p) ≈ g(p) as p→ pc means that limp→pc

ln f(p)/ ln g(p) = 1.

We from Chapter 2 that (9.1), (9.2) and (9.4) apply to tree percolation on the binary tree T2 as well,
with β = 1, γ = 1 and δ = 2. We could extend the computations to include (9.3) and (9.5) as well.

Scaling theory predicts that these critical exponents are not independent from each other, but obey
sets of relations called “scaling relations”. We are going to derive the one linking β, γ and δ.

More precisely, the ansatz for the distribution of the cluster at the origin for values for p ≤ pc is

Pp(|C| = n) = n−(1+δ−1)f− (n/ξτ (p)) (9.6)

where τ > 0 is a constant, and f−(·) is a smooth (differentiable) positive function on R
+. Theorem 8.6

would suggest a function f−(x) ≈ C exp(−Ax) for some A,C > 0, but this is not very important here.
We just assume that f−(x) → 0 faster than any power of 1/x as x→ ∞.

When p ≥ pc, we will take a similar ansatz for the distribution of the finite cluster at the origin

Pp(|C| = n) = n−(1+δ−1)f+ (n/ξτ (p)) (9.7)

where f+(·) is a smooth (differentiable) positive function on R
+. Here again, Theorem 8.8 would

suggest to take f+(x) ≈ C′ exp(−A′x(d−1)/d) for some A′, C′ > 0, but again we do not want to make
this assumption here. We just assume that f+(x) → 0 faster than any power of 1/x as x→ ∞.

Now, we make the following approximate computations, first when p < pc:

χ(p) =
∑

n∈N∗

nPp(|C| = n) ≃
∑

n∈N∗

n−δ−1

f− (n/ξτ (p))

≃
∫ ∞

0

n−δ−1

f− (n/ξτ (p)) dn

= ξτ(1−δ−1)(p)

∫ ∞

0

u−δ−1

f−(u)du.

Making the assumptions (9.2) and (9.3), the latter equation becomes

(p− pc)
−γ ≈ (p− pc)

−ντ(1−δ−1)

∫ ∞

0

u−δ−1

f−(u)du,

and since the integral converges because we assumed δ > 1, we find that

τν =
γ

1− δ−1
(9.8)
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We continue now with p > pc, assuming that θ(pc) = 0 (we know it for sure for d = 2), so that

θ(p) = 1−
∑

n∈N∗

Pp(|C| = n)

=
∑

n∈N∗

[Ppc
(|C| = n)− Pp(|C| = n)]

≃
∑

n∈N∗

n−1−δ−1

[f+(0)− f+ (n/ξτ (p))]

≃
∫ ∞

0

n−1−δ−1

[f+(0)− f+ (n/ξτ (p))] dn

= ξ−τδ−1

(p)

∫ ∞

0

u−1−δ−1

[f+(0)− f+ (u)] du

Plugging (9.1) and (9.3) in the latter equation, it becomes

(p− pc)
β ≈ (p− pc)

ντδ−1

∫ ∞

0

u−1−δ−1

[f+(0)− f+ (u)] du.

The integrand behaves like u−1−δ−1

df+(0)/du near u = 0, hence the integral converges. As a result,
we find that

τν = βδ.

Combining this relation with (9.8) gives the scaling relation

γ + β = βδ. (9.9)

This latter equation is one among many scaling relations. It shows that at least one among the three
critical exponents, at most two are independent from each other. Interestingly, if relation (9.9) does
not depend on the dimension d ≥ 2 of the lattice L

d. We also observe that the three values β = 1,
γ = 1 and δ = 2 that we computed in Chapter 2 for the binary tree T

2 satisfy the scaling relation
(9.9) as well!

Another set of relations depend on the dimension d, and are believed to be valid only for dimensions
2 ≤ d ≤ dc where the dc is called the “critical dimension”. These relations are called hyper-scaling
relations, and read

dν = γ + 2β (9.10)

dρ = δ + 1. (9.11)

The scaling relations are widely accepted, but the hyper-scaling relations are more questionable.

The values of the scaling exponents obtained numerically for L2 are β = 5/36, γ = 43/18, δ = 91/5,
ν = 4/3, ρ = 48/5.

The values of the scaling exponents for T2 are β = 1, γ = 1, δ = 2 (as we saw in Chapter 2), ρ = 1/2
and ν = 1/2. Plugging these values in the hyperscaling relations (9.10) and (9.11), we find that d = 6.
This suggests that the critical dimension dc = 6. Indeed, we can embed T

2 in L
∞, with each edge

connecting a nth layer vertex of T2 to a (n + 1)th layer vertex being parallel to the nth coordinate
axis of L∞. This would make percolation in T

2 and L
∞ similar, roughly speaking. The computations

for the tree suggests that the two processes are similar already for Ld with d ≥ 6.

9.2 Site percolation

An important model is to close vertices rather than edges in a lattice L
d. The corresponding model

is called site percolation, all definitions of percolation probability, critical probability, etc remain
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Figure 9.1: The covering graph L
2
c of the square lattice L

2.

the same as in the bond model, the only difference is that vertices (and not edges) are open with
probability p, and closed with probability 1− p.

One can show that a phase transition occurs between a sub-critical and super-critical phases, and
essentially most properties of bond percolation extend to site percolation. However, contrary to bond
percolation, the percolation threshold pc is not known mathematically. It is found numerically to be
close to 0.59.

Site percolation is more general than bond percolation, in the sense that every bond model can be
recast as a site model, but not the reverse. To recast a bond model as a site model, we make use of
the notion of covering graph Gc of a graph G, which is obtained as follows. Place a vertex of Gc on
the middle of each edge of G. Two vertices of Gc are declared to be adjacent if and only if the two
corresponding edges of G share a common endvertex of G. Define now a bond percolation process on
G, and declare a vertex of Gc to be open (resp., closed) if and only if the corresponding edge of G is
open (resp., closed). This results in a site percolation process on Gc. Any path of open edges of G
corresponds to a path of open vertices of Gc, and vice-versa. As a result,

pbondc (G) = psitec (Gc) (9.12)

For example, if G = L
2, then we find that Gc = L

2
c is the lattice shown in Figure 9.1, where each site

has exactly six adjacent vertices. Because of (9.12), the site percolation threshold on this graph is
1/2. We can show that the triangular lattice, where each vertex is also adjacent to six other vertices,
has a also a site percolation threshold equal to 1/2.


