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The main questions 

❏  Prove that there is a phase transition 
❏  Sub-critical phase: no infinite cluster (θ(p) = P(|C| = ∞) = 0) , but 

●  Is the mean cluster size χ(p) = E[|C|] finite ? 
●  What is the tail of the distribution of C: P(|C| = n) for large n ?  

❏  Super-critical phase: infinite cluster (θ(p) = P(|C| = ∞) > 0)  
●  Is the infinite cluster unique ? 
●  If so, what is the tail of the distribution of the second largest cluster 

Cf: P(|Cf| = n) for large n ?  
❏  What is the critical threshold pc ? 
❏  What happens when p = pc , or at least when |p - pc| is small: 

●  What is θ(p) = P(|C| = ∞) ? 
●  Is the mean cluster size χ(p) = E[|C|] finite ?  
●  What is the tail of the distribution of C: P(|C| = n) for large n ? 
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Bond percolation on square lattice L2  
❏  Each edge of L2 is open with 

probability p and closed with 
probability (1-p), independently of 
all other edges. 

❏  Notations and definitions: 
●  Product measure Pp 
●  Open path = path made of open edges 
●  Closed path = path made of closed 

edges 
●  x ↔ y: there is an open path between 

vertices x and y  
●  Open cluster in x: C(x) = {y such that x 

↔ y}. We write C for C(0). 
●  Box B(n) = [-n,-n] x [n,n] 
●  Box B(x,n) = x + B(n)  

0

B(3) 
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Bond percolation on square lattice L2  
❏  Each edge of L2 is open with 

probability p and closed with 
probability (1-p), independently of 
all other edges. 

❏  Percolation probability: 
 θ(p) = Pp (|C| = ∞)  

❏  Percolation (or critical) threshold: 
 pc = sup {p : θ(p) = 0} 

❏  For L1, pc = 1 (percolation = full 
connectivity). 

❏  For L2, 1/3 ≤ pc ≤ 2/3 (percolation  
≠ full connectivity). 

0



  4 

pc ≥ 1/3 
❏  σ(n) = number of self-avoiding 

walks of length n. σ(n) ≤ 4*3n-1  
❏  N(n) = number of open, self-

avoiding paths of length n starting 
from O. 

❏  For all integers n,  
 θ(p)  ≤ Pp (N(n) ≥ 1)  
  ≤ Ep [N(n)] = σ(n) pn  
  ≤ 4/3 (3p)n  

❏  If p < 1/3, θ(p) ≤ 4/3 (3p)n —> 0 as 
n —> ∞.  

❏  pc = sup {p : θ(p) = 0} ≥ 1/3 

0
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 pc ≤ 2/3: Dual technique  
❏  Construct dual lattice  Ld  of L2. 
❏  Pick integer m, and box B(m): 

●  Fm = {closed circuit in Ld encircling 
B(m)}; Fm  = Fm does not occur 

●  Gm = {all edges of B(m) are open} 

❏  θ(p) ≥ Pp(Fm ∩ Gm) = Pp(Fm) Pp(Gm) 
❏  Pp(Gm) > 0 (m finite) 
❏  Need to compute Pp(Fm)  
❏  Need first to compute the number 

of closed circuits of length at 
least 8m 

0



  6 

 pc ≤ 2/3: Peirls’ argument  
❏  Observation: any self avoiding closed circuit 

of length n surrounding 0 must cross one of 
the n/2 edges of Ld just at the right of 0. 

0

❏  Can construct the circuit a self-avoiding 
walk of length n-1 starting and ending at   one 
of these n/2 edges. 
-> Number of such circuits ≤ (n/2)σ(n-1) 
❏  Pp(Fm) ≤ ∑∞

n = 8m Pp (∃ closed circuit of  
   length n)  
 ≤ ∑∞

n = 8m (n/2)σ(n-1) (1-p)n 

   ≤ (2(1-p)/3) ∑∞
n = 8m n(3(1-p))n-1 

  ≤ 1/2 if m is large enough and p > 2/3. 
❏  θ(p) ≥ Pp(Fm) Pp(Gm) ≥ Pp(Gm)/2 > 0. 
❏  pc = sup {p : θ(p) = 0} ≤ 2/3. 



  7 

p=0.3 
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p=0.49 
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p=0.51 
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p=0.7 
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Bond percolation on square lattice L2  
❏  θ(p) = Pp (|C| = ∞) = Pp (a node belongs to an infinite cluster) 
❏  ψ(p) = Pp (there exists an infinite cluster)  
❏  Existence of an infinite cluster is a tail event (does not depend on the state 

of any finite collection of edges). 
❏  Kolmogorov’s 0-1 law -> ψ(p) = 0 if p < pc and ψ(p) = 1 if p > pc  

p 

θ(p) ψ(p) 
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Increasing events  
❏  A is an increasing event: 

 Pp (A) ≤ Pp’ (A)  if  p ≤ p’. 
❏  A is a decreasing event: 

 Pp (A) ≥ Pp’ (A)  if  p ≤ p’. 
❏  Example:  

●  A = {LR open crossing of B(n)} 
     (LR = left-right) is increasing 
●  A = {TB closed path in B(n)}  

 (TB = top-bottom) is decreasing 

0
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Harris’ inequality (FKG inequality)  
❏  Let A and B be two increasing 

(or decreasing) events 
❏  Pp(A ∩ B) ≥ Pp (A) Pp(B) 
❏  Example:  

●  A = {LR open path in B(n)} 
●  B = {TB open path in B(n)}  

0
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BK inequality 
❏  Denote by A º B the joint 

occurrence of A and B on 
disjoint sets of edges. 

❏  Let A and B be two increasing 
(or decreasing) events 

❏  Pp(A º B) ≤ Pp (A) Pp(B) 
❏  Example:  

●  A = {LR open path in B(n)} 
●  B = {TB open path in B(n)}  

0
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Other useful inequalities 
❏  From reliability theory (Section 

2.5, 2.6 in Grimmett), for p > p’. 
❏  Let  

●  A be an increasing event 
●  Ir(A) be the interior of A = set of 

configurations in A which are still in 
A if we perturb up to r-1 edges.  

❏  Example, with r = 3. 
●  A = {LR open path in B(n)} 
●  Ir(A) = {r edge-disjoint LR open 

paths in B(n)} 
❏  Theorem (Grimmett 1981): 

€ 

1− Pp Ir A( )( ) ≤ p
p− p '( )

r
1− Pp ' A( )[ ]

0
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um un+m0
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Subcritical phase  
❏  Connectivity function τ(n) = Pp (0 ↔ un)  
❏   {0 ↔ um} ∩ {um ↔ un+m} ⊆ {0 ↔ un+m}  
❏  Applying FKG:  τ(m+n) = Pp (0 ↔ un+m) ≥ Pp ({0 ↔ um} ∩ {um ↔ un+m})  

 ≥ Pp(0 ↔ um)Pp(um↔ un+m) = Pp(0 ↔ um)Pp(0 ↔ un) = τ(m)τ(n)  
❏  Let xn = - log (τ(n)) ⇒ xm+n ≤ xm + xn 
❏  Sub-additive lemma: limn→∞ {xn/n} = x*(p) ⇒ limn→∞ {-1/n log τ(n)} = x*(p) 

un+m0 um
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Subcritical phase  
❏  Let ∂B(n) be the boundary of B(n)  
❏  Radius function β(n) = Pp (0 ↔ ∂B(n)) 
❏  {0 ↔ ∂B(m+n)} ⊆ ∪x∈∂B(m)  { {0 ↔ x} º {x ↔ x + ∂B(x,n)) }  
❏  Applying BK:  β(m+n) ≤ ∑x∈∂B(m) Pp (0 ↔ x)Pp (x ↔ x + ∂B(x,n) )  

 = ∑x∈∂B(m) Pp (0 ↔ x)Pp (0 ↔ ∂B(n) ) ≤ |∂B(m)| β(m) β(n)  
❏  Some algebraic manipulations to use the sub-additive lemma… 
❏  limn→∞ {-1/n log β(n)} = x*(p) for some x*(p) 

B(m) 

B(x,n) x 

0 

B(m+n) 
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Subcritical phase 

❏  p < pc ; θ(p) = Pp (|C| = ∞) = 0  
❏  χ(p) = Ep [|C|] < ∞  (Proof is long, see Chap 5 of Grimmett) 
❏  Exponential tails of cluster radius and size: 

●  Connectivity function: τ(n) = Pp (0 ↔ un) ≤ exp( - n x*(p)) for some x*(p) 
●  Radius function: β(n) = Pp (0 ↔ ∂B(n)) ≤ exp( - n x*(p)) for some x*(p) 
●  Easy to show that x*(p) = x*(p), can also prove that x*(p) > 0. 
●  1/x*(p) is called the correlation length. 
●  Cluster size distribution, for n > χ2(p): Pp (|C| ≥ n) ≤ 2 exp(- n / 2 χ2(p) ) 
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Supercritical phase  

❏  p > pc ; θ(p) = Pp (|C| = ∞) > 0  
❏  We know there is a.s. at least 1 infinite cluster. 
❏  Theorem: there is a.s. exactly 1 infinite cluster (see Chap 8 of 

Grimmett) 
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What is the value of pc ? 

❏  Step 1: show that pc ≥ 1/2. Use duality + uniqueness of infinite 
cluster in supercritical phase. 

❏  Step 2: show that pc ≤ 1/2. Use duality + exponential decay of radius 
function. 
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pc ≥ 1/2  
❏  Zhang (1988) 
❏  Suppose pc < 1/2: θ(1/2) > 0. Then 

there is a.s. one infinite cluster. 
❏  Can pick integer m large enough so 

that P1/2 (∂B(m) ↔ ∞) > 1 - 1/84  
❏  Let Ai = {side i of B(m) is joined to 

the infinite cluster off B(m)} with i = 
r, l, t, b for resp. the right, left, 
top, bottom edge of B(m). 

❏  P1/2 (∂B(m) ↔ ∞)  
 = 1 - P1/2 (Ar ∩ Al ∩ At ∩ Ab)  
 ≤ 1 - P1/2 (Ar) P1/2 (Al) P1/2 (At) P1/2 (Ab) 
 = 1 - (P1/2 (Ar))4  
 by FKG and symmetry. 

❏  P1/2 (Ai) ≥ 1 - (1 - P1/2 (∂B(m) ↔ ∞))4  
      > 7/8 for i = r, l, t, b. 

0
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pc ≥ 1/2  
❏  Repeat the same with dual box. 
❏  Each edge of Ld is closed with 

probability 1/2.  
❏  If there is a.s an infinite cluster of 

open edges in L, there is therefore 
a.s an infinite cluster of closed 
edges in Ld 

❏  Let Ad
i = {side i of Bd(m) is joined to 

the infinite closed cluster off 
Bd(m)} with i = r, l, t, b for resp. 
the right, left, top, bottom edge 
of Bd(m). 

❏  P1/2 (Ad
i ) > 7/8 for i = r, l, t, b. 

0
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pc ≥ 1/2 
❏  Let A = Ar ∩ Al ∩ Ad

t ∩ Ad
b  

❏  P1/2(A) =  
 1 - P1/2 (Ar ∪ Al ∪ Ad

t ∪ Ad
b)  

 ≥ 1 - (P1/2(Ar) + P1/2(Al)                  
+ P1/2(Ad

t) + P1/2 (Ad
b)) = 1/2. 

❏  If Ar ∩ Al  occurs, there must be 
an LR open path in B(m), because 
the open infinite cluster is 
unique. 

❏  If Ad
t ∩ Ad

b occurs, there must 
be a TB closed path in B(m), 
because the open (closed) 
infinite cluster is unique. 

❏  But then P1/2(A) = 0, a 
contradiction. 

❏  Therefore θ(1/2) = 0. 

0
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Lattice bond percolation 

❏  Infinite lattice 
❏  Each edge is « open » with 

probability p (i.i.d) 
❏  Let C be the connected 

component containing 0. 
❏  What is the probability  

 θ(p) = P(|C| = ∞) ?  
❏  There exists pc such that 

●  θ(p) = 0 if p < pc  
●  θ(p) > 0 if p > pc 

0
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Tree bond percolation 

❏  Infinite lattice 
❏  Each edge is « open » with 

probability p (i.i.d) 
❏  Let C be the connected 

component containing 0. 
❏  What is the probability  

 θ(p) = P(|C| = ∞) ?  
❏  There exists pc such that 

●  θ(p) = 0 if p < pc  
●  θ(p) > 0 if p > pc 

0
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Lattice site percolation 

❏  Infinite lattice 
❏  Each site (vertex) is 

« occupied » with 
probability p (i.i.d) 

❏  Let C be the connected 
component containing 0 
(two adjacent occupied 
sites are connected). 

❏  What is the probability  
 θ(p) = P(|C| = ∞) ?  

❏  There exists pc such that 
●  θ(p) = 0 if p < pc  
●  θ(p) > 0 if p > pc 

0
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Continuum percolation: Boolean model = RGG 
❏  Position of nodes is a (often 

homogeneous Poisson) spatial 
point process, with intensity λ. 

❏  Two nodes are connected to 
each other if the distance 
between them is ≤ r 

❏  This defines a graph B(λ,r) 
❏  Let C be the connected 

component containing 0 (two 
adjacent occupied sites are 
connected). 

❏  What is the probability θ(p) = 
P(|C| = ∞) ?  

❏  There exists (λr2)c such that 
●  θ(r, λ) = 0 if r2λ < (r2λ)c  
●  θ(r, λ) > 0 if r2λ > (r2λ)c 

0
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Boolean model in the plane 
❏  Percolation theory (see e.g. Meester and Roy 1996): Θ(r, λ) be the 

probability that an arbitrary node belongs to an infinite cluster 
(percolation probability). Then there is (λr2)c such that 
●  Θ(r, λ) = 0 if r2λ < (r2λ)c (“sub-critical”)  
●  Θ(r, λ) > 0 if r2λ > (r2λ)c (“super-critical”) 

λr2 

Pc(x) 

 (λr2)c 

sub-critical (r slightly < rc)  super-critical (r slightly > rc)  
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λr2 

Θ(λr2) 

Full or partial connectivity ? 
❏  Long range connectivity appears much before full connectivity 

because of a phase transition mechanism (percolation) 
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Ad hoc or sensor network ? 
❏  Ad hoc network : multiple transmissions, many to many. 

Connectivity metric = probability that an arbitrary pair of nodes is 
connected to the rest of the network Pc 

❏  Sensor network : many to one (the base station collecting data). 
Connectivity metric = probability that one arbitrary node is 
connected to the base station Θ 

❏   Pc ≈ Θ2 for nodes located far away from each other 


