SHAPE FROM X

One image:

- Texture
- Shading

Two images or more:

- Stereo
- Contours
- Motion

GEOMETRIC STEREO

Depth from two or more images:

- Geometry of image pairs
- Establishing correspondences

TRIANGULATION

Geometric Stereo: Depth from two images

EPIPOLAR LINE

Line on which the corresponding point must lie.

EPIPOLAR LINES

Three points shown as red crosses.

Corresponding epipolar lines.

EPIPOLAR LINES

EPIPOLE

Point at which **all** epipolar lines intersect:

Located at the intersection of line joining optical centers and image plane.

EPIPOLAR GEOMETRY

In general:

Parallel image planes

Horizontal baseline

RECTIFICATION

$$\begin{bmatrix} U' \\ V' \\ W' \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

$$u' = \frac{U'}{W'}$$

$$v' = \frac{V'}{W'}$$

Reprojection into parallel virtual image planes:

- Linear operation in projective coordinates
- Real-time implementation possible

RECTIFICATION

Intersecting epipolar lines—> Parallel epipolar lines

DISPARITY

Horizontal shift along epipolar line, inversely proportional to distance.

DISPARITY VS DEPTH

$$u_{l} = \frac{f(X - b/2)}{Z}, v_{l} = \frac{fY}{Z}$$
$$u_{r} = \frac{f(X + b/2)}{Z}, v_{l} = \frac{fY}{Z}$$

$$d = f \frac{b}{Z}$$

→ Disparity is inversely proportional to depth.

WINDOW BASED APPROACH

- Compute a cost for each C_n location.
- Pick the lowest cost one.

FINDING A PATTERN IN AN IMAGE

Straightforward Approach

SUM OF SQUARE DIFFERENCES

Subtract pattern and image pixel by pixel and add squares:

$$ssd(u,v) = \sum_{(x,y)\in N} [I(u+x,v+y) - P(x,y)]^2$$

If identical ssd=0, otherwise ssd >0

→ Look for minimum of ssd with respect to

u and v.

Minimum ssd

CORRELATION

$$ssd(u,v) = \sum_{(x,y)\in N} \left[I(u+x,v+y) - P(x,y)\right]^2$$

$$= \sum_{(x,y)\in N} I(u+x,v+y)^2 + \sum_{(x,y)\in N} P(x,y)^2 - 2\sum_{(x,y)\in N} I(u+x,v+y)P(x,y)$$
Sum of squares of the window the pattern (slow varying) (constant)

⇒ Ssd(u,v) is minimized when correlation is largest→ Correlation measures similarity

SIMPLE EXAMPLE

NOT SO SIMPLE EXAMPLE

Image Correlation

Pattern

- Correlation value depends on the local gray levels of the pattern and image window.
- Need to normalize.

NORMALIZED CROSS CORRELATION

$$ncc(u,v) = \frac{\sum_{(x,y)\in N} [I(u+x,v+y)-\bar{I}][P(x,y)-\bar{P}]}{\sqrt{\sum_{(x,y)\in N} [I(u+x,v+y)-\bar{I}]^2 \sum_{(x,y)\in N} [P(x,y)-\bar{P}]^2}}$$

- Between -1 and 1
- Invariant to linear transforms
- Independent of the average gray levels of the pattern and the image window

NORMALIZED EXAMPLE

Image

Pattern

Normalized Correlation

Point of maximum correlation

SEARCHING ALONG EPIPOLAR LINES

DISPARITY MAP

Black pixels: No disparity.

OCCLUSIONS

→ Consistency test

GROUND LEVEL STEREO

COMBINING DISPARITY MAPS

- Merging several disparity maps.
- Smoothing the resulting map.

SHAPE FROM VIDEO

Treat consecutive images as stereo pairs.

- 1. Compute disparity maps.
- 2. Merge 3-D point clouds.
- 3. Represent as particles.

REAL-TIME IMPLEMENTATION

THEN

1993: 256x256, 60 disps, 7 fps.

Faugeras et al., INRIA'93

... AND MORE RECENTLY

Subaru's EyeSight System

http://www.gizmag.com/subaru-new-eyesight-stereoscopic-vision-system/14879/

2011: 1312x688, 176 disps, 160 fps.

Saneyoshi, CMVA'11

... AND EVEN MORE RECENTLY

Train Siamese nets to return a similarity score.

COMPARATIVE RESULTS

Ground truth

Error: 5.25 %

Error: 3.91 %

Error: 3.73 %

Rigth input image

Left input image

Census

Fast architecture

Accurate architecture

Improved performance on test data but

 How well will it generalize to unseen images?

Time will tell.

WINDOW SIZE

Small windows:

- Good precision
- Sensitive to noise

Large windows:

- Diminished precision
- Increased robustness to noise
- Same kind of trade-off as for edge-detection.

WINDOW SIZE

15x15

7x**7**

SCALE-SPACE REVISITED

Gaussian pyramid

Difference of Gaussians

- Using a small window on a reduced image is equivalent to using a large one on the original image.
- Using difference of Gaussian images is an effective way of achieving normalization.
- →It becomes natural to use results obtained using low resolution images to guide the search at higher resolution.

FRONTO-PARALLEL ASSUMPTION

The disparity is assumed to be the same in the whole correlation window, which is equivalent to assuming constant depth.

→ Ok when the surface faces the camera but breaks down otherwise.

MULTI-VIEW STEREO

Multi-view reconstruction setup

Adjust correlation window shapes to handle orientation.

Text Silva Medpoled Model

MULTI-VIEW STEREO

SMALL DRONES

The X100 revolutionary mapping.

SenseFly: www.sensefly.com

Gatewing: www.gatewing.com

MATTERHORN

Drone: www.sensefly.com

Mapping: www.pix4d.com

FACE RECONSTRUCTION

FACE RECONSTRUCTION

Beeler et al. SIGGRAPH'10

DYNAMIC SHAPE

Lightweight Binocular Facial Performance Capture under Uncontrolled Lighting

Levi Valgaerts ¹ Chenglei Wu ^{1,2} Andrés Bruhn ³ Hans-Peter Seidel ¹ Christian Theobalt ¹

MPI for Informatics
 Intel Visual Computing Institute
 University of Stuttgart

SCENE FLOW

Correspondences across cameras and across time

SHAPE FROM SHADING

Shape-from-shading is used to refine the shape and provide high-frequency details.

UNCERTAINTY

PRECISION vs BASELINE

$$d = f\frac{b}{Z}$$

$$\Rightarrow Z = f\frac{b}{d}$$

$$\Rightarrow \frac{\delta Z}{\delta d} = -f\frac{b}{d^2} = -\frac{Z^2}{fb}$$

- Beyond a certain depth stereo stops being useful.
- Precision is inversely proportional to baseline length.

SHORT vs LONG BASELINE

Long baseline:

- Harder to match
- More occlusions
- Better precision

Short baseline:

- Good matches
- Few occlusions
- Poor precision

MARS ROVER

There are four cameras!

VIDEO-BASED MOTION CAPTURE

Fitting an articulated body model to stereo data.

TRINOCULAR STEREO

MULTI-CAMERA CONFIGURATIONS

3 cameras give both robustness and precision

4 cameras give additional redundancy

3 cameras in a T arrangement allow the system to see vertical lines.

KINECT: STRUCTURED LIGHT

- The Kinect camera projects a IR pattern and measures depth from its distortion.
- Same principle but the second camera is replaced by the projector.

FACES FROM LOW-RESOLUTION VIDEOS

- No calibration data
- Relatively little texture
- Difficult lighting

SIMPLE FACE MODEL

PCA FACE MODEL

 $S = \overline{S} + \sum_{i=1}^{99} a_i S_i$ Average shape S_i : Shape vector

 a_i : Shape coefficients

CORRESPONDENCES

TRANSFER FUNCTION

$$F_3(A, C_{i-1}, C_i, C_{i+1}) = \sum_{j \in Q_{i-1}} \left\| \Delta p_{i-1,i}^j \right\|^2 + \sum_{k \in Q_i} \left\| \Delta p_{i,i+1}^k \right\|^2$$

MODEL BASED BUNDLE ADJUSTMENT

Median accuracy greater than 0.5mm

MODEL FROM OLD MOVIE

LIMITATIONS OF WINDOW BASED METHODS

Ground truth

Correlation result

ENERGY MINIMIZATION

- 1. Matching pixels should have similar intensities.
- 2. Most nearby pixels should have similar disparities
- Minimize

$$\sum [I_2(x+D(x,y),y)-I_1(x,y)]^2 + \lambda \sum [D(x+1,y)-D(x,y)]^2 + \mu \sum [D(x,y+1)-D(x,y)]^2$$

MITOCHONDRIA REMINDER

- A high probability of being a mitochondria can be represented by a strong edge connecting a supervoxel to the source and a weak one to the sink.
- And conversely for a low probability.

MITOCHONDRIA REMINDER

 Another classifier can be trained to assign a high-weight to edges connecting supervoxels belonging to the same class and a low one to others.

GRAPH CUTS

- 1. Stereo is a labeling problem. —> Use graph cut.
- 2. Connect each pixel to each possible disparity value.

Building The Graph

Connect each pixel to each possible disparity value.

Assigning Edge Weights

Assign a weight that is inversely proportional to |I2(x+1,y)-I1(x,y)|Assign a weight that is inversely proportional to |I2(x+2,y)-I1(x,y)|.....

Minimizing the Objective Function

Minimize:

$$\sum [I_2(x+D(x,y),y)-I_1(x,y)]^2 + \lambda \sum [D(x+1,y)-D(x,y)]^2 + \mu \sum [D(x,y+1)-D(x,y)]^2$$

Graph cut algorithm:

- Guarantees an absolute minimum only when there are only two possible disparities.
- Effective heuristics (α -expansion, α - β swap) otherwise.

NCC vs GRAPH CUTS

Normalized correlation

Graph Cuts

NCC vs GRAPH CUTS

left image

Normalized correlation

true disparities

Graph Cuts

GRAPH CUT RESULTS

STRENGTHS AND LIMITATIONS

Strengths:

- Practical method for depth recovery.
- Runs in real-time on ordinary hardware.

Limitations:

- Requires multiple views.
- Only applicable to reasonably textured objects.