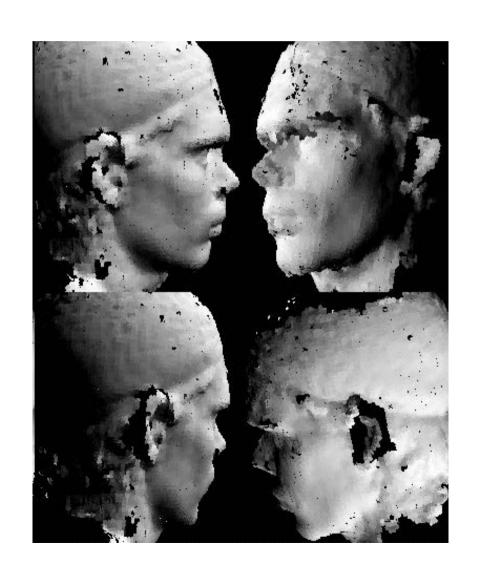
## SHAPE FROM X

# One image:

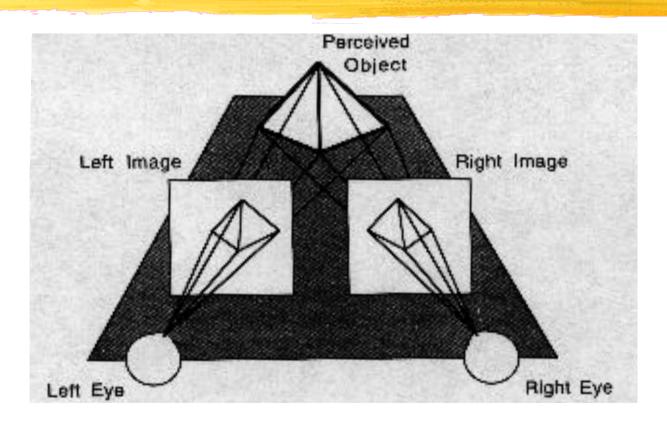
- Texture
- Shading

# Two images or more:

- Stereo
- Contours
- Motion



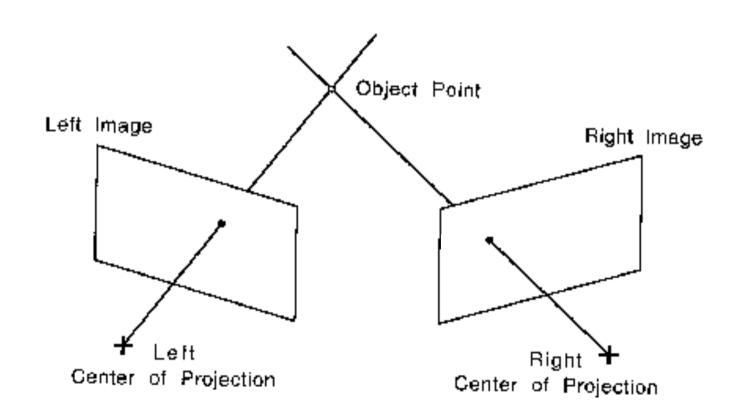
# **GEOMETRIC STEREO**



Depth from two or more images:

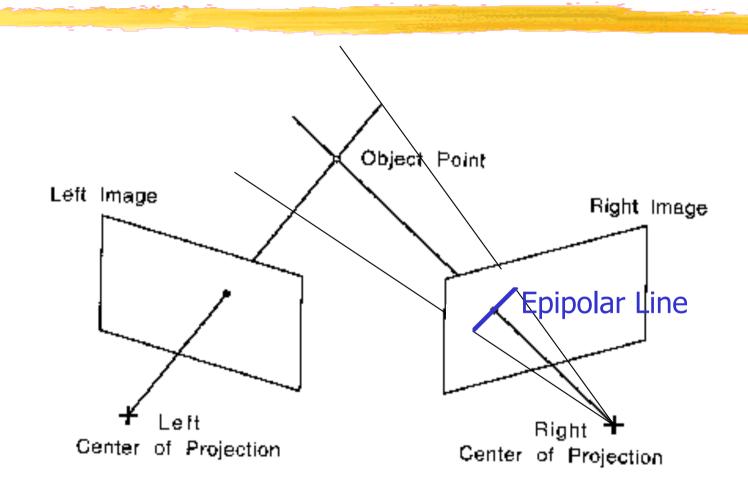
- Geometry of image pairs
- Establishing correspondences

# **TRIANGULATION**



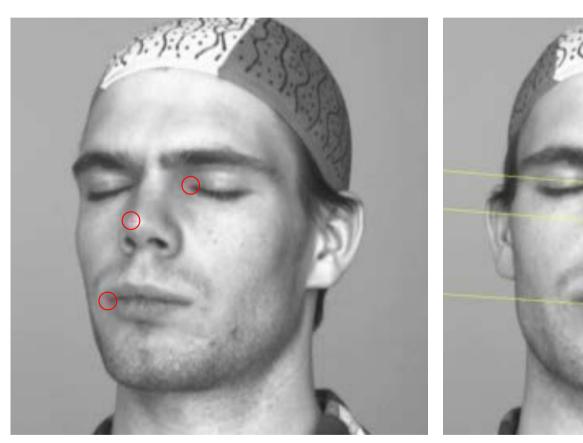
**Geometric Stereo:** Depth from two images

# **EPIPOLAR LINE**



Line on which the corresponding point must lie.

# **EPIPOLAR LINES**





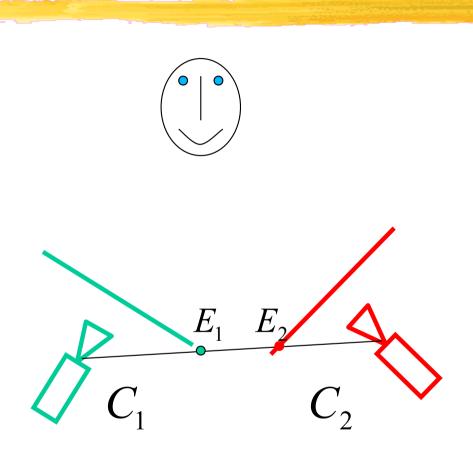
Three points shown as red crosses.

Corresponding epipolar lines.

# **EPIPOLAR LINES**



# **EPIPOLE**

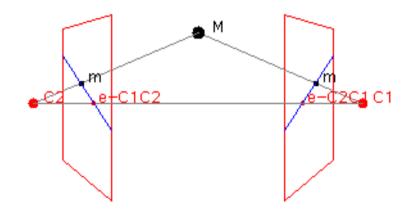


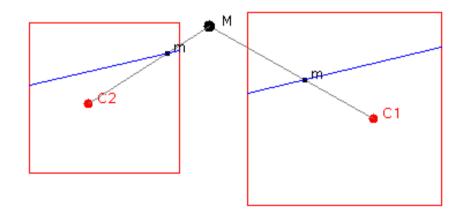
Point at which **all** epipolar lines intersect:

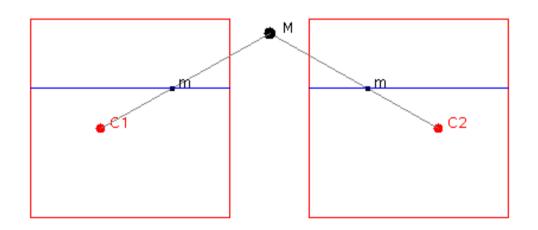
Located at the intersection of line joining optical centers and image plane.

# **EPIPOLAR GEOMETRY**

In general:



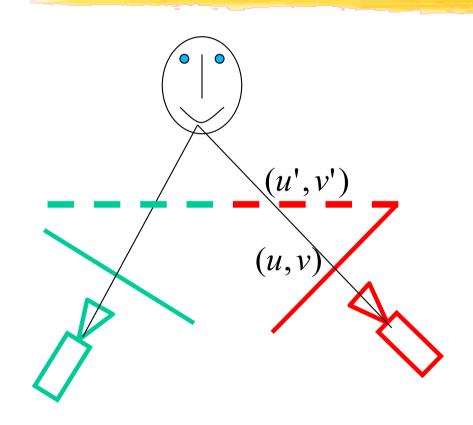




Parallel image planes

Horizontal baseline

## RECTIFICATION



$$\begin{bmatrix} U' \\ V' \\ W' \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

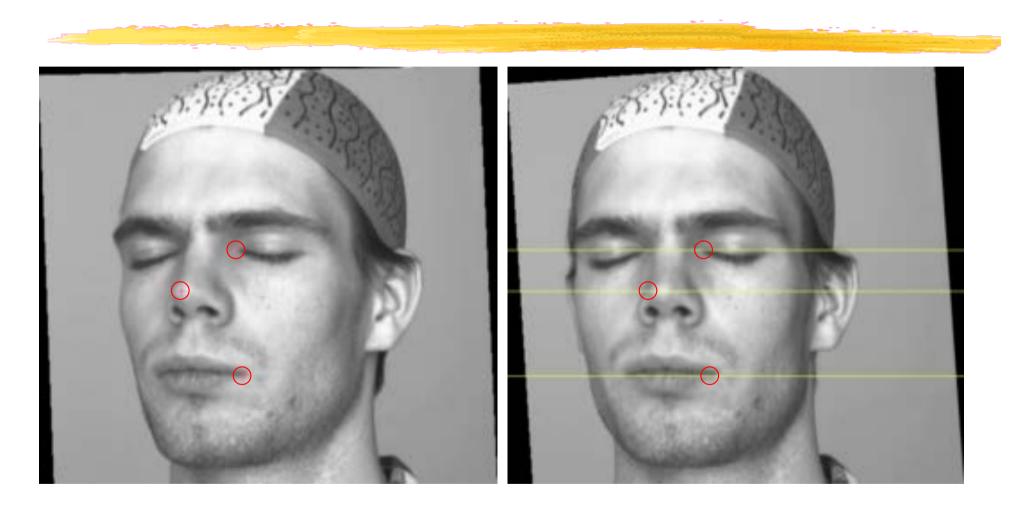
$$u' = \frac{U'}{W'}$$

$$v' = \frac{V'}{W'}$$

Reprojection into parallel virtual image planes:

- Linear operation in projective coordinates
- Real-time implementation possible

# RECTIFICATION



Intersecting epipolar lines—> Parallel epipolar lines

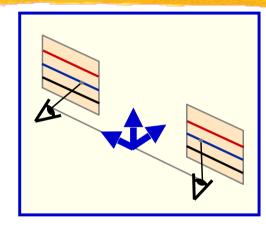
## **DISPARITY**



Horizontal shift along epipolar line, inversely proportional to distance.

## DISPARITY VS DEPTH





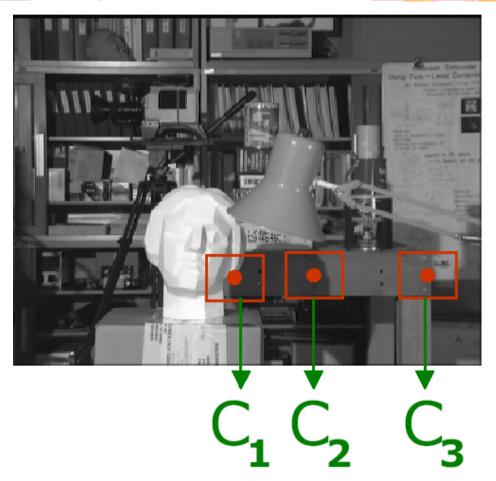
$$u_{l} = \frac{f(X - b/2)}{Z}, v_{l} = \frac{fY}{Z}$$
$$u_{r} = \frac{f(X + b/2)}{Z}, v_{l} = \frac{fY}{Z}$$

$$d = f \frac{b}{Z}$$

→ Disparity is inversely proportional to depth.

# WINDOW BASED APPROACH

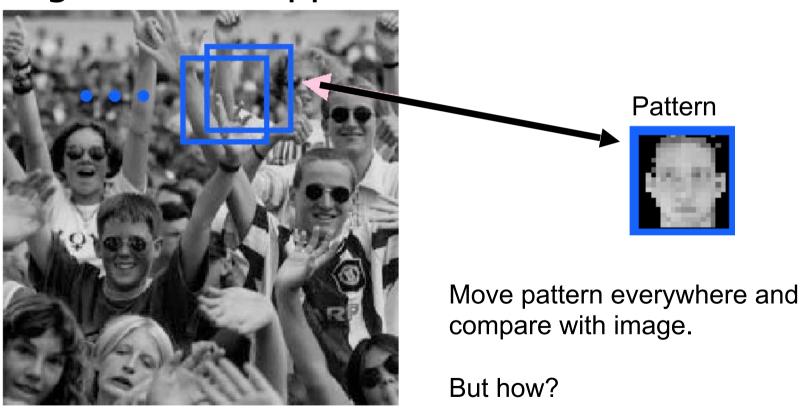




- Compute a cost for each C<sub>n</sub> location.
- Pick the lowest cost one.

# FINDING A PATTERN IN AN IMAGE

### Straightforward Approach



### SUM OF SQUARE DIFFERENCES

Subtract pattern and image pixel by pixel and add squares:

$$ssd(u,v) = \sum_{(x,y)\in N} [I(u+x,v+y) - P(x,y)]^2$$

If identical ssd=0, otherwise ssd >0

→ Look for minimum of ssd with respect to

u and v.

Minimum ssd

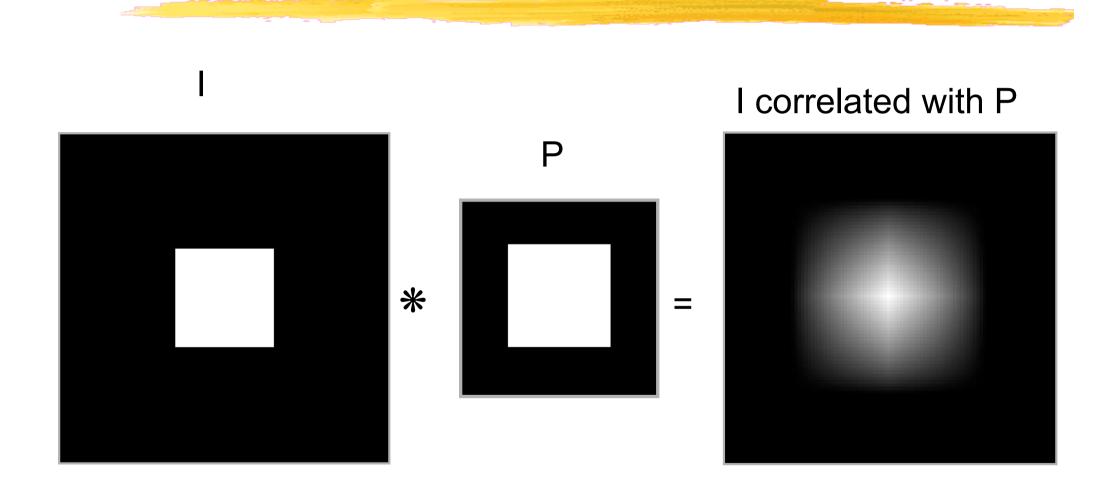
# CORRELATION

$$ssd(u,v) = \sum_{(x,y)\in N} \left[I(u+x,v+y) - P(x,y)\right]^2$$

$$= \sum_{(x,y)\in N} I(u+x,v+y)^2 + \sum_{(x,y)\in N} P(x,y)^2 - 2\sum_{(x,y)\in N} I(u+x,v+y)P(x,y)$$
Sum of squares of the window the pattern (slow varying) (constant)

⇒ Ssd(u,v) is minimized when correlation is largest→ Correlation measures similarity

# SIMPLE EXAMPLE



## NOT SO SIMPLE EXAMPLE

Image Correlation

Pattern

- Correlation value depends on the local gray levels of the pattern and image window.
- Need to normalize.

# NORMALIZED CROSS CORRELATION

$$ncc(u,v) = \frac{\sum_{(x,y)\in N} [I(u+x,v+y)-\bar{I}][P(x,y)-\bar{P}]}{\sqrt{\sum_{(x,y)\in N} [I(u+x,v+y)-\bar{I}]^2 \sum_{(x,y)\in N} [P(x,y)-\bar{P}]^2}}$$

- Between -1 and 1
- Invariant to linear transforms
- Independent of the average gray levels of the pattern and the image window

# **NORMALIZED EXAMPLE**

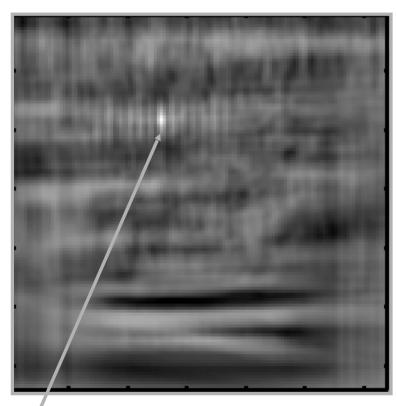
#### Image



Pattern

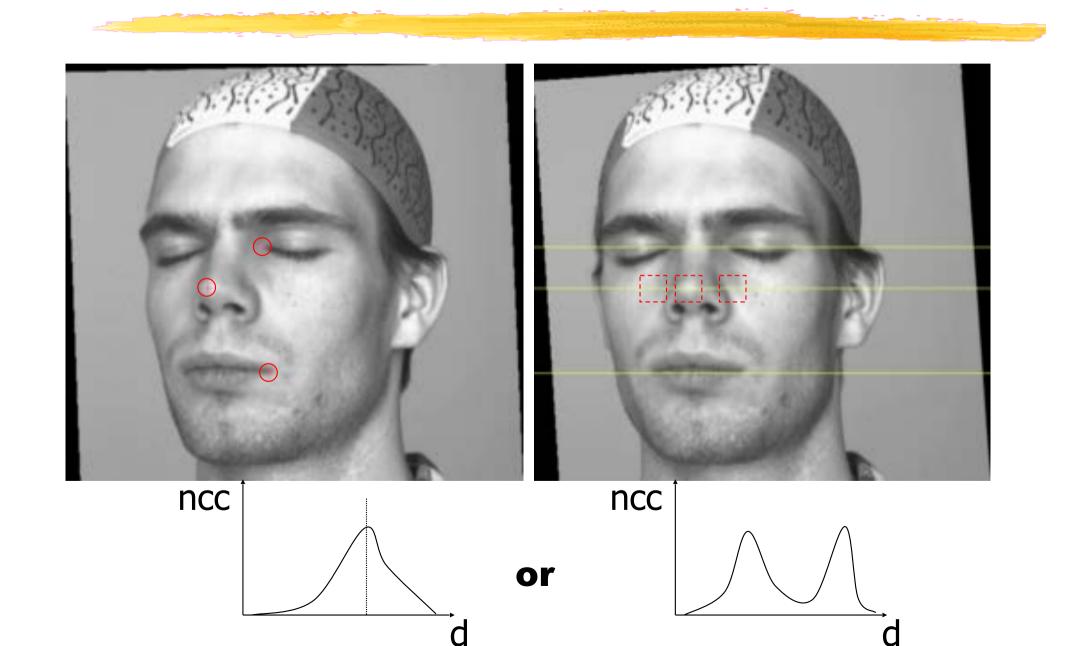


**Normalized Correlation** 



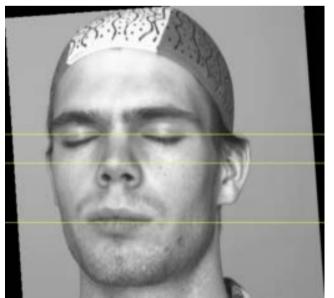
Point of maximum correlation

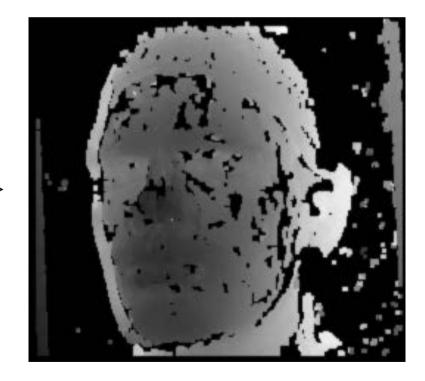
# SEARCHING ALONG EPIPOLAR LINES



# **DISPARITY MAP**

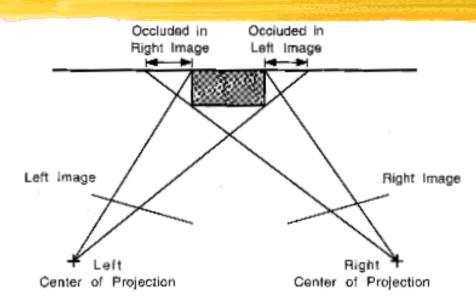




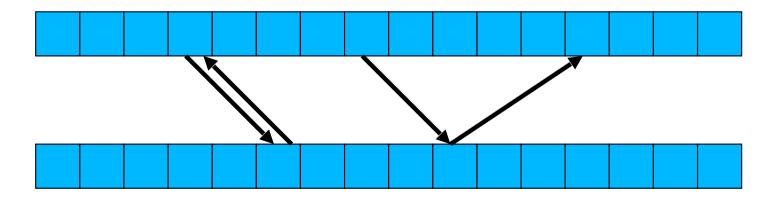


Black pixels: No disparity.

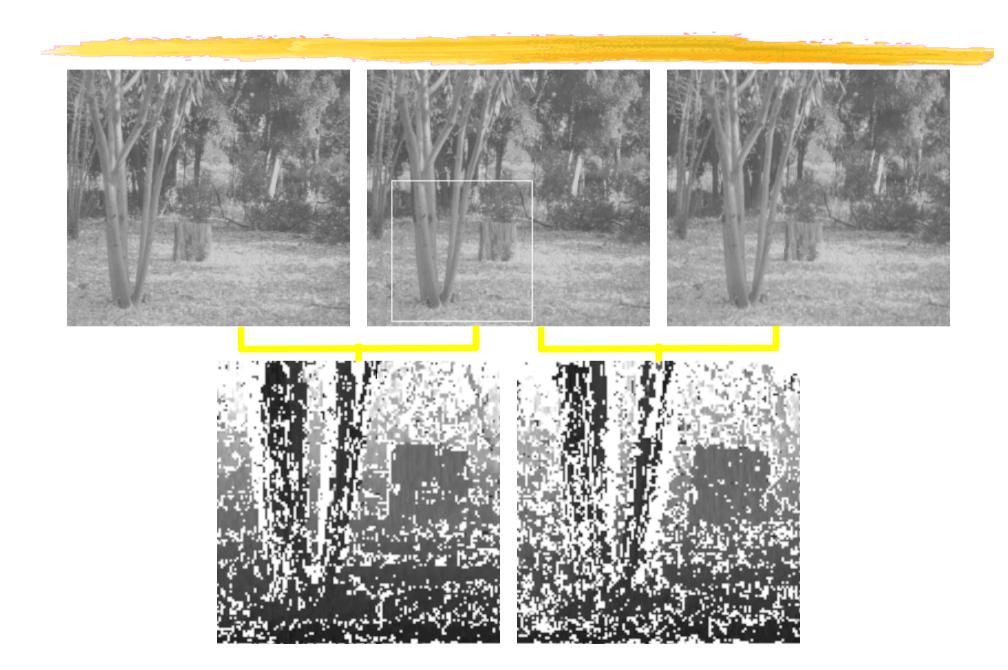
# **OCCLUSIONS**



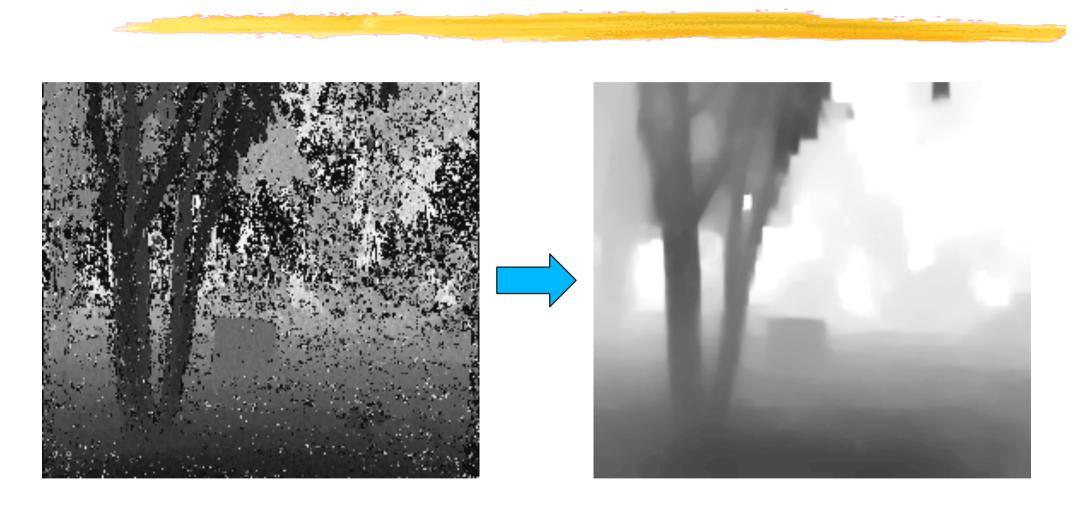
# → Consistency test



# **GROUND LEVEL STEREO**



# **COMBINING DISPARITY MAPS**



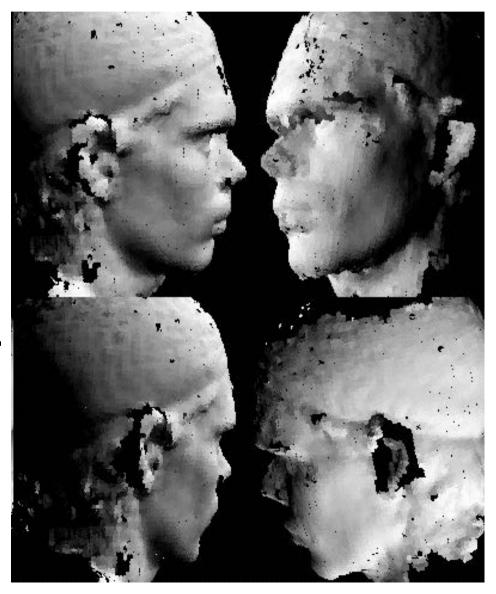
- Merging several disparity maps.
- Smoothing the resulting map.

# **SHAPE FROM VIDEO**

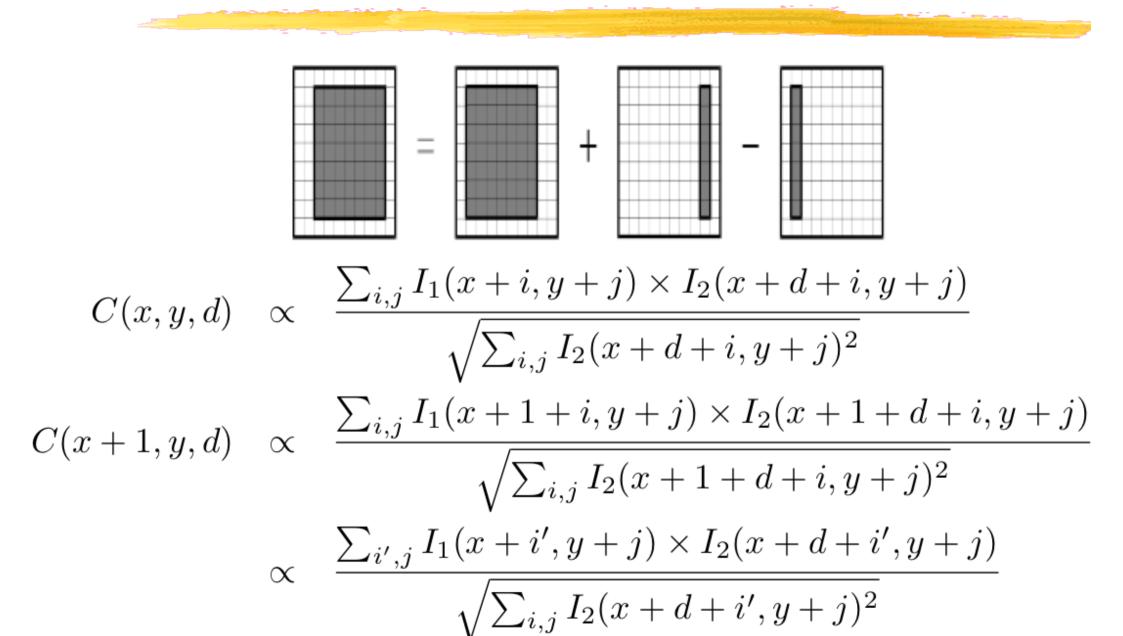


Treat consecutive images as stereo pairs.

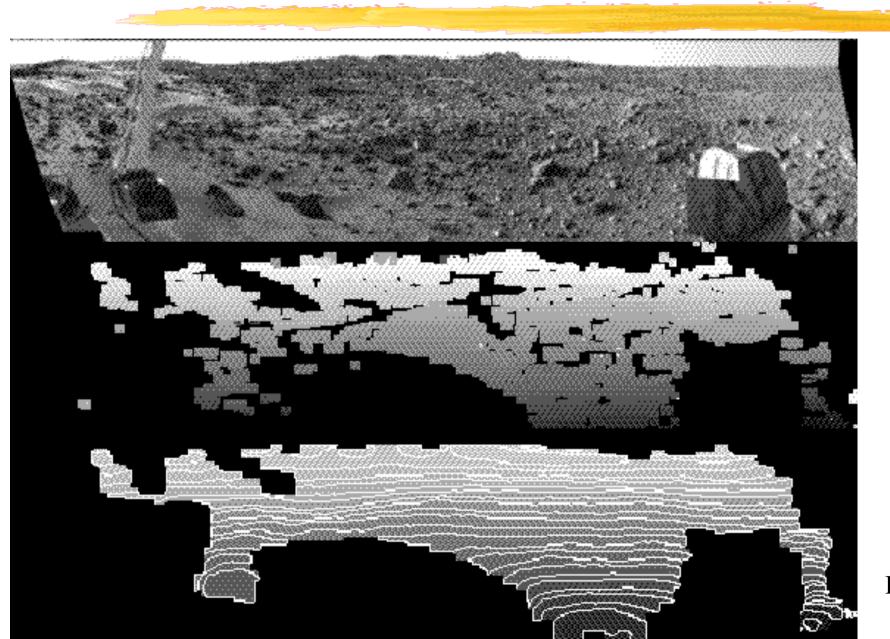
- 1. Compute disparity maps.
- 2. Merge 3-D point clouds.
- 3. Represent as particles.



# REAL-TIME IMPLEMENTATION



# THEN ....

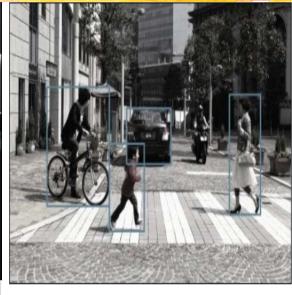


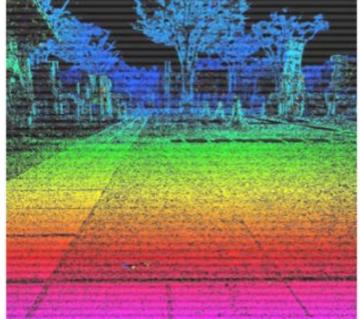
1993: 256x256, 60 disps, 7 fps.

Faugeras et al., INRIA'93

# ... AND MORE RECENTLY







Subaru's EyeSight System

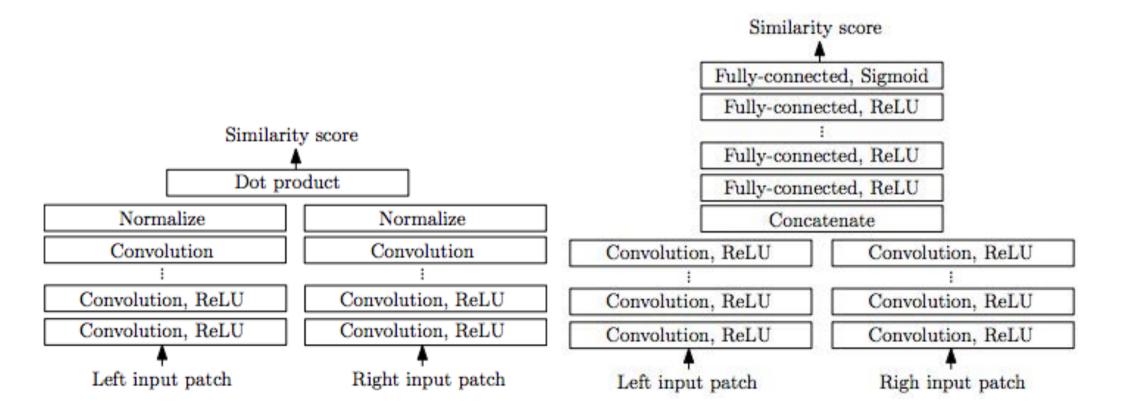
http://www.gizmag.com/subaru-new-eyesight-stereoscopic-vision-system/14879/

2011: 1312x688, 176 disps, 160 fps.

Saneyoshi, CMVA'11

# ... AND EVEN MORE RECENTLY

Train Siamese nets to return a similarity score.



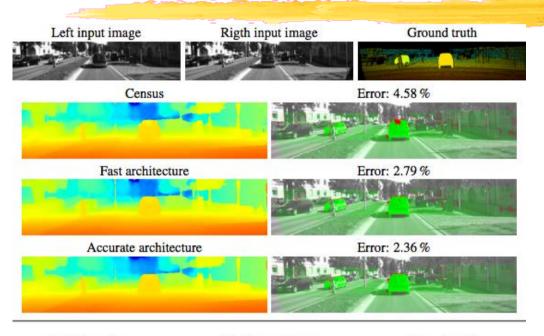
# **COMPARATIVE RESULTS**

Ground truth

Error: 5.25 %

Error: 3.91 %

Error: 3.73 %



Rigth input image

Left input image

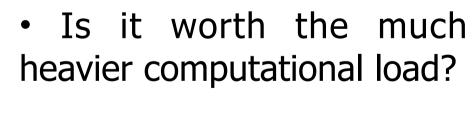
Census

Fast architecture

Accurate architecture

Improved performance on test data but

 How well will it generalize to unseen images?



Time will tell.

# **WINDOW SIZE**

#### Small windows:

- Good precision
- Sensitive to noise

## Large windows:

- Diminished precision
- Increased robustness to noise
- Same kind of trade-off as for edge-detection.

# **WINDOW SIZE**







15x15

**7**x**7** 

# **SCALE-SPACE REVISITED**



Gaussian pyramid





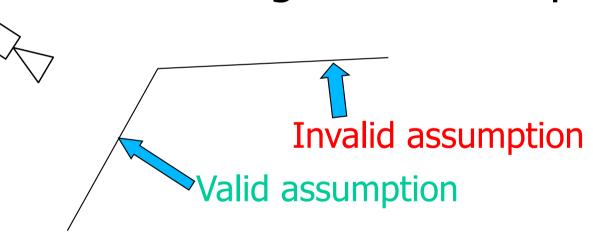


Difference of Gaussians

- Using a small window on a reduced image is equivalent to using a large one on the original image.
- Using difference of Gaussian images is an effective way of achieving normalization.
- →It becomes natural to use results obtained using low resolution images to guide the search at higher resolution.

#### FRONTO-PARALLEL ASSUMPTION

The disparity is assumed to be the same in the whole correlation window, which is equivalent to assuming constant depth.



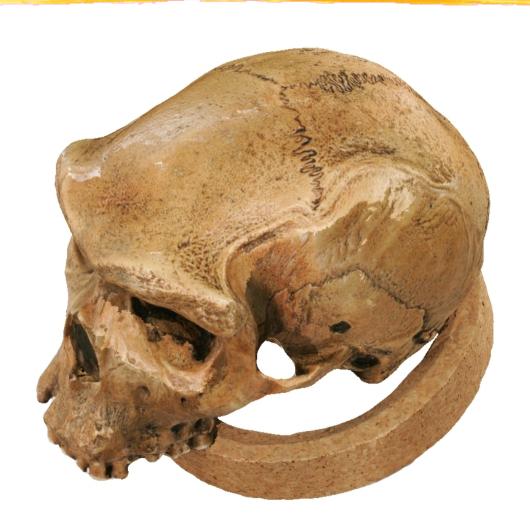
→ Ok when the surface faces the camera but breaks down otherwise.

# **MULTI-VIEW STEREO**



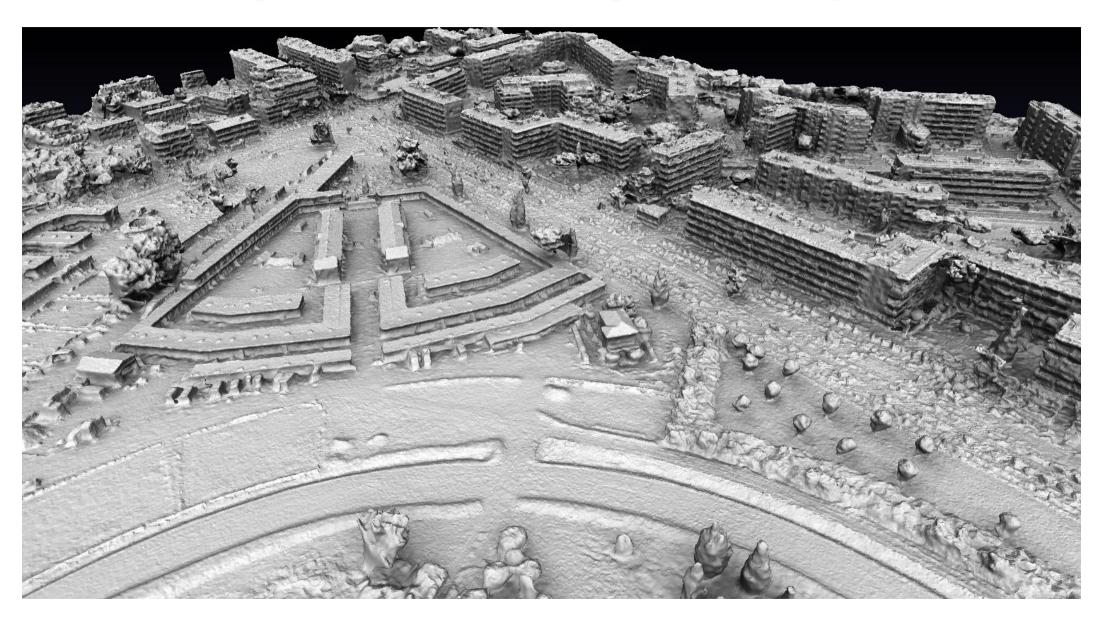
Multi-view reconstruction setup

Adjust correlation window shapes to handle orientation.



Text Silva Medpoled Model

# **MULTI-VIEW STEREO**



### **SMALL DRONES**





The X100 revolutionary mapping.

SenseFly: www.sensefly.com

Gatewing: www.gatewing.com

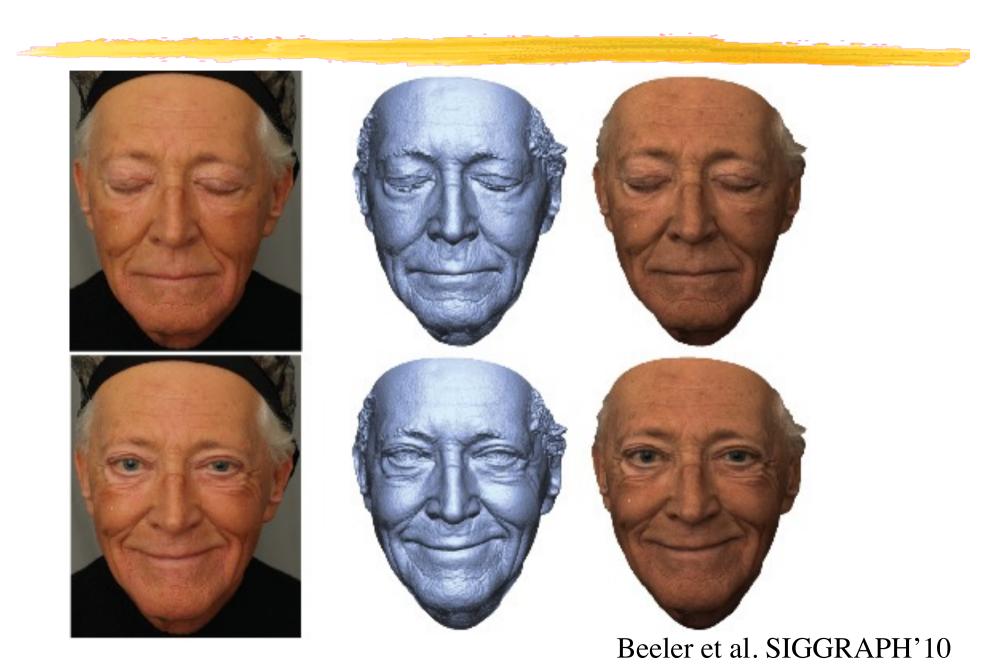
# **MATTERHORN**



Drone: www.sensefly.com

Mapping: www.pix4d.com

## **FACE RECONSTRUCTION**



#### FACE RECONSTRUCTION





Beeler et al. SIGGRAPH'10

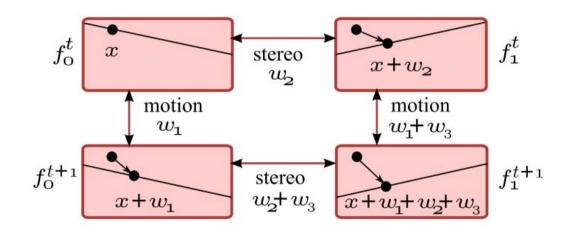
#### **DYNAMIC SHAPE**

# Lightweight Binocular Facial Performance Capture under Uncontrolled Lighting

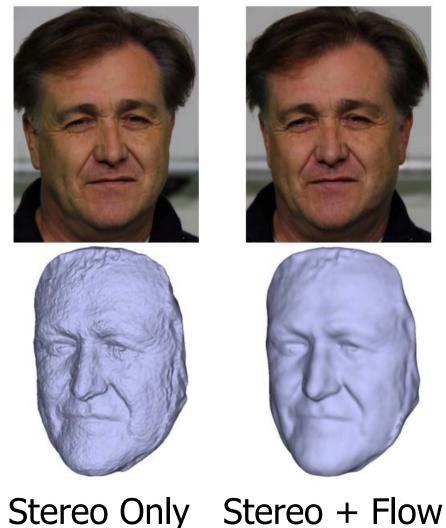
Levi Valgaerts <sup>1</sup> Chenglei Wu <sup>1,2</sup> Andrés Bruhn <sup>3</sup> Hans-Peter Seidel <sup>1</sup> Christian Theobalt <sup>1</sup>

MPI for Informatics
 Intel Visual Computing Institute
 University of Stuttgart

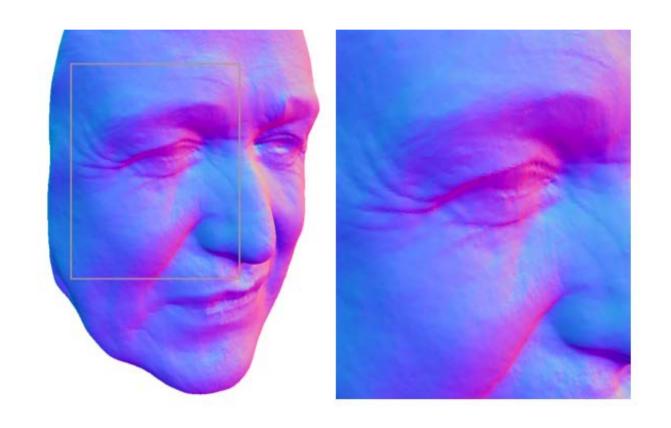
#### **SCENE FLOW**



Correspondences across cameras and across time

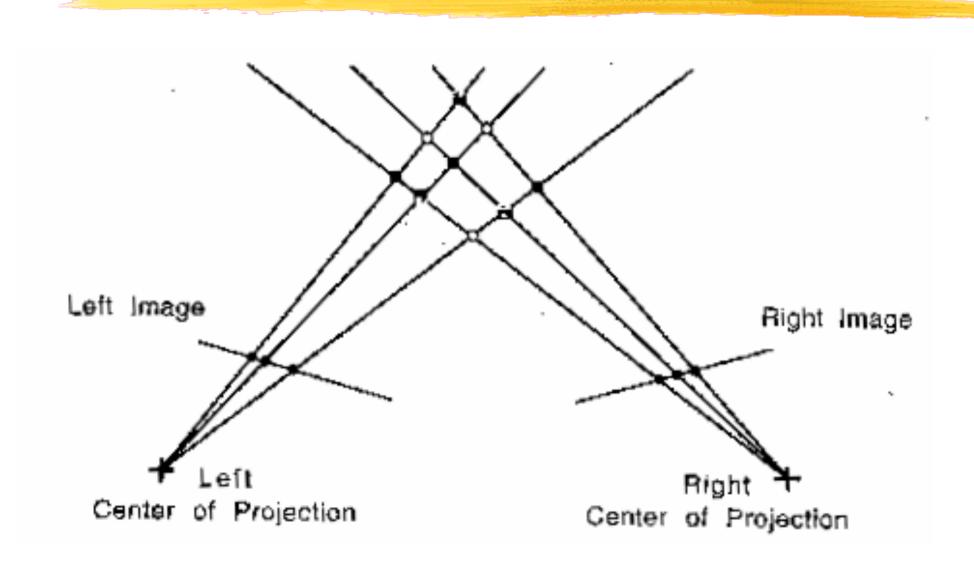


#### SHAPE FROM SHADING

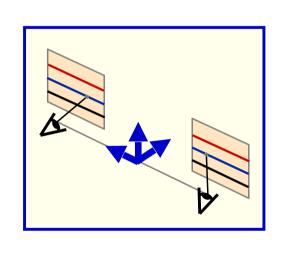


Shape-from-shading is used to refine the shape and provide high-frequency details.

#### UNCERTAINTY



#### PRECISION vs BASELINE



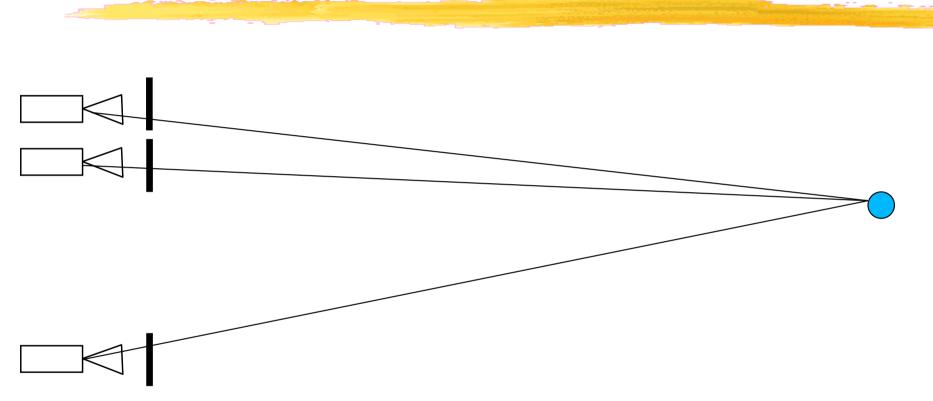
$$d = f\frac{b}{Z}$$

$$\Rightarrow Z = f\frac{b}{d}$$

$$\Rightarrow \frac{\delta Z}{\delta d} = -f\frac{b}{d^2} = -\frac{Z^2}{fb}$$

- Beyond a certain depth stereo stops being useful.
- Precision is inversely proportional to baseline length.

#### SHORT vs LONG BASELINE



# Long baseline:

- Harder to match
- More occlusions
- Better precision

#### Short baseline:

- Good matches
- Few occlusions
- Poor precision

# **MARS ROVER**





There are four cameras!

#### VIDEO-BASED MOTION CAPTURE



Fitting an articulated body model to stereo data.

# TRINOCULAR STEREO







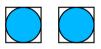


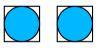
#### **MULTI-CAMERA CONFIGURATIONS**





3 cameras give both robustness and precision





4 cameras give additional redundancy







3 cameras in a T arrangement allow the system to see vertical lines.

#### **KINECT: STRUCTURED LIGHT**





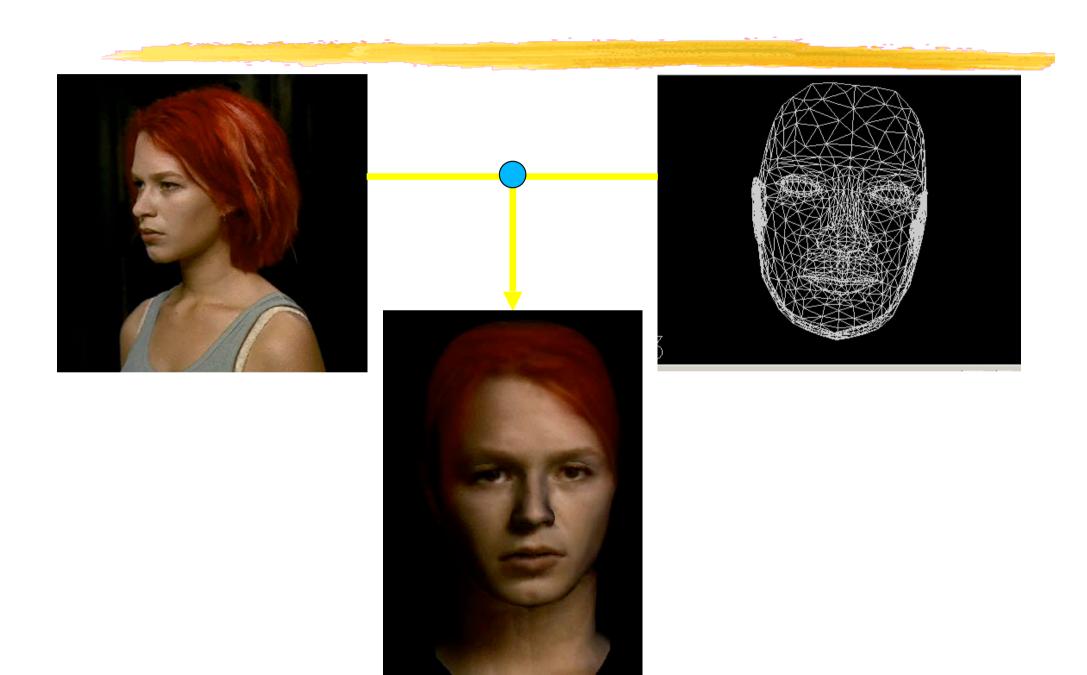
- The Kinect camera projects a IR pattern and measures depth from its distortion.
- Same principle but the second camera is replaced by the projector.

# FACES FROM LOW-RESOLUTION VIDEOS

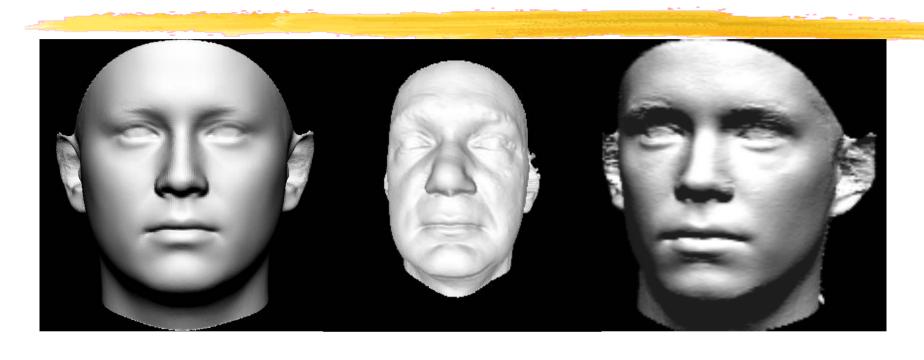


- No calibration data
- Relatively little texture
- Difficult lighting

# SIMPLE FACE MODEL



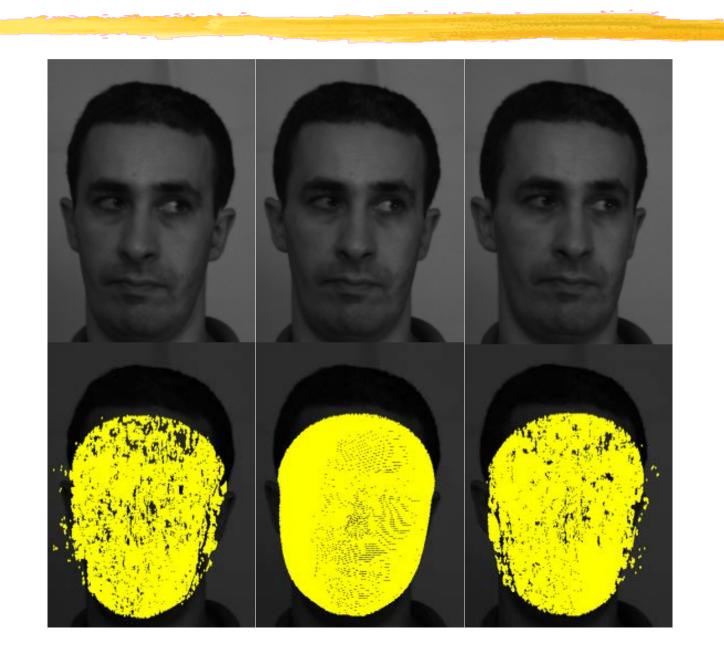
### PCA FACE MODEL



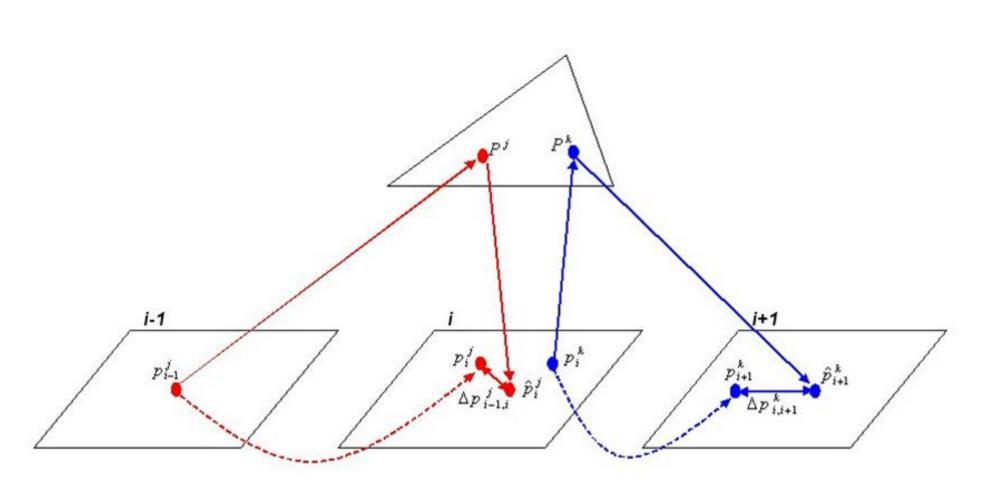
 $S = \overline{S} + \sum_{i=1}^{99} a_i S_i$  Average shape  $S_i$ : Shape vector

 $a_i$ : Shape coefficients

# CORRESPONDENCES

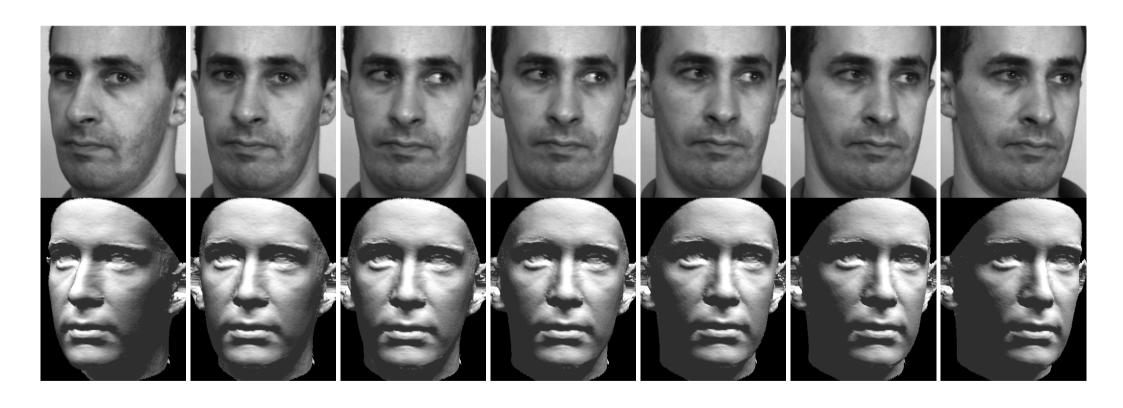


#### TRANSFER FUNCTION



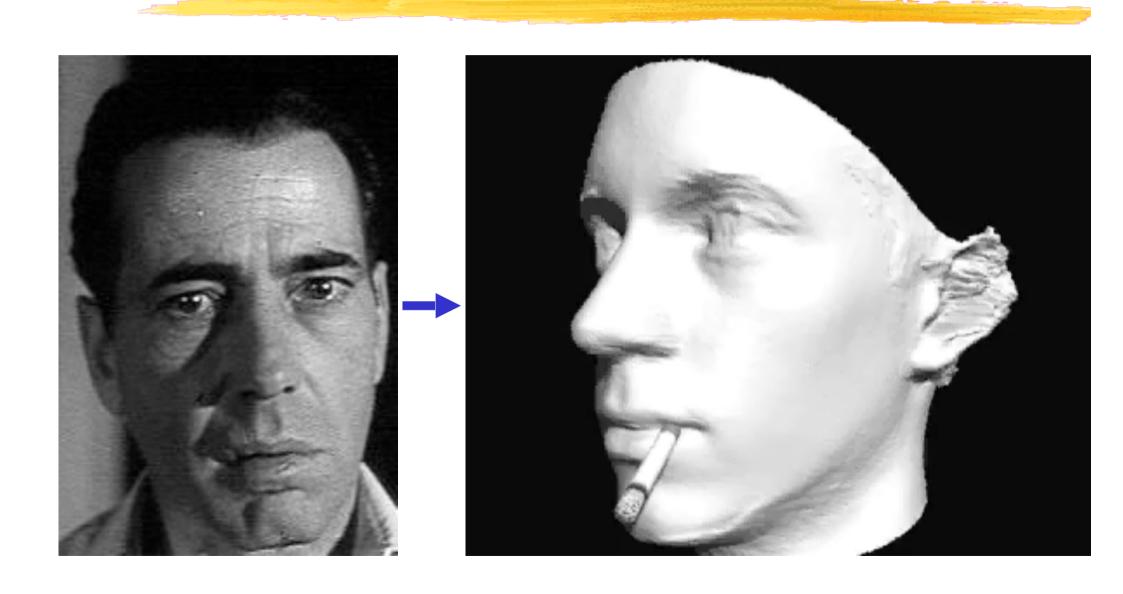
$$F_3(A, C_{i-1}, C_i, C_{i+1}) = \sum_{j \in Q_{i-1}} \left\| \Delta p_{i-1,i}^j \right\|^2 + \sum_{k \in Q_i} \left\| \Delta p_{i,i+1}^k \right\|^2$$

#### MODEL BASED BUNDLE ADJUSTMENT

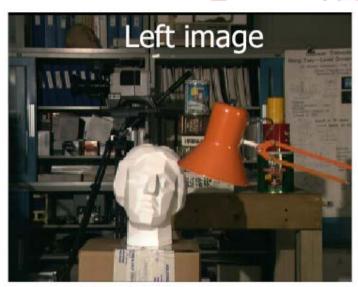


Median accuracy greater than 0.5mm

# **MODEL FROM OLD MOVIE**



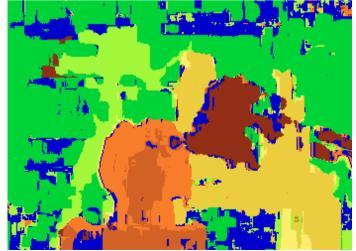
# LIMITATIONS OF WINDOW BASED METHODS





Ground truth





Correlation result

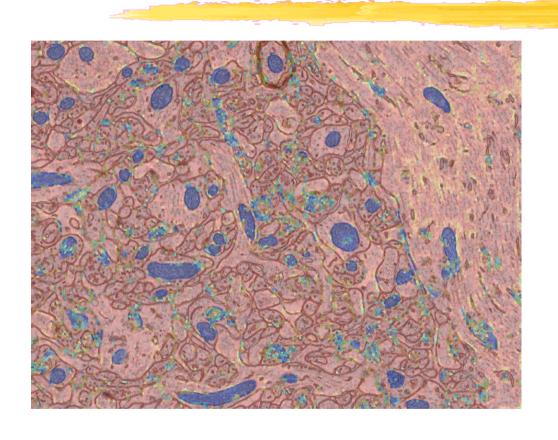
#### **ENERGY MINIMIZATION**

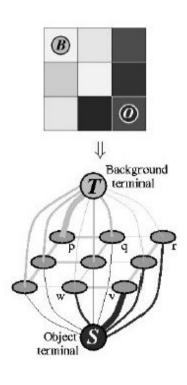


- 1. Matching pixels should have similar intensities.
- 2. Most nearby pixels should have similar disparities
- Minimize

$$\sum [I_2(x+D(x,y),y)-I_1(x,y)]^2 + \lambda \sum [D(x+1,y)-D(x,y)]^2 + \mu \sum [D(x,y+1)-D(x,y)]^2$$

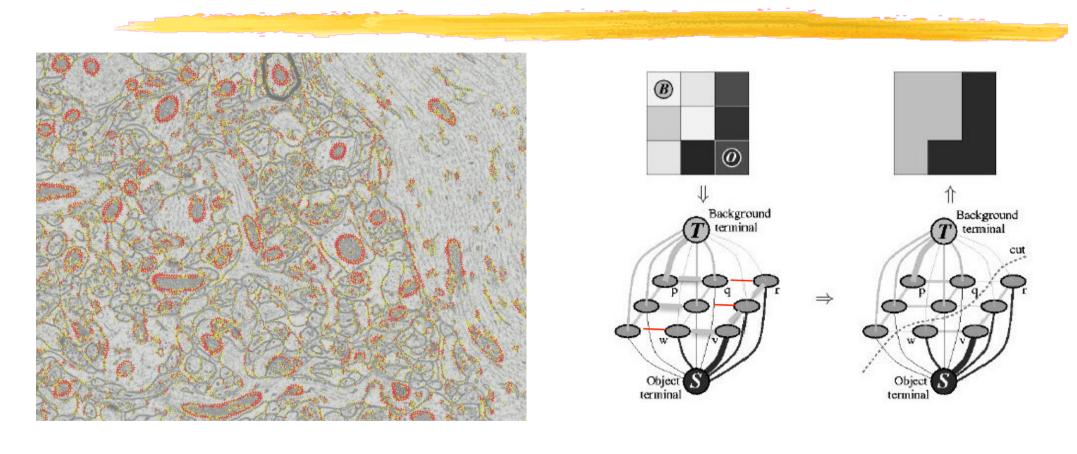
#### MITOCHONDRIA REMINDER





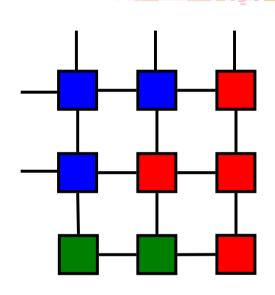
- A high probability of being a mitochondria can be represented by a strong edge connecting a supervoxel to the source and a weak one to the sink.
- And conversely for a low probability.

#### MITOCHONDRIA REMINDER



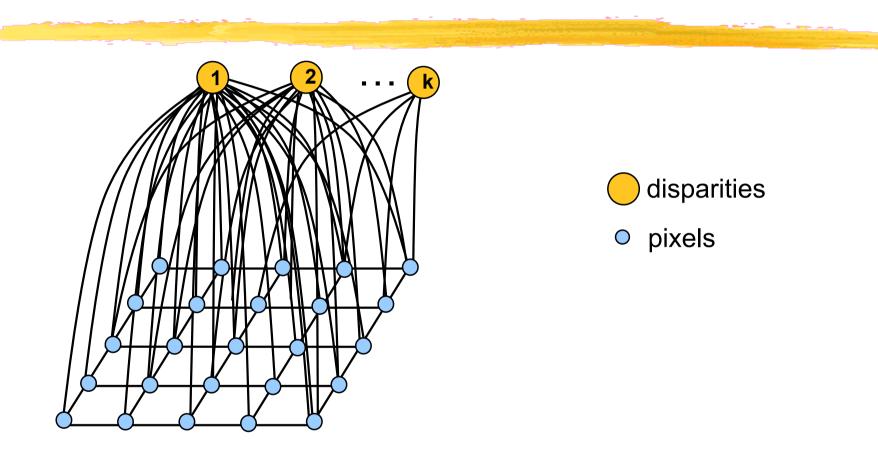
 Another classifier can be trained to assign a high-weight to edges connecting supervoxels belonging to the same class and a low one to others.

#### **GRAPH CUTS**



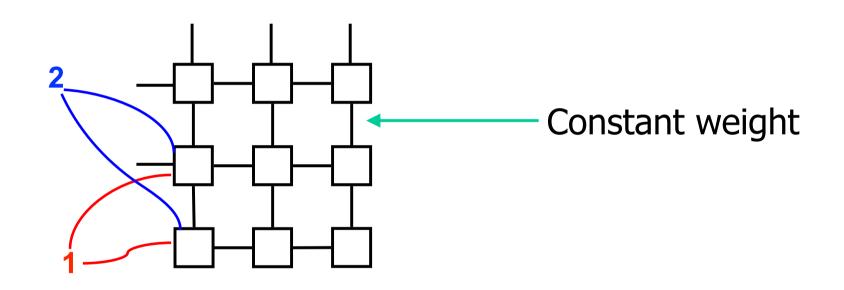
- 1. Stereo is a labeling problem. —> Use graph cut.
- 2. Connect each pixel to each possible disparity value.

# **Building The Graph**



Connect each pixel to each possible disparity value.

# **Assigning Edge Weights**



Assign a weight that is inversely proportional to |I2(x+1,y)-I1(x,y)|Assign a weight that is inversely proportional to |I2(x+2,y)-I1(x,y)|.....

# Minimizing the Objective Function

#### Minimize:

$$\sum [I_2(x+D(x,y),y)-I_1(x,y)]^2 + \lambda \sum [D(x+1,y)-D(x,y)]^2 + \mu \sum [D(x,y+1)-D(x,y)]^2$$

#### Graph cut algorithm:

- Guarantees an absolute minimum only when there are only two possible disparities.
- Effective heuristics ( $\alpha$ -expansion,  $\alpha$ - $\beta$  swap) otherwise.

# **NCC vs GRAPH CUTS**



**Normalized correlation** 

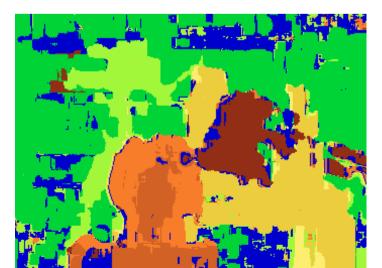
**Graph Cuts** 

#### **NCC vs GRAPH CUTS**

left image



**Normalized correlation** 



true disparities



**Graph Cuts** 



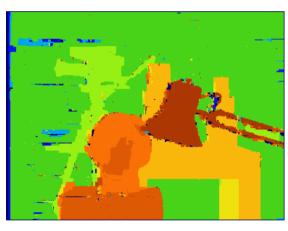
# **GRAPH CUT RESULTS**

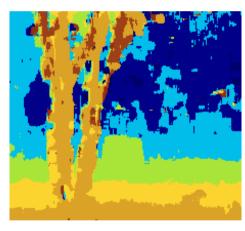


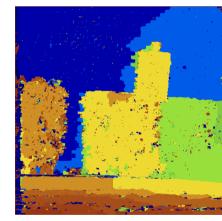


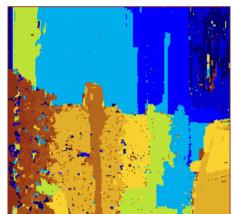


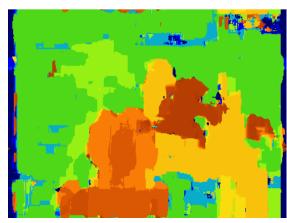


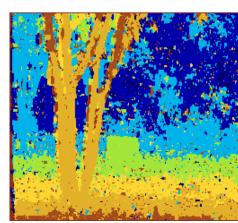


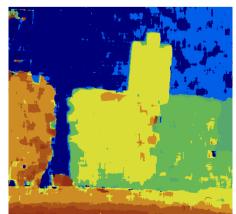


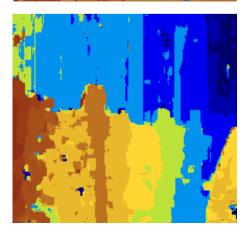












#### STRENGTHS AND LIMITATIONS

#### Strengths:

- Practical method for depth recovery.
- Runs in real-time on ordinary hardware.

#### **Limitations:**

- Requires multiple views.
- Only applicable to reasonably textured objects.