CS-411: Digital Education \& Learning Analytics

Chapter 9:

Learner modeling

CS-411 : Digital Education \& Learning Analytics
p (Trump | Snow) = ?

If the first snow comes on a Tuesday...

something will happen somewhere someday

Learner Modelling

$$
5^{2}=?
$$

Learner Modelling

From the learner's behaviour, infer his/her learner's knowledge state

Learner Modelling

	Knowledge States								
$5^{2}=$? $?$									
Behavior (Answer)	$5^{2}=25$	$5^{n}=\ldots$	$\mathrm{n}^{2}=\mathrm{n} . \mathrm{N}$	$x^{n}=x . x . \ldots$	$x^{n}=x . x \text { but }$ bad mult.	$\mathrm{x}^{\mathrm{n}}=\mathrm{x} . \mathrm{n}$	$\mathrm{x}^{\mathrm{n}}=\mathrm{x}+\mathrm{n}$	$\mathrm{x}^{\mathrm{n}}=$???	
25	0.25	0.125	0.125	0.125	0.125	0.125	0.125	0.125	1
35	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	1
10	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	1
27	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	1
7	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	1

Learner Modelling

From the learner's behaviour, infer his/her learner's knowledge state

$$
\begin{aligned}
& \mathrm{p}(\text { state }=\text { knows } \mid \text { correct-answer })=1-\text { Guess } \\
& \mathrm{p}(\text { state }=\text { knows } \mid \text { incorrect-answer })=0+\text { Slip }
\end{aligned}
$$

Factors that depend upon the response modality

Learner Modelling

From the learner's behaviours, infer his/her learner's knowledge state

Potential values

State "fine": the learner is performing well
State "active": the learner is working but does not seem to succeed well
State "lost": the learner does not understand at all or did not complete the activities State "drop": the learned has dropped out (e.g. no login since N days)

From the learner's behaviours, infer his/her learner's knowledge state
$b(s)=$ watch video with many pauses

$$
X(S)=\{\text { lost, active, fine, brilliant }\}
$$

Normalized entropy of the diagnosis vector

$$
x(\mathrm{~s})=[.15 .40 .30 .15] \xrightarrow{H} \xrightarrow{H(X)=-\sum_{i} P\left(x_{i}\right) \log _{b} P\left(x_{i}\right)} H_{0}=0.94
$$

The uncertainty of the diagnosis can be estimated by Shannon's entropy applied to the vector fo probabilities for the differentstates.

Since this value depends upon the number of states, we normalize it on a $0->1$ scale by dividing it by the maximal entropy which $\log _{2}$ of the number of states

The diagnosis power of a question can be measured by the entropy of the diagnosis vector

Write a question that

- determines if the learner understood the concept of standard deviation;
- has a high diagnosis power
- can be automatically graded

Learner Modelling

From the learner's behaviour, infer his/her learner's knowledge state

1. The basic approach
2. The good old Al approach
3. The data crunching approach
4. The Bayesian approach
5. The Markov approach

(1) Basic approach to learner Modelling

Decrease uncertainty by collecting multiple answers

$5^{2}=? ?$	$7^{2}=? ?$	Knowledge States								
Behavior (Answer)		$5^{2}=25$	$5^{n}=\ldots$	$\mathrm{n}^{2}=\mathrm{n} . \mathrm{N}$	$x^{n}=x . x . \ldots$	$\begin{gathered} x^{\mathrm{n}}=\mathrm{x} \cdot \mathrm{x} \text { but } \\ \text { bad mult. } \end{gathered}$	$x^{n}=x . n$	$x^{n}=x+n$	$x^{n}=$? ? ?	
25	49	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	1
25	21	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	1
35	49	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	1

If the learner makes more than $n \%$ errors in a_{i}, then (s)he is in state «low understanding »

(2) Learner Modelling in symbolic Al

To compute the length of the hypothenuse

1. Measure the length, L 1 and L 2
2. Compute L1 ${ }^{2}$ and L^{2}
3. Sum them
4. Extract the square root

Correct answer $=8.54$
Learner Answer = 8.18
What did he do wrong?

L2 : 8 cm

(2) Learner Modelling in symbolic AI

If, when bringing perturbation X to an expert system, it produces the same mistake as the learner, X is a good hypothesis of what the learner did not understand

(3) Learner Modelling with data sciences

From the learner's behaviours, infer his/her learner's knowledge state

Eye tracking experiment on MOOC Video

Following teacher's references

Gaze of students' watching Scala course by Prof. Martin Odersky (EPFL, Switzerland)

K. Sharma, P. Jermann, P. Dillenbourg
@ CHILI - http://chili.epfl.ch
Supported by the Swiss National Science Foundation
(Grants CR1211_132996 and PZOOP2_126611)

Example 1: From the learner's gaze, infer the « withmeness»
because it predicts learning gains

Time [msec] to visit the referred sites, first time

First Fixation Duration [msec] the referred site

Example 2: From 2 learners gazes, infer the quality of collaboration

DUET - Dual Eye-Tracking Pair programming experiment

Low gaze recurrence

 FÉDÉRALE DE LAUSANNEP. Jermann, M.-A. Nüssli \& P. Dillenbourg © CRAFT - http://craft.epfl.ch/

Example 2: From 2 learners gazes, infer the quality of collaboration

The pairs that collaborate well tend to look \pm at the same time at \pm the same object

Next Week

08:15-10:00 Eye tracking methods Kshitij Sharma

10:15-12:00 Learning analytics
Try an eye tracker

(r)

Learner Modelling

From the learner's behaviour, infer his/her learner's knowledge state

Example 3: From the learner's (co)movements, infer the class level of attention

tarted.
$\otimes \in$ Graph applet

Kernel	Features	Score	Cohen's kappa
RBF(c=1.31, $\mathrm{g}=0.0211)$	Distance, Head travel norm., Num. still periods	61.86%	0.30
RBF(c=1.21, $\mathrm{g}=0.11)$	Period, Row, Head travel norm., Mean duration still	61.72%	0.32
RBF(c=1.11,g=0.061)	Head travel norm., Mean duration still	60.42%	0.28
RBF(c=1.4,g=0.04)	Period, Distance, Row, Mean duration still	59.23%	0.30

	Behaviours	Behavioural 'Dust'
3 Class Plane	The \# messages in the forum	Head Co-Rotation
2 Team Plane	The concept map produced by a pair	Gaze Recurrence
1	The learner answer to a quizz	Wideo

Learner Modelling @ DataScience Times

Learner Modelling @ DataScience Times

Learner Modelling @ DataScience Times

Learner Modelling @ DataScience Times

	Π_{3}
State A State B	- Conversation depth: The average depth of conversation threads in forums. - Connectivity: What is the minimal number of students that need to be removed from the social network to disconnect the other nodes from each other (Diestel, 2005)? - Homophily: Do students form ties with similar versus dissimilar students? Ties can be forums postings; similarity is measured through students' profiles. - Reciprocity: If student A often replies to another student B in the forum, is the opposite true? - Propinquity: The tendency for actors to have more ties with those who are geographically close (Kadushin, 2012). - Density: The proportion of direct interactions between two students relative to the total number of possible interactions between all students (Xu et al., 2010). -
Classifi	
Features	
Rich Data Set	

(4) Learner Modelling @ BayesianTimes

Activity a_{5}. In order to reduce the variance of the set [1 2233345 8], 3 numbers can be removed. Which ones?
a) Remove all occurrences of number 3
b) Remove the numbers that appear several times
c) Remove 1, 5, and 8
d) Remove 4, 5, and 8
$X_{5}(S)=\{$ misunderstanding, good understanding $)$
if $b_{5}(s)=c$, then $x_{5}(s)=g$
if $b_{5}(s)=a$, then $x_{5}(s)=m$
$P\left(x_{5}(s)=g \mid b_{5}(s)=c\right)=1$
$P\left(x_{5}(s)=g \mid b_{5}(s)=a\right)=0$

(4) Learner Modelling @ BayesianTimes

Activity a_{5}. In order to reduce the variance of the set [1 2233345 8], 3 numbers can be removed. Which ones?
a) Remove all occurrences of number 3
b) Remove the numbers that appear several times
c) Remove 1, 5, and 8
d) Remove 4, 5, and 8
$X_{5}(S)=\{$ misunderstanding, good understanding $)$
if $b_{5}(s)=c$, then $x_{5}(s)=9$
if $b_{5}(s)=a$, then $x_{5}(s)=m$
$P\left(x_{5}(s)=g \mid b_{5}(s)=c\right)=75 \%$ (he had 25% to succeed by chance)
$P\left(x_{5}(s)=g \mid b_{5}(s)=a\right) \approx 10 \%$ (e.g. typing mistake)

(4) Learner Modelling @ BayesianTimes

$X_{5}(S)=\{$ misunderstanding, good understanding $)$
$P\left(x_{5}(s)=g \mid b_{5}(s)=c\right)=75 \%$ (he had 25% to succeed by chance)
But if one knows a priori that this a difficult concept, e.g. that only 20% of students are usually in state « good understanding», one may apply Bayes Theorem

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}
$$

1-distraction

$$
\begin{gathered}
0.20 \\
P\left(x_{5}(\mathrm{~s})=\mathrm{g}\right)
\end{gathered}: \begin{gathered}
0.90 \\
\mathrm{P}\left(\mathrm{~b}_{5}(\mathrm{~s})=\mathrm{c} \mid \mathrm{x}_{5}(\mathrm{~s})=\mathrm{g}\right)
\end{gathered}
$$

$P\left(x_{5}(s)=g \mid b_{5}(s)=c\right)=$

$$
\begin{array}{cc}
P\left(b_{5}(\mathrm{~s})=\mathrm{c} \mid \mathrm{x}_{5}(\mathrm{~s})=\mathrm{g}\right) \cdot P\left(\mathrm{x}_{5}(\mathrm{~s})=\mathrm{g}\right)+P\left(\mathrm{~b}_{5}(\mathrm{~s})=\mathrm{c} \mid \mathrm{x}_{5}(\mathrm{~s}) \neq \mathrm{g}\right) \cdot P\left(\mathrm{x}_{5}(\mathrm{~s}) \neq \mathrm{g}\right) \\
0.90 & 0.20 \\
0.25 \\
\text { randomness }
\end{array}
$$

$$
P\left(x_{5}(s)=g \mid b_{5}(s)=c\right)=0.47
$$

(4) Learner Modelling @ BayesianTimes

The diagnosis power of this question is not great, close to 50/50. Entropy is very high !

(5) Learner Modelling @ MarkovTimes

Inferring the learner's state from his previous state

The weight of edges

Activity 2

	Lost	Active	Fine	Great	H	H0
Lost	0.26	0.39	0.29	0.06	1.80	0.90
Active	0.19	0.34	0.26	0.21	1.96	0.98
Fine	0.11	0.28	0.45	0.16	1.81	0.90
Great	0.05	0.15	0.25	0.55	1.60	0.80
					$1 . \mathrm{HO}=$	$\mathbf{0 . 1 0}$

| M6 | Lost | Active | Fine | H | H 0 | M7 | Lost | Active | Fine | H | H 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lost | 0.01 | 0.24 | 0.75 | 0.87 | 0.55 | Lost | 0.75 | 0.24 | 0.01 | 0.87 | 0.55 |
| Active | 0.01 | 0.24 | 0.75 | 0.87 | 0.55 | Active | 0.75 | 0.24 | 0.01 | 0.87 | 0.55 |
| Fine | 0.01 | 0.24 | 0.75 | 0.87 | 0.55 | Fine | 0.75 | 0.24 | 0.01 | 0.87 | 0.55 |
| | | | | $\omega(\mathrm{M} 5)$ | 0.45 | | | | | $\omega(\mathrm{M} 6)$ | 0.45 |

State Transition Matriy Utopy

For the exam, I don't ask you to learn home-made formulas but to understand the principles. Formulas could be replaced by visalisations

Edge Eslasticity

The strength relationship between activies willoften degrade with time, e.g. even if a_{1} is strong pre-requisite to a_{2}, the knowledge gained in a_{1} won't remain activated for ever.

So far we treated them separately, but one may infer the learner's state from both his behaviour and his previous state

Bayesian Knowledge Tracing

One step further: one may infer the learner's state from his behaviour (depth), his previous state (horizontally) and the state of others (vertically)

The learning analytics cube: 3 axes of inference

A. John does probably not understand SD deviation because he removed the central values of the distribution
B. John does probably not understand SD deviation because he did not understand what is a mean and the mean is a prerequisite
C. John does probably not understand SD deviation because most learners in that class failed and John is one of the weakest

This cube may allow second-level inferences

This cube may allow second-level inferences

So far we use common sense to describe the learner state

$$
x_{i}(s) \in X_{i}(S)=\{\text { fine, active, lost, drop }\}
$$

but educational research defined is much richer set of states

Measured
 Stable
 at time t
 in time

State \neq Trait

$$
\begin{aligned}
& \text { Learning styles } \\
& \text { Cognitive styles }
\end{aligned}
$$

- Anxious / Self-confident
- Risk-aversive / Risk-seeking
- Aural / visual / kinesthetic
- Deep / Surface
- Field-dependent/independent

Severe criticisms:

- Contextual rather than personal
- No clear effects of adaptation
- Should education mimic style or counterbalance them ?
- Labels produce self-fulfilling prophecies

The embedded figures test - ta figures find all the is to find all this figure.

BEWARE OF
 the medicalisation of Education !!!

- Learning disabilities, LD
- Attention-deficit disorder, ADD
- Attention-deficit hypeactivty disorder, ADHD
- Non-verbal learning disability, NVLD
- High-potential chidren
-

Labels help Sales

Learning Analytics

