

Introduction to MOOCs database

CS-411 : Digital Education & Learning Analytics

Mina Shirvani Boroujeni Nov. 08 2016

MOOCs Components

Logged events

Videos			Forum		Problems
	Event Types		Event Types		Event Types
	Video.Load		Forum.Load		Problem.Check
	Video.Play		Forum.Subscribe		
	Video.Download		Forum.ThreadSubscribe		
	Video.Seek		Forum.Thread.Launch		
	Video.Pause		Forum.Thread.View		
	Video Crood Charge		Forum.Thread.PostOn		
			Forum.Post.Upvote		
	Video.Error		Forum.Post.Downvote		
	Video.Stalled		Forum.Comment.Downvote		

Forum Hierarchy

Project Overview

• Assignment submission

- Multiple submissions are possible
- Different strategies followed by students:
 - Trial and error (bursty resubmission sequences)
 - Review course materials and resubmit
 - Review discussion forum and resubmit
 - Pose a question in discussion forum and resubmit
 - etc
- Overall goal:
 - Explore assignment submission strategies
 - Predict if the grade would improve after a resubmission to an assignment
 - Predict grade improvement between the first and last submission to an assignment

Data Analysis Pipeline

- Develop a hypothesis
- Extract features
- Partition data into train and test set
- Train model (on train set)
- Evaluate model performance (on test set)
- Find the best feature set and model

Model training and parameter selection in CARET

- 1 Define sets of model parameter values to evaluate
- 2 for each parameter set do
- 3 for each resampling iteration do
- 4 Hold–out specific samples
- 5 [Optional] Pre-process the data
 - Fit the model on the remainder
- 7 Predict the hold–out samples
- 8 end
- 9 Calculate the average performance across hold-out predictions
- 10 end

6

- 11 Determine the optimal parameter set
- 12 Fit the final model to all the training data using the optimal parameter set

Model training and parameter selection in CARET

• Train

```
ctrl= trainControl(method = 'cv')
paramGrid <- expand.grid(C = c(0.001,0.01,0.1,0.5,1,2,3,4))
```

```
model=train(x=d.train[,fs],
    y=d.train$Price,
    method = "svmLinear",
    trControl = ctrl,
    tuneGrid = paramGrid,
    preProc = c("center", "scale") )
```

Test

predict(model, newdata=d.test)

A few notes

- Develop features and build predictive model using the dataset provided on Moodle
- Find the best feature set and the best model
- For the final submission, you will use your model to
- Avoid including features based on assignment grades (grades would not be provided in the final test data)

To get started with the R script

- Download the data and scripts from Moodle
- Modify 'aggregateFeatures.R' ' and add a new feature encoding average time between resubmissions avgTbwSubs
- Train and SVM model to predict *overalGradeDiff* given *avgTbwSubs* and <u>countOfVideoandForumEvents</u>

Trade off: goodness of fit and generalizability

Classification

• Regression

Cross Validation

A model validation technique for assessing how well the model generalizes to new data.

- Split training data into **training** and **validation** set
- Build the models using training data
- Evaluate the model on validation data