

Radiation Biology, Protection and Applications (FS2018)

Origin of the Nuclides (Week 10, Seminar)

Pavel Frajtag

19.11.2018

- Introduction: Nuclear Astrophysics
- Big-Bang and Big-Bang Nucleosynthesis
- □ Stellar Evolution and Burning Phases
 - Hertzsprung-Russell Diagram
 - Hydrogen Burning
 - Helium Burning and Higher Burning Stages
- Death of Stars: White Dwarfs and Supernovas
 - s-process
 - r-process
 - other processes (p-process, rp-process, v-nucleosynthesis, vp-process)
- Radionuclides in the Environment
- **Summary**

(Nuclear) Astrophysics

□ Is the offspring of the marriage of (nuclear) physics and astronomy.

- Topics in Astrophysics are: Astronomy (radio, infrared, optical, ultraviolet, X-ray, γ-ray), stellar dynamics and evolution, galaxy formation, large-scale structure of matter in the universe, origin of cosmic rays, black holes, gravitational waves (general relativity), physical cosmology, astroparticle physics.
- Nuclear Astrophysics strives to answer the following questions:
 - How did the chemical elements we have on Earth come into
 - •Where in space were they formed?
 - How does stellar energy production work (How does the sun shine?)
- Diagram shows the abundances of the elements in the solar system (mass-%).

Astrophysics: Explain abundances of the elements and isotope variations

Abundance of the elements on the surface of the earth (lithosphere, hydrosphere and atmosphere).

Big Bang

- The universe is thought to have begun with a cataclysmic explosion. Pieces of evidence for this "Big Bang" are:
 - Astronomical observations show that the universe is isotropically expanding (red shift).
 - There is a 2.7 K universal microwave background radiation, the thermal remnant of the Big Bang EM-radiation.

Big Bang Nucleosynthesis (BBN)

- □ After about 200 s and at a temperature of about 10^9 K primordial nucleosynthesis (or BBN) began with the reaction: $n + p \rightarrow d + \gamma$
- □ At this time the reverse reaction $d + \gamma \rightarrow n + p$ declined, such that the deuteron lived long enough to allow for the reactions:
 - $p + d \rightarrow {}^{3}He + \gamma$
 - $n + d \rightarrow {}^{3}H + \gamma$
- As ³He and ³H are more strongly bound, further reactions leading to the very stable αparticle can occur:
 - ${}^{3}\text{H} + p \rightarrow {}^{4}\text{He} + \gamma$
 - ${}^{3}\text{He} + n \rightarrow {}^{4}\text{He} + \gamma$
 - ${}^{3}\text{H} + \text{d} \rightarrow {}^{4}\text{He} + \text{n}$
 - d + d \rightarrow ⁴He + γ
- As stable nuclei with A=5 and A=8 do NOT exist, further (A=1 step) reactions cannot take place. Just some ⁷Li is produced by:
 - ${}^{4}\text{He} + {}^{3}\text{H} \rightarrow {}^{7}\text{Li} + \gamma$
 - ${}^{4}\text{He} + {}^{3}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$ and ${}^{7}\text{Be} + e^{-} \rightarrow {}^{7}\text{Li} + v_{e}$
- ⁷Li is very weakly bound and rapidly destroyed. Thus the synthesis of larger nuclei was blocked. Further nucleosynthesis goes on in stars.

The main nuclear reaction chains for BBN

Origin of the Nuclides, P. Frajtag

Stellar Evolution: Hertzsprung-Russell diagram (1)

□ A well defined correlation between luminosity and surface temperature of stars was observed by Hertzsprung and Russell. Most stars (like our sun) fall in a narrow band called the main sequence.

Radiation Biology, Protection and Applications

FÉDÉRALE DE LAUSANNE

Origin of the Nuclides, P. Frajtag

There are 3 main regions (or evolutionary stages):

The main sequence stars:

- spend about 90% of their lives burning hydrogen into helium in their core

Red giant and supergiant stars:

- occupy the region above the main sequence
- have low surface temperatures and high luminosities which, according to the Stefan-Boltzmann law, means they also have large radii
- enter this evolutionary stage once they have exhausted the hydrogen fuel in their cores and have started to burn helium and other heavier elements.

White dwarf stars:

- are the final evolutionary stage of low to intermediate mass stars
- are found in the bottom left of the HR diagram
- are very hot but have low luminosities due to their small size.

The **Sun** is found on the main sequence with a luminosity of 1 and a temperature of around 5,400 Kelvin.

Nuclear Fusion in Stars

The proton-proton chain dominates in stars the size of the Sun or smaller.

The CNO cycle dominates in stars heavier than the Sun.

Hydrogen Burning

Three chains of nuclear reactions that constitute hydrogen burning and convert protons into ⁴He. The ratelimiting step in all reactions is the first reaction to create the deuterium.

Origin of the Nuclides, P. Frajtag

Helium Burning and Higher Burning Stages

- When the hydrogen fuel of a star is exhausted a further gravitational collapse will occur leading to temperatures up to 1-2 x 10⁸K. In this red giant helium burning will start by the triple-α-process:
 - 3 ⁴He \rightarrow ¹²C + γ (through a resonance in ¹²C)
- After some amount of ¹²C has been formed the following reactions can take place:
 - ${}^{4}\text{He}$ + ${}^{12}\text{C} \rightarrow {}^{16}\text{O}$ + γ
 - ${}^{4}\text{He} + {}^{16}\text{O} \rightarrow {}^{20}\text{Ne} + \gamma$

□ And nucleosynthesis may continue with neon-burning: • ${}^{4}\text{He} + {}^{20}\text{Ne} \rightarrow {}^{24}\text{Mg} + γ$

- □ ... and carbon and oxygen burning:
 - ${}^{12}C + {}^{12}C \rightarrow {}^{20}Ne + {}^{4}He$; ${}^{23}Na + p$; ${}^{23}Mg + n$; ${}^{24}Mg + \gamma$
 - ${}^{16}\text{O} + {}^{16}\text{O} \rightarrow {}^{24}\text{Mg} + 2 \, {}^{4}\text{He}$; ${}^{28}\text{Si} + {}^{4}\text{He}$; ${}^{31}\text{P} + p$; ${}^{31}\text{S} + n$; ${}^{32}\text{S} + \gamma$
- □ ... and silicon burning up to nuclei with A~60:
 - ²⁸Si + ⁴He \leftrightarrow ³²S + γ
 - ${}^{32}S + {}^{4}He \leftrightarrow {}^{36}Ar + \gamma$
 - ... • 52 Fe + 4 He \leftrightarrow 56 Ni + γ

Time scale of Nucleosynthetic Reactions in a 1 Solar Mass Star

Reaction	Time
H burning	6 x 10 ⁹ y
He burning	0.5 x 10 ⁶ y
C burning	200 y
Ne burning	1 y
O burning	Few months
Si burning	Days

Radiation Biology, Protection and Applications

Origin of the Nuclides, P. Frajtag

Death of Stars: White Dwarfs and Supernovas

How the life of a star ends depends to a large extent on the mass of the star:

- Stars with masses ~ M_{solar} do not reach the temperatures in their center to complete all burning stages. They extinguish and end as white dwarfs.
- Stars with masses > 8 M_{solar} complete all stellar burning stages and can have an explosive end (supernova). The brightness of the star increases by a factor of 10^6-10^9 releasing ~ 10^{51} ergs on a time scale of seconds. During the stellar explosion a lot of neutrons can be released leading to (n, γ)-reactions on iron-seed nuclei in the core.

□ ⁵⁶Fe+n→⁵⁷Fe(stable)+γ ; ⁵⁷Fe+n→⁵⁸Fe(stable)+ γ ; ⁵⁸Fe+n→⁵⁹Fe(t_{1/2}=44.5d)+ γ ; ⁵⁹Fe(β⁻)⁵⁹Co(stable)... □ The s-process terminates at ²⁰⁹Bi: ²⁰⁹Bi(n, γ)²¹⁰Bi(β⁻)²¹⁰Po(α)²⁰⁶Pb(n, γ)(n, γ)(n, γ)²⁰⁹Pb(β⁻) ²⁰⁹Bi

r-process: Buildup of A>60 nuclei by rapid n-capture

Neutron-capture paths for the s-process and the r-process are shown in the (N, Z)-plane. Both paths start with the iron-peak nuclei as seeds (mainly ⁵⁶Fe). The s-process follows a path along the stability line and terminates finally above ²⁰⁹Bi via α -decay (Cla67). The r-process drives the nuclear matter far to the neutron-rich side of the stability line, and the neutron capture flows upward in the (N, Z)-plane until β -delayed fission and neutron-induced fission occur (Thi83). The r-process path shown was computed (See65) for the conditions $T_9 = 1.0$ and $N_n = 10^{24}$ neutrons cm⁻³.

QUE

FÉDÉRALE DE LAUSANNE

Other Processes that can synthesize Elements

STRUCTURE

INNER

p-process:

FÉDÉRALE DE LAUSANNE

- Consists of a series of photonuclear reactions (γ,p), (γ,α), (γ,n) on seed nuclei from the s- or r-process.
- Leads to the synthesis of some proton-rich nuclei with 70 < A < 200.
- Contribution to the abundances of most elements is very small, but there are some nuclei (¹⁹⁰Pt, ¹⁶⁸Yb) that seem to have been exclusively made by it.

prp-process:

- Rapid proton capture process that makes proton-rich nuclei with 7 < Z < 27 by (p, γ)-reactions and β⁺-decays
- Creates p-rich nuclei like ²¹Na, ¹⁹Ne, and a small number of nuclei with A < 100.

\Box v-nucleosynthesis:

- In a type II supernova the intense neutrino flux of all flavors that passes through the onion layers of the PNS can cause a transmutation of nuclei via (ν, ν')- and (ν_e,e⁻)-, (νbar_e,e⁺)reactions on nuclei.
- Some rare isotopes that could be due to this process are ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, and ¹⁸⁰Ta.

□ vp-process:

- Occurs in supernovae when strong neutrino fluxes create proton-rich ejecta.
- In this process antineutrino absorptions produce neutrons that are immediately captured by proton rich nuclei.
- Nuclei with A > 64 can be produced, e.g., 92,94 Mo and 96,98 Ru.

OF A

PRESUPERNOVA

STAR

Stages of the evolution of the Earth

Ratio of the activities of some long-lived radionuclides at the time of the birth of the Earth to those present.

Time before present	Stage
5,0 . 10 ⁹ y	Solar nebula
4,6 . 10 ⁹ y	Formation of the solar system
4,5 . 10 ⁹ у	Formation of the earth, the moon and of meteorites
4,3 . 10 ⁹ у	First stages of the earth's crust, formation of the oldest minerals found on the earth, formation of hydrosphere and atmosphere
3,9 . 10 ⁹ у	End of major meteoritic impacts
3,8 . 10 ⁹ у	Beginning of formation of rocks
(3,8 - 3,5) . 10 ⁹ y	Formation of oldest rocks
3,5 . 10 ⁹ у	First traces of life (stromatolites)

Radionuclide	Activity Ratio A/A ₀
⁴⁰ K	11.40
⁸⁷ Rb	1.07
²³² Th	1.02
²³⁵ U	84.10
²³⁸ U	2.01

Radionuclides from natural decay series

Decay series	Decay mode of the mother nuclide	Half-life of the mother nuclide [y]	Range of dating [y]	Application
238 U ²²⁶ Ra ²⁰⁶ Pb	α	$4.468 \cdot 10^{9}$	$10^{6} - 10^{10}$	Minerals, geology, geochemistry
235 U 207 Pb	$\alpha (sf: 3.7 \cdot 10^{-7})$	$7.038 \cdot 10^{8}$	$10^{6} - 10^{10}$	Minerals, geology, geochemistry
232 Th ²⁰⁸ Pb	α	$1.405 \cdot 10^{10}$	$10^{6} - 10^{10}$	Minerals, geology, geochemistry
²¹⁰ Pb ²⁰⁶ Pb	β^-	22.3	20-150	Ice, exchange with the atmosphere

Terrestrial	radionu	uclides

Nuclide pair	Decay mode of the mother nuclide	Half-life of the mother nuclide [y]	Range of dating [y]	Application
⁴⁰ K/ ⁴⁰ Ar	$egin{aligned} & eta^- & (89\%) \ & \varepsilon + eta^+ & (11\%) \end{aligned}$	$1.28 \cdot 10^{9}$	$10^3 - 10^{10}$	Minerals
⁸⁷ Rb/ ⁸⁷ Sr	β^{-}	$4.8 \cdot 10^{10}$	$8\cdot 10^63\cdot 10^9$	Minerals, geochronology, geochemistry
¹⁴⁷ Sm/ ¹⁴³ Nd	α	$1.06 \cdot 10^{11}$	$10^8 - 10^{10}$	Minerals, geochronology, geochemistry
¹⁷⁶ Lu/ ¹⁷⁶ Hf	eta^- (97%) arepsilon (3%)	$3.8 \cdot 10^{10}$	$10^{7} - 10^{9}$	Geochemistry
¹⁸⁷ Re/ ¹⁸⁷ Os	β^{-}	$5 \cdot 10^{10}$	$10^{6} - 10^{10}$	Minerals

Radionuclides in the Environment (4)

Cosmogenic radionuclides

Radio- nuclide	Production	Decay mode and half-life [y]	Production rate [atoms per m ² per y]	Range of dating [y]	Application
³ H (T)	$^{14}N(n,t)$ ^{12}C	β^{-} , 12.323	$\approx 1.3 \cdot 10^{11}$	0.5-80	Water, ice
¹⁴ C	$^{14}N(n,p)$ ^{14}C	β^- , 5730	$\approx 7 \cdot 10^{11}$	$2.5 \cdot 10^2 - 4 \cdot 10^4$	Archaeology, climatology, geology (carbon, wood, tissue, bones, carbonates
¹⁰ Be	Interaction of p and n with ¹⁴ N and ¹⁶ O	$\beta^{-}, 1.6 \cdot 10^{6}$	$\approx 1.3 \cdot 10^{10}$	$7 \cdot 10^4 - 10^7$	Sediments, glacial ice, meteorites
²⁶ A1	Interaction of cosmic rays with ⁴⁰ Ar	$\beta^+, 7.16 \cdot 10^5$	$\approx 4.8 \cdot 10^7$	$5\cdot10^4 – 5\cdot10^6$	Sediments, meteorites
³² Si	Interaction of cosmic rays with ⁴⁰ Ar	β^- , 172	$\approx 5.10^7$	10–10 ³	Hydrology, ice
³⁶ Cl	Interaction of cosmic rays with ⁴⁰ Ar	$\beta^{-}, 3.0 \cdot 10^{5}$	$(4.5-6.5) \cdot 10^8$	$3 \cdot 10^4 - 2 \cdot 10^6$	Hydrology, water, glacial ice
³⁹ Ar	Interaction of cosmic rays with ⁴⁰ Ar	β ⁻ , 269	\approx 4.2 \cdot 10 ¹¹	$10^2 - 10^4$	_

Radiation Biology, Protection and Applications

Summary

Stars are Cauldrons in the Cosmos.

- The atomic abundances of the elements/isotopes in the solar system can largely be explained by astrophysical processes:
 - Big Bang Nucleosynthesis
 - Stellar burning phases
 - Explosive burning (s- and p-process)
- The radionuclides found in the lithosphere, hydrosphere and atmosphere are largely leftovers (decay-products) from supernova explosions.
- We consist of "star-dust".
- Radionuclides are a part of nature!

- C.E. Rolfs and W.S. Rodney, "Cauldrons in the Cosmos", Chicago University Press (1988)
- W. Loveland, D.J. Morrissey, G.T. Seaborg, "Modern Nuclear Chemistry", WILEY (2006)
- □ K.H. Lieser, "Nuclear and Radiochemistry", WILEY-VCH (2nd edition, 2001), Chapter 15