## Radiation Biology, Protection and Applications

(PHYS-450)

#### **EXERCISES**

Week 10

### **Problem 1:**

A radionuclide  $^{62}_{29}Cu$  emits  $\beta^+$  radiation with a half-life  $T_{1/2}$  =9.76 min. Determine the particle composition of the daughter's nuclide atom coming from this decay and determine a decay constant  $\lambda$ .

### **Problem 2:**

A uranium nucleus  $^{238}_{92}U$  is gradually changing to other nuclei (the decay series). This uranium series consist of eight alpha decays and six beta decays. What is the final product of this decay series?

#### **Problem 3:**

By simultaneously conserving energy and momentum, find the alphaparticle energy emitted in the decay of a nucleus with mass number 210 if the Q-value of the decay is 5.50 MeV.

#### **Problem 4:**

During bombardment of carbon nucleus  $^{12}_{6}C$  by deuterons  $^{2}_{1}H$  a nuclear reaction in which the emergence of a radioactive nucleus of nitrogen and emission of neutron take place.(a) Write down this nuclear reaction by using the symbols of chemical elements. (b) The nitrogen nucleus is further transformed while a positron is emitted. Which nucleus is formed from this transformation?

### **Problem 5:**

The half-life  $T_{1/2}$  is defined as the time at which half of the nuclei from the original amount  $N_0$  will decay. Does that mean that over  $2T_{1/2}$  all nuclei  $N_0$  will decay?

# **Problem 6:**

The RaA element arises from  $^{238}_{92}U$  by emitting five successive alpha and two beta particles. Identify the RaA element.

### **Problem 7:**

An alpha emitter contains  $10^{12}$  radioactive nuclei with a half-life  $T_{1/2} = 3$  min. How many nuclei decay in 1 s, in 1 min., in 3 min. and in 6 min.?

#### **Problem 8:**

A radioactive isotope with a half-life  $T_{1/2}$  emits one particle in each nucleus decay. There are  $N_0$  nuclei at the beginning. How many particles were emitted in time  $3T_{1/2}$ ?

#### **Problem 9:**

A thermal neutron beam with a kinetic energy  $E_{thermal} = 0.025$  eV is brought out from a nuclear reactor. Calculate what fraction from a total number of neutrons  $N_0$  will decay on the length of one meter. The neutron half-life is 10.37 min.

## Problem 10:

A solution with a radioisotope  $^{24}$ Na of activity  $A_0 = 2$  kBq was injected into the blood of man. Volume activity  $a_v$  of the blood was measured 5 hours after the injection and it was determined to be 265 kBq/m $^3$ . Determine a volume of the man's blood in liters. The half-life of  $^{24}$ Na is 15 hours.

# **Problem 11:**

What is the lowest wavelength limit of the X-rays emitted by a tube operating at a potential of 195 kV?

# **Problem 12:**

Calculate the specific activity of pure tritium (<sup>3</sup>H) with a half-life of 12.26 years.

## Problem 13:

What is the highest energy to which doubly ionized helium atoms (alpha particles) can be accelerated in a direct current accelerator with 3 MV maximum voltage?