(PHYS-450)

EXERCISES

Week 10

Problem 1:

A radionuclide ${ }_{29}^{62} \mathrm{Cu}$ emits β^{+}radiation with a half-life $\mathrm{T}_{1 / 2}=9.76 \mathrm{~min}$. Determine the particle composition of the daughter's nuclide atom coming from this decay and determine a decay constant λ.

Problem 2:

A uranium nucleus ${ }_{92}^{238} U$ is gradually changing to other nuclei (the decay series). This uranium series consist of eight alpha decays and six beta decays. What is the final product of this decay series?

Problem 3:

By simultaneously conserving energy and momentum, find the alphaparticle energy emitted in the decay of a nucleus with mass number 210 if the Q-value of the decay is 5.50 MeV .

Problem 4:

During bombardment of carbon nucleus ${ }_{6}^{12} \mathrm{C}$ by deuterons ${ }_{1}^{2} \mathrm{H}$ a nuclear reaction in which the emergence of a radioactive nucleus of nitrogen and emission of neutron take place.(a) Write down this nuclear reaction by using the symbols of chemical elements. (b) The nitrogen nucleus is further transformed while a positron is emitted. Which nucleus is formed from this transformation?

Problem 5:

The half-life $T_{1 / 2}$ is defined as the time at which half of the nuclei from the original amount N_{0} will decay. Does that mean that over $2 \mathrm{~T}_{1 / 2}$ all nuclei N_{0} will decay?

Problem 6:

The RaA element arises from ${ }_{92}^{238} U$ by emitting five successive alpha and two beta particles. Identify the RaA element.

Problem 7:

An alpha emitter contains 10^{12} radioactive nuclei with a half-life $\mathrm{T}_{1 / 2}=3$ min. How many nuclei decay in 1 s , in 1 min ., in 3 min . and in 6 min .?

Problem 8:

A radioactive isotope with a half-life $T_{1 / 2}$ emits one particle in each nucleus decay. There are N_{0} nuclei at the beginning. How many particles were emitted in time $3 T_{1 / 2}$?

Problem 9:

A thermal neutron beam with a kinetic energy $E_{\text {thermal }}=0.025 \mathrm{eV}$ is brought out from a nuclear reactor. Calculate what fraction from a total number of neutrons N_{0} will decay on the length of one meter. The neutron half-life is 10.37 min .

Problem 10:

A solution with a radioisotope ${ }^{24} \mathrm{Na}$ of activity $\mathrm{A}_{0}=2 \mathrm{kBq}$ was injected into the blood of man. Volume activity a_{v} of the blood was measured 5 hours after the injection and it was determined to be $265 \mathrm{kBq} / \mathrm{m}^{3}$. Determine a volume of the man's blood in liters. The half-life of ${ }^{24} \mathrm{Na}$ is 15 hours.

Problem 11:

What is the lowest wavelength limit of the X-rays emitted by a tube operating at a potential of 195 kV ?

Problem 12:

Calculate the specific activity of pure tritium $\left({ }^{3} \mathrm{H}\right)$ with a half-life of 12.26 years.

Problem 13:

What is the highest energy to which doubly ionized helium atoms (alpha particles) can be accelerated in a direct current accelerator with 3 MV maximum voltage?

