
CS	323	Exercises		
Week	3	

08/03/2019	
	
1) 	Scheduling	Algorithms	
	
Assume	 a	 preemptive	 scheduler	 that	 implements	 a	 combination	 of	 two	 round-robin	
schedulers,	the	first	(the	short	queue)	with	a	time	quantum	of	2	seconds,	and	the	second	
(the	long	queue)	with	a	time	quantum	of	10	seconds.	A	newly	arriving	process	is	put	at	
the	tail	of	the	short	queue.	A	process	is	allowed	a	maximum	of	8	seconds	of	execution	in	
the	short	queue,	and	then	it	is	put	in	the	long	queue.	Processes	in	the	short	queue	have	
priority	over	processes	in	the	long	queue.	If	a	process	in	the	long	queue	has	to	give	up	
the	CPU	during	its	quantum	because	of	the	arrival	of	a	new	process,	it	is	put	back	at	the	
head	of	the	long	queue.	The	next	time	it	is	executing	it	will	be	given	what	remained	of	its	
time	quantum	at	 the	 time	 it	had	 to	give	up	 the	CPU,	 i.e.,	 if	 it	had	been	executing	 for	3	
seconds	of	its	10-second	quantum,	it	would	get	7	seconds	the	next	time	it	gets	to	run.	
	
Assume	the	machine	is	initially	idle,	and	that	you	have	the	following	process	arrivals	(all	
times	in	seconds):	
	
Process	identifier	 Arrives	at	time	 Length	of	execution	
P0	 1	 20	
P1	 2	 1	
P2	 5	 5	
P3	 9	 20	
P4	 25	 3	
	
Indicate	on	the	timeline	below	which	process	will	be	running	at	which	time.	
	 	

0	 10	 20	 30	 40	 50	

2)	Scheduling	Algorithms	
	
Assume	that	the	machine	is	initially	idle,	and	that	you	have	the	following	process	
arrivals	(all	times	in	seconds):	
	
Process	identifier	 Arrives	at	time	 Length	of	execution	
P0	 1	 20	
P1	 2	 1	
P2	 5	 5	
P3	 9	 15	
P4	 25	 3	
	
	
All	processes	have	equal	priority.	
	
A	–	Design	a	scheduler	for	which	P0	ends	before	P1.	
	
B	–	Design	a	scheduler	for	which	P2	ends	no	later	than	at	time	12	and	P3	ends	no	later	
then	at	time	32.			
	
C	–	Design	a	scheduler	for	which	P2	ends	no	later	than	at	time	10.		 	

3) IPC	and	signals	
	
From	Wikipedia:	
“Signals	are	 a	 limited	 form	of	inter-process	 communication	 (IPC),	 typically	 used	 in	Unix-
like	operating	systems.	A	signal	 is	an	asynchronous	notification	sent	 to	a	process	or	to	a	
specific	 thread	within	 the	 same	 process	 in	 order	 to	 notify	 it	 of	 an	 event	 that	 occurred.	
When	a	signal	is	sent,	the	operating	system	interrupts	the	target	process'	normal	flow	of	
execution	to	 deliver	 the	 signal.	 If	 the	 process	 has	 previously	 registered	 a	signal	 handler,	
that	routine	is	executed.	Otherwise,	the	default	signal	handler	is	executed.”	
	
In	 the	 following	 code	 snippet	 explain	 what	 happens	 when	 all	 processes	 reach	 their	
steady	 state.	Describe	 the	process	 tree	 and	 identify	 the	 line	of	 code	 each	process	 has	
stopped.	Feel	free	to	make	any	assumptions	for	the	values	you	can’t	know,	e.g.	PIDs.	
	
Ideally,	you	should	be	able	to	solve	this	exercise	without	running	the	code.	If	you	can’t	
do	so,	describe	the	process	and	tools	you	used	to	solve	the	exercise.	
	
Note	that	signals	interrupt	blocking	system	calls.	
	

#include <stdio.h> 1	
#include <stdlib.h> 2	
#include <unistd.h> 3	
#include <signal.h> 4	
#include <sys/types.h> 5	
#include <sys/wait.h> 6	
 7	
 8	
int n, pd[2]; 9	
char c; 10	
pid_t p; 11	
 12	
void Fn(int fd1, int fd2) 13	
{ while(1); } 14	
 15	
void h(int s) 16	
{ write(pd[1], &p, 2); read(pd[0], &p, 2); Fn(pd[0], pd[1]); } 17	
 18	
int main(void) 19	
{ 20	
 pipe(pd); 21	
 signal(SIGUSR1, h); 22	
 n = pd[1]; 23	
 24	
 p = fork(); 25	
 if (p == 0) { 26	
 pipe(pd); 27	
 pd[1] = n; 28	
 p = fork(); 29	
 } else 30	
 p = 0; 31	
 32	
 if (p) 33	
 kill(p, SIGUSR1); 34	
 35	
 read(pd[0], &c, 1); 36	
 Fn(p, pd[0]); 37	
 wait(NULL); 38	
 Fn(4, 2); 39	
 return 0; 40	
}41	

4)	Remote	procedure	calls	
	
We	have	a	server	that	implements	a	single	remotely	callable	procedure	
	
	 long	Position(char	c,	char	*	s)	
	
It	 takes	 as	 arguments	 a	 single	 character	 and	 a	 null-terminated	 character	 string,	 and	
returns	 the	 position	 of	 the	 first	 occurrence	 of	 the	 character	 in	 the	 string,	 or	 -1	 if	 the	
character	does	not	occur	in	the	string.	
	
Write	 pseudo-code	 for	 a	 client	 stub	 and	 a	 server	 stub	 for	 this	 remote	 procedure	 call.	
Describe	 clearly	 the	 format	 of	 the	messages	 sent	 between	 client	 and	 server.	 You	 can	
assume	the	existence	of	helper	 functions	 to	allocate	and	de-allocate	memory	 for	 these	
messages.	
	

