
CS323-Exercise	Solutions	
Week	3	
8/3/2019	

	
Problem	1.	Scheduling	algorithms	
	 	

CS#323#–#Operating#Systems#–#Spring#2015#–#Worksheet#answers#exercise#session#

13.03.2015#

#

#

Problem#1:#Scheduling#Algorithms#

#

Assume# a# preemptive# scheduler# that# implements# a# combination# of# two# roundGrobin#

schedulers,#the#first#(the#short&queue)#with#a#time#quantum#of#2#seconds,#and#the#second#
(the#long&queue)#with#a#time#quantum#of#10#seconds.#A#newly#arriving#process#is#put#at#
the#tail#of#the#short#queue.#A#process#is#allowed#a#maximum#of#8#seconds#of#execution#in#

the#short#queue,#and#then#it#is#put#in#the#long#queue.#Processes#in#the#short#queue#have#

priority#over#processes#in#the#long#queue.#If#a#process#in#the#long#queue#has#to#give#up#

the#CPU#during#its#quantum#because#of#the#arrival#of#a#new#process,#it#is#put#back#at#the#

head#of#the#long#queue.#The#next#time#it#is#executing#it#will#be#given#what#remained#of#its#
time#quantum#at# the# time# it#had# to#give#up# the#CPU,# i.e.,# if# it#had#been#executing# for#3#

seconds#of#its#10Gsecond#quantum,#it#would#get#7#seconds#the#next#time#it#gets#to#run.#

#

Assume#the#machine#is#initially#idle,#and#that#you#have#the#following#process#arrivals#(all#

times#in#seconds):#

#

Process#identifier# Arrives#at#time# Length#of#execution#

P0# 1# 20#

P1# 2# 1#

P2# 5# 5#

P3# 9# 20#

P4# 25# 3#

#

Indicate#on#the#timeline#below#which#process#will#be#running#at#which#time.#

#

#

ANSWER:(
#

• Preemptive#multiple#queue#scheduler#

• Short#queue:#2#second#round#robin#

• Long#queue:#10#second#round#robin#

• Short#queue#has#priority#over#long#queue#

• New#arrival:#tail#of#short#queue#

• After#8#seconds:#tail#of#long#queue#

• Preemption:#retain#remainder#of#quantum#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Arrival 
#

Time 

#

#

CPU 

#

Exit 

(20)(1)""""(5)""""""(20)# # # !!!!!!!!!!(3) 



Problem	2:	Scheduling	algorithms		
	
A) P0	arrives	first,	so	it	will	run	first	until	completion	

	
B) For	example,	a	combination	of	Round	Robin	with	time	quantum	5	and	Shortest	Job	First	

with	preemption.	
	

a. Round	Robin	has	higher	priority	and	each	process	is	first	put	at	the	end	of	this	
queue.	

b. After	executing	for	5s	a	process	is	preempted	and	put	at	the	end	of	SJF	scheduler	
queue.	

This	way:	
• P0	runs	between	1	and	6	
• P1	runs	between	6	and	7	
• P2	runs	between	7	and	12	
• P3	runs	between	12	and	17	
• P3	runs	between	17	and	25	(shorter	job	in	the	SJF	scheduler)	P4	runs	

between	25	and	28	
• P3	runs	between	28	and	30	
• P0	runs	between	30	and	45	

	
C) Shortest	Job	First,	preemptive	

a. When	P2	arrives	at	time	5,	P1	is	already	finished	and	P1	has	16	seconds	left	
b. Therefore,	P2	starts	immediately	and	ends	at	t=10s	
	

	
	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	



Problem	3:	IPC	and	signals	
	
The	 initial	 process	 (PID=1000),	 creates	 a	 pipe	 (pd	 =	 [3,4]).	 It	 sets	 the	 signal	 handler	 for	
SIGUSR1	to	be	function	h.	It	sets	n	=	4.	It	creates	a	child	(PID	=	1001)	and	sets	p	=	0.	It	blocks	
reading	fd	3	in	line	36.	
Process	1001	creates	another	pipe	(pd	=	[5,6])	and	sets	pd[1]	to	n.	So	pd	=	[5,4].	It	creates	a	
child	(PID=1002).	It	sends	a	SIGUSR1	signal	to	the	child.	Then,	it	reads	fd	5	and	blocks	in	line	
36.	
Process	1002	executes	the	signal	handler	h.	It	writes	2	bytes	in	fd	4	and	tries	to	read	2	bytes	
from	fd	5,	since	 it	 inherits	 the	 file	descriptors	from	its	parent.	None	has	written	to	 fd	5.	So	 it	
blocks	there.	
Process	1000	wakes	up	because	process	1002	wrote	to	fd	4.	It	reads	a	byte	and	calls	Fn	in	line	
37	with	p	=	0	and	pd[0]	=	3.	Then	it	blocks	inside	Fn.	
	
So,	graphically	we	have	the	following:	
	
	
	
	
	 	 	 	 	 	 	 	 	 			signal	
	 	 	 	 	 	 	 	 	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

PID=1000 
14: Fn(0,3) 

	

PID=1001 
36: read(5, …) 

	

PID=1002 
17: read(5, …) 

	



Problem	4:	Remote	procedure	calls	
	
struct request{ 
 int Proc_id; 
 char c; 
 int len; 
 char[] s; 
} 
 
struct response { 
 int pos; 
} 
 
Client:	
int_client_stub(char c, char*s) 
{ 
 int len = strlen(s); 
 int total_len = len + 1 + sizeof(struct request); 

 
Client_msg* msg = malloc(total_len); 
msg->proc_id = proc_no; 
msg->c= c; 
msg->len = len; 
strcpy(msg->s, s); 
 
reponse* res; 
 
Send(msg, total_len); 
res = Receive(); 
 
return res->pos; 

} 
	
Server:	
void_stub(proc_no, msg) 
{ 
 struct_msg* = Receive(); 
 int return_val = call_server function (msg->proc_no, msg->c, msg->s); 
  
 response resp* r = malloc(struct response); 
 r->pos = return_val; 
 Send (r, sizeof(struct response)); 
} 


