
CS323 Exercises – Solutions
Week 4

15 March 2019

Problem 1: Synchronization

A) A block may be allocated multiple times.

B)

bitmap *bm;
pthread_mutex_t *bitmap_mutex;
…
int take_free_entry() {
 for (int i = 0; i < MAXBLOCKS; i++) {
 if (bitmap_read(bm, i) == 0) {
 bitmap_set(bm, i);
 return i;
 }
 }

 return -1;
}

int alloc_entry() {
 pthread_mutex_lock(bitmap_mutex);

 int index = take_free_entry();

 pthread_mutex_unlock(bitmap_mutex);
 return index;
}

void free_entry(int index) {
 pthread_mutex_lock(bitmap_mutex);

 bitmap_clear(bm, index);

 pthread_mutex_unlock(bitmap_mutex);
}

C) One possible improvement is to replace the global bitmap mutex with atomic bitmap operations

bitmap *bm;
…
int take_free_entry() {
 for (int i = 0; i < MAXBLOCKS; i++) {
 // atomically set a bit and check its old value
 if (bitmap_test_and_set(bm, i) == 0) {
 return i;
 }
 }

 return -1;
}

int alloc_entry() {
 int index = take_free_entry();

 return index;
}

void free_entry(int index) {
 // atomically clear a bit

 bitmap_test_and_clear(bm, index);
}

Problem 2: Synchronization

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = pthread_create(WorkerThread);
forever {

receive(request)
pthread_mutex_lock(queuelock)
while(avail == N) pthread_cond_wait(notfull, queuelock)
put request in queue
avail++
pthread_cond_signal(notempty, queuelock)
pthread_mutex_unlock(queuelock)

}
}

WorkerThread {

forever {
pthread_mutex_lock(queuelock)
while(avail <= 0) pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
pthread_cond_signal(notfull, queuelock)
pthread_mutex_unlock(queuelock)
read file from disk
send(reply)

}
}

Problem 3: Synchronization

Using a mutex over the entire table is undesirable since it would unnecessarily restrict concurrency.
Such a design would only permit a single insert, lookup or delete operation to be performed at any
given time, even if they are to different hash bins.

Using a mutex over each element in the doubly linked list would permit the greatest concurrency,
but a correct, deadlock-free implementation has to ensure that all elements involved in a delete or
insert operation, are acquired in a well-defined order.

Using a mutex over each hash bin is a compromise between the two solutions – it permits more
concurrency than solution 1, and is easier to implement correctly than solution 2.

