Série 6

Exercice 1 (Reprise de l'exercice 9 de la feuille 4-5). Soit $G = G_{\mathcal{P}}$ un groupe cristallographique et G^+ son sous-groupe des rotations et $T_G = T(\Gamma) \in G^+$ son reseau des translations. On note G_0 l'image de G par le morphisme partie lineaire et G_0^+ celle de G^+ . On suppose que $G \neq G^+$ et on note s un element de $G - G^+$ (si il existe). On note s_0 sa partie lineaire.

- 1. Montrer que T_G et G^+ sont distingues dans G.
- 2. Montrer que G/G^+ est d'ordre ≤ 2 .
- 3. Montrer que en general l'indice G/T_G est d'ordre ≤ 12 .
- 4. Quelle sont les structures possible du groupe G_0 et quelles sont les valeurs possible de son ordre suivant qu'il existe ou pas un $s \in G G^+$?
- 5. On suppose qu'il existe $s \in G G^+$. Montrer que $s^2 \in T(\Gamma)$.
- 6. Montrer que s se decompose sous la forme $t_{\gamma} \circ s'$ avec s' une symetrie axiale d'axe parallele a γ et que $\gamma \in \frac{1}{2}\Gamma$.
- 7. soit s_0 la partier lineaire de s. Montrer que $s_0(\Gamma) = \Gamma$ (conjuguer!).
- 8. On suppose (quitte a conjuguer G par un element convenable) que $\Gamma = \mathbb{Z}.1 + \mathbb{Z}\gamma_1$ avec $(1, \gamma_1)$ satisfaisant les proprietes de minimalite du cours. On a meme vu qu'on peut supposer que γ_1 appartient au domaine fondamental $\mathcal{D}_{\mathrm{SL}_2(\mathbb{Z})}$. Montrer que si $|\gamma_1| > 1$ alors $s_0(1) = \pm 1$.
- 9. Si $s_0(1) = -1$ que dire de $\Re e \gamma_1$?

Exercice 2. On dit que deux paires de points d'un espace affine X, (P,Q), (R,S) sont equipolents si

$$\overrightarrow{PQ} = \overrightarrow{RS}.$$

Montrer qu'alors

$$\overrightarrow{PR} = \overrightarrow{QS}.$$

(On dit alors que le quadruple [PQRS] forme un parallelogramme.)

Exercice 3. Soient X un espace affine de dimension d et

$$P_0, \cdots, P_d \in X$$

d+1 points en position generale (tels que (P_0P_1, \cdots, P_0P_d) forment une base de V).

1. Montrer que pour tout point $P \in X$ il existe un unique d+1-uplet

$$(\lambda_0, \cdots, \lambda_d) \in k^{d+1}$$

tel que

$$\lambda_0 + \cdots + \lambda_d = 1$$

et tel que

$$P = Bar(P_0, \cdots, P_d; \lambda_0, \cdots, \lambda_d).$$

Le d+1-uplet $(\lambda_0, \dots, \lambda_d)$ forme les coordonnees barycentrique de P dans la base affine (P_0, \dots, P_d) .

2. Reciproquement soit $n \ge 0$ et

$$P_0, \cdots, P_n \in X$$

tels que pour tout point $P \in X$ il existe un unique n+1-uplet

$$(\lambda_0, \cdots, \lambda_n) \in k^{n+1}$$

tel que

$$\lambda_0 + \dots + \lambda_n = 1$$

et tel que

$$P = Bar(P_0, \cdots, P_d; \lambda_0, \cdots, \lambda_n).$$

Montrer qu'alors n=d et que P_0,\cdots,P_d sont en position generale.

3. Montrer que le fait d'etre en position general est independant de l'ordre dans lequel on ecrit les points : pour tout permutation $\sigma: \{0, \dots, d\} \to \{0, \dots, d\}$, le d+1-uplet $(P_{\sigma(0)}, \dots, P_{\sigma(d)})$ est en position generale.

Exercice 4. Soit X un espace affine de direction V. Soit $Y \subset X$ un sous-ensemble.

- 1. Montrer que les deux properietes suivantes (definissant un sous-espace affine) sont equivalentes :
 - (a) Il existe $P \in X$ et $W \subset V$ un sous-espace vectoriel tel que

$$Y = P + W = \{P + \vec{w}, \ \vec{w} \in W\}.$$

(b) Il existe $n \ge 0$ et $P_0 = P, \dots, P_n \in X$ tels que

$$Y = \{Bar(P_0, \dots, P_k; \lambda_0, \dots, \lambda_n), \ \lambda_i \in k, \ \sum_{i=1}^n \lambda_i = 1\}.$$

2. Montrer qu'alors

$$W = \langle \vec{P_0P_1}, \cdots, \vec{P_0P_n} \rangle$$

(le sev engendre par ces vecteurs) et que $n \ge \dim W$. Montrer que dans la deuxieme description on peut toujours se ramener au cas ou $n = \dim_k W$ et qu'alors dans la representation d'un point de Y comme barycentre des (P_0, \dots, P_n) les poids $(\lambda_0, \dots, \lambda_n)$ sont uniquement definis : (P_0, \dots, P_n) forme une base affine de Y.

3. On suppose que Y est l'ensemble des barycentres des points (P_0, \dots, P_m) (donc $m \ge n = \dim_k(Y)$). Montrer qu'on peut extraire de $\{P_0, \dots, P_m\}$ un sousensemble de n+1 points qui forment une base affine de Y.

Exercice 5. On considere $X = V = \mathbb{R}^3$

1. Soient

$$P_0 = (1, 1, 1), P_1 = (1, 1, 2), P_2 = (1, 2, 1), P_3 = (2, 2, 4).$$

Montrer que ces points sont en position generale. Donner les coordonnees barycentriques du point (3, 2, 1) dans cette base affine.

2. Donner l'equation cartesienne du sous-espace affine defini par les points

$$Q_0 = (1, 1, 1), Q_1 = (1, 1, 2), Q_2 = (1, 2, 1), Q_3 = (1, 2, 4)$$

ainsi que celle de sa direction.

3. Soit Y d'equation

$$x + 2y + 3z = 4.$$

Representer Y comme l'ensemble des barycentres d'un nombre fini de points (trouver le nombre minimal possible des ces points).

4. Meme question pour Z d'equation cartesienne

$$x + 2y + 3z = 4$$
, $2x + y + z = 3$.