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Week 6 (6.1. Attractor networks
Attractor Networks and 6.2. Stochastic Hopfield model
Generalizations of the Hopfield model
Wulfram Gerstner 6.3. Energy landscape

EPFL, Lausanne, Switzerland

6.4. Towards biology (1)
- low-activity patterns

6.5 Towards biology (2)
- spiking neurons

Reading for week 6: ]
NEURONAL DYNAMICS
-Ch.17.25-17.4

Cambridge Univ. Press

6.1. Review and next steps

Hopfield model

special case ((6.1. Attractor networks

6.2. Stochastic Hopfield model
6.3. Energy landscape

6.4. Towards biology (1)

attractor energy - low-activity patterns
) 6.5 Towards biology (2)
b|0|09y - spiking neurons

6.1. Review of week 5: Memory and Hebbian assemblies
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6.1. Review of week 5: Deterministic Hopfield model

. . -1 o~
interactions Wi = WZ P Pj
oou
Sum over all
prototypes

Prototype  Prototype
pt p2

- each prototype has black pixels
with probability 0.5
- prototypes are random patterns,
chosen once at the beginning
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6.1. Review of week 5: overlap / correlation

Image: Neuronal Dynamics,
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6.1 Review of week 5: Deterministic Hopfield model

u, o [ )

- . . _ 1 o
] interactions Wi = WZ P Pj
i o an M
: - Sum over all

rototypes
Prototype  Prototype profobp
1
P p? h=2 WS,
P . . /} j
| Deterministic dynamics | Sum over all inputs to neuron i
prototypes

dynamics S;(t+1) =sgn[h; (t)]= sgn[z w;S; ()]

Input potential

Similarity measure: Overlap w. pattern 17: m"(t) :%Z p’s; (t)
1




6.1 Hopfield model: memory retrieval (with overlaps)

S,(t+1) =sgn[h (O] =sgn[>_ w;S;(1)]
J

Blackboard-1

S;(t+1) =sgn[Y py'm*(1)]

m*(t+1)« m‘/(lt)
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6.1 Hopfield model: memory retrieval (attractor model)

Overlap (definition)
°

met+) = pjs;
&
P
N

m=1

6.1 Hopfield model: memory retrieval (attractor model)

Hopfield model
special case Attractor networks:
dynamics moves network state
to a fixed point

Hopfield model:
for a small number of patterns,
states with overlap 1

attractor energy are fixed points
biology Aim for togay:
generalize!




Quiz 6.1: overlap and attractor dynamics

[]The overlap is maximal
if the network state matches one of the patterns.
[1 The overlap increases during memory retrieval.
[1 The mutual overlap of orthogonal patterns is one.
[1 In an attractor memory, the dynamics converges to a stable
fixed point.
[]In a perfect attractor memory network, the network state
moves towards one of the patterns.
[1In a Hopfield model with N random patterns stored in a
network N neurons, the patterns are attractors.
[]In a Hopfield model with 200 random patterns stored in a
network 1000 neurons, all fixed points have overlap one.
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6.4. Towards biology (1)
- low-activity patterns

6.5 Towards biology (2)

- spiking neurons

Reading for week 6:
NEURONAL DYNAMICS
-Ch.17.25-174

Cambridge Univ. Press Il

6.2 Stochastic Hopfield model

Neurons may be noisy:

What does this mean for
attractor dynamics?




6.2 Stochastic Hopfield model

-

Interactions (1)

1
% Wy = ﬁz p{py
Prototype Prototype #
pt p?

Random patterns

Dynamics (2)
Pr{S, (t+1) =+1|h}=glh]=0[ > ,w;S; (1) ]
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6.2 Stochastic Hopfield model: firing probability

Pr{S, (t+1) =+1|h}

h,
1 P g

// for example;
e g(h)) = 0.5[1+ tanh(2h)]

- \ X

Blackboard-2

PI{S, (t+D)=+1|h}=glhl=g[ > ;w;S;(t)]=a[ >, prm*(t)]

6.2 Stochastic Hopfield model

Dynamics (2)
Pr{S, (t+1) =+1|h}=g[h]1=g[ > ;w;S;(1)]
PI{S, (t+D)=+1|h}=g[ >, prm*(t)]

Assume that there is only overlap with pattern 17:
two groups of neurons: those that should be ‘on’ and ‘off’

PI{S, (t+1)=+1|h =h"}=g[m" ()] for i with p¥ =+1
Pr{S, (t+1) =+1|h =h}=g |}mﬂ (t)] for i with p’=-1

Overlap (next time step) m“(t+1)= %Z py'S;(t+1) =222
1




Exercise 1 now: Stochastic Hopfield

L 9 minutes,
Overlap m7(t+1)= ﬁz py’s,(t+1) Try to get

l As far as possible
Suppose initial overlap with pattern 17 is 0.4;
Find equation for overlap at time (t+1),
given overlap at time (t). Next lecture
Assume overlap with other patterns stays zero. 9:55
Hint: Use result from blackboard and consider 4 groups of neurons
- Those that should be ON and are ON
- Those that should be ON and are OFF
- Those that should be OFF and are ON
- Those that should be OFF and are OFF
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6.2 Stochastic Hopfield model: memory retrieval

Overlap: Neurons that should be ‘on’ Neurons that should be ‘off’
2m(t+1) =g [m“ (t)] —{l-g [m“ (t)]}— g [—m“ (t)] +{l-g [—m” (t)]}
m(t+1)=F [m“ (t)]

overlap picture
M (t + At) PP

Blackboard-3

m” (t,) m

6.2 Stochastic Hopfield model: memory retrieval

- Memory retrieval possible
with stochastic dynamics

- Fixed point at value with
large overlap (e.g., 0.95)

- Need to check that overlap
of other patterns remains small

- Random patterns: nearly
orthogonal but ‘noise’ term
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. - 6.4. Towards biology (1)
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NEURONAL DYNAMICS  iliuili¥8ll ¢ 5 Towards biology (2)
-Ch.17.25-17.4

- spiking neurons

Cambridge Univ. Press
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6.2 Stochastic Hopfield model = attractor model

Image: Neuronal Dynamics,
Gerstner etal.,
Cambridge Univ. Press (2014),

6.3 Symmetric interactions: Energy picture

E If dynamics leads to downward movement:
Lyapunov function




6.3 Symmetric interactions: Energy picture

Eo 1z WSS - Rewrite in terms of overlaps
B EH L - Random patterns vs. orthogonal patterns

- Random state vs. overlap state
Blackboard-4
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6.3. Symmetric interactions: Energy/Lyapunov function

Assume symmetric interaction,
Assume deterministic asynchronous update
S,(t+1) =sgn[h ()] =sgn[>" w;S,(1)]
J
Claim: the energy E :—%Z WSS,
i)

[§9i9;
E decreases, if neuron k changes
J.J. Hopfield (1982) Neural networks and physical

\ systems with emergent collective computational abilities.
Proc. Natl. Acad. Sci. USA 79, pp. 2554-2558

Exercise 2 now: energy E=—%Z w;ss; |9 minutes,
Lj Try to get

As far as possiblé

Assume symmetric interaction,
Assume deterministic asynchronous update

S (t+1) =sgn[h ()] =sgn[>_ w;S, ()] |Next Ie‘cture
i 10:52

Show that energy decreases, if neuron k changes




6.3 Symmetric interactions: Energy picture

1 Assume symmetric interaction,
E= -EZ w;S;S;  Assume deterministic asynchronous update
L

S (t+1) =sgn[h ()] = Sgn[z Wijsj ®]

Claim: energy decreases, if neuron k changes

Proof: blackboard-5 I E
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6.3. Energy picture
Hopfield model
special case energy picture is rather general
- has been very influential
energy picture is a side-track:
- it needs symmetric interactions
attractor energy energy picture is useful
) - it shows that it should be possible

biology to learn other patterns than
mean-zero random patterns

Quiz 6.2: Energy picture and Lyapunov function

Let E= —%Z W;S;S; be the energy of the Hopfield model
ij

and S;(t+1) =sgn[h(®]=san[>. w;S;(t)] the dynamics.
i

[1 The energy picture requires random patterns with prob = 0.5
[] The energy picture requires symmetric weights
[] It follows from the energy picture of the Hopfield model that the
only fixed points are those where the overlap is exactly one
[1In each step, the value of a Lyapunov function decreases or stays constant
[ 1 Under deterministic dynamics the above energy is a Lyapunov function
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6.4. Towards biology (1)
Reading for week 6:

: {} - low-activity patterns
6.5 Towards biology (2)
- spiking neurons

NEURONAL DYNAMICS
-Ch.17.25-17.4

Cambridge Univ. Press

6.4 Attractor memory

‘attractor model’ ‘ \
memory re?ugval = flow o, fixed pom“ |

L7
I

6.4 attractor memory in realistic networks

Memory in realistic networks
-Mean activity of patterns?

-Asymmetric connections?

-Separation of excitation and inhibition?
-Better neuron model?

-Modeling with integrate-and-fire model?
-Low probability of connections?

-Neural data?
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6.4 attractor memory with ‘balanced’ activity patterns

1 2 [ N
=y I N Il Il Il
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=il Imiml § i |
il § i b

Random patterns +/-1 with zero mean 2>
50 percent of neurons should be active in each pattern

_ 1 MM
Wij—Wz Pi" Pj
4

6.4 attractor memory with ‘low’ activity patterns

2 i ...
W iml ImimEml 1

2|l JHET I THT I T[]

il I |

Random patterns +/-1 with low activity (prob{black}=a<0.5) >
e.g., 10 percent of neurons should be active in each pattern

wy =c) (& -b)(&f - a) (so far: b=a=0.5)
u “ Some constant .
o {04 b=0 or b=a Mean activity of pattern

6.4 attractor memory with ‘low’ activity patterns

Random patterns +/-1 with low activity (mean a<0.5) >
e.g.10 percent of neurons should be active in each pattern

w,=cY (& -b)g-a) & e{on
Introduce overlap ~ m“(t) =c> | (&' —a)S(t)
i

Introduce dynamics

b=0 or b=1

11



6.4 attractor memory with ‘low’ activity patterns

- attractor dynamics possible:
m*(t+1) = F[m*(t)]
- no need for symmetric weights

- capacity calculations possible
(analogous to last week)
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6.4. Towards biology (1)

Reading for week 6: - low-activity patters

NEURONAL DYNAMICS

6.5 Towards biology (2)
-Ch.17.25-17.4

- spiking neurons

Cambridge Univ. Press 1

6.5 attractor memory with spiking neurons

Total input to neuron i
h| (t) = z Wijsj(t)
i
- rewrite binary state variable:
St =£t1 — o,(t) {01}

- use low firing probability (in time)
- Use low activity (across neurons)
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Exercise 3 NOW- from Hopfield to spikes

n the Hopfield model, neurons are characterized by a binary variable
Si= +/-1. For an interpretation in terms of spikes it is, however, more
hppealing to work with a binary variable xi which is zero or 1.

i) Write Si= 20;- 1 and rewrite the Hopfield model in terms of o,
if) What are the conditions so that the input potential is

h;(t) = Z W;;o; ®
i
(iii) Interpretation: can you also restrict the weights to excitation
only? Assume low-activity patterns 10 minutes

Wy =cY (& —b)(&f —a) Try to get
As far as possible

07/04/2017

P
and pick b=0 Lecture: 10:35

6.5. Separation of excitation and inhibition

~—a0
L

Total input to neuron i ! '
- rewrite weights:

i B B
Blackboard-7

Separation of excitation/ inhibitiol

h(® =2 w8, wy =cY (& ~b)(&/ ~a)
& e{0}
b=0

6.5 Separation of excitation and inhibition

Image: Neuronal Dynamics,
Gerstner etal.,

Inhl

Hebb-rule: Inh2

Active together

W = Cz (&)EN

theta

Cambridge Univ. Press (2014)

-~ Inh1
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6.5 attractor memory with 8000 spiking neurons

Spike raster

Neuron

15
1

0
Overlap with patterns 1 ... 6 (total 90 patterns stored, a=0.1)

sofl—_¢ 2 - -3 = 4 e 5 - — o)
,:::. a0 : “-" 1 " 1
E \ " 4
T;((: Gadn I\ Vewany i ]
T 0F : ! q
wh | ! | ! ~? ]
Image: Neuronal Dynamics, I ey s _—
e
Gerstner etal.,
Cambridge Univ. Press (2014) 4 10 20 . [‘sﬁi T 40 50 60
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6.5 attractor memory with spiking neurons

Memory with spiking neurons
-Low activity of patterns? )

-Separation of excitation and inhibition? | All possible
-Asymmetric connections

-Modeling with integrate-and-fire?

-Low connection probability

-Neural data?

6.4 memory data (review from week 5)

Human Hippocampus

Sidney §
Ly

opera

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005).
Invariant visual representation by single neurons in the human brain.

Nature, 435:1102-1107.
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6.4 memory data: delayed match to sample

Delayed Matching to Sample Task

Animal experimentsf f

07/04/2017

! — |

sample 1s match
I _ I
sample 1s match

6.4 memory|data: delayed match-to-sample |

s

20
CRES s WW

dsicrishisf!

I _ I
sample 1s match

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term
memory in the primate temporal cortex. Nature, 335:817-820.

6.4 memory data:{,delayed match-to-sample

20
[Hz]

oo sample match
Rainer and Miller (2002). Timecourse of object-related neural activity in the primate
prefrontal cortex during a short-term memory task, Furop . J. Neurosci, 15:1244-1254
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6.5 Attractor Networks and Generalized Hopfield Model

Memory with spiking neurons

- Low activity of patterns!

- Separation of excitation and inhibition! L All possible

- Modeling with integrate-and-fire! [

- Asymmetric connections!

- Sparse connectivity!

Attractor Memory Model

- abstract concept

- Concept stable under generalizations

- Neural data?

07/04/2017

References: Attractor Memory Networks

Abbott, Amit, Brunel, Fusi,
Gerstner, Herz, Hertz,
Sompolinsky, Tsodys,
Treves, van Vreeswijk, van
Hemmen and many others!

Recommended textbook:

J. Hertz, A. Krogh and

R. G. Palmer (1991)
Introduction to the Theory

of Neural Computation.
Addison-Wesley

- L. F. Abbott and C. van Vreeswijk (1993)

Asynchronous states in a network of pulse-coupled oscillators.
Phys. Rev. E 48, pp. 1483-1490.

+D. J. Amit, H. Gutfreund and H. Sompolinsky (1985)

Storing infinite number of patterns in a spin-glass model of

neural networks. Phys. Rev. Lett. 55, pp. 1530-1533.

+D. J. Amit, H. Gutfreund and H. Sompolinsky (1987)

Information storage in neural networks with low levels of activity.
Phys. Rev. A 35, pp. 2293-2303..

+D. J. Amit and N. Brunel (1997) A model of spontaneous

activity and local delay activity during delay periods in the

cerebral cortex. Cerebral Cortex 7, pp. 237-252

-D. J. Amit and M. V. Tsodyks (1991) Quantitative study of attractor
neural networks retrieving at low spike rates. i: substrate — spikes,
rates, and neuronal gain.. Network 2, pp. 259-273.

-A.V. M. Herz, B. Sulzer, R. Kiihn and J. L. van Hemmen (1988)
The Hebb rule: representation of static and dynamic objects

in neural nets.. Europhys. Lett. 7, pp. 663-669

- A. Treves (1993) Mean-field analysis of neuronal spike dynamics|
Network 4, pp. 259-284.

-M. Tsodyks and M.V. Feigelman (1986) The enhanced storage
capacity in neural networks with low activity level.

Europhys. Lett. 6, pp. 101-105.

The end

Documentation:

http://neuronaldynamics.epfl.ch/

Online html version available g8 D

Reading for this week:
NEURONAL DYNAMICS
-Ch.17.25-17.4

Cambridge Univ. Press
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