

Week 7 – Quiz 1, now
The population activity [] Is a firing rate [] Is a fast variable on the time scale of milliseconds [] Is proportional to the number of spikes counted across a population in a short time window [] Is defined as the number of spikes counted across a population in a short time window
The population activity [] Is a firing rate [] Is a fast variable on the time scale of milliseconds [] Is proportional to the number of spikes counted across a population in a short time window [] Is defined as the number of spikes

Biological Modeling of Neural Networks Week 7: Neuronal Populations Wulfram Gerstner EPFL, Lausanne, Switzerland 7.1 Cortical Populations - population activity - columns and receptive fields 7.2 Connectivity - cortical connectivity - model connectivity schemes 7.3 Mean-field argument - asynchronous state 7.4 Random Networks - Balanced state

7.1: Receptive fields with Orientation Tuning				
Receptive fields: Retina, LGN	Receptive fields: visual cortex V1			
	Orientation selective			

7.1: Orientation Tuning and Orientation Maps Receptive fields: visual cortex V1 visual cortex V1 pop Neighboring neurons have similar properties

Week 7 – Quiz 2, now The receptive field of a visual neuron refers to [] The localized region of space to which it is sensitive [] The orientation of a light bar to which it is sensitive [] The set of all stimulus features to which it is sensitive The receptive field of a auditory neuron refers to [] The set of all stimulus features to which it is sensitive [] The range of frequencies to which it is sensitive The receptive field of a somatosensory neuron refers to [] The set of all stimulus features to which it is sensitive [] The region of body surface to which it is sensitive

Biological Modeling of Neural Networks Week 7: Neuronal Populations Wulfram Gerstner EPFL, Lausanne, Switzerland 7.1 Cortical Populations - population activity - columns and receptive fields 7.2 Connectivity - cortical connectivity - cortical connectivity - model connectivity schemes 7.3 Mean-field argument - asynchronous state 7.4 Random Networks - Balanced state

Biological Modeling of Neural Networks (PAL 7.1 Cortical Populations - population activity Week 7: - columns and receptive fields **Neuronal Populations** 7.2 Connectivity Wulfram Gerstner - cortical connectivity EPFL, Lausanne, Switzerland - model connectivity schemes 7.3 Mean-field argument asynchronous state 7.4 Random Networks - Balanced state

7.3: mean-field arg	uments (full connectivity)
Fully cor	nnected network
Synaptic coupling $w_{ij} = w_0$	fully connected N >> 1 $I(t) = I^{ev}(t) + I^{net}(t)$ All spikes, all neurons $I^{net}(t) = \sum_{j=1}^{net} w_{ij} \alpha(t - t_{j}^{f})$ $\alpha(t - t_{j}^{f})$

$I_{i}(t) = J_{0} \int \alpha (s) A(t-s) ds + I^{ext}(t)$ $ $ $I_{0} = [J_{0}q A_{0} + I_{0}^{ext}]$ Firing rate? Population rate?	Assume all varia	bles are constant in	ime.	ckboard-4 ionary sta
0 0- 0 0			$S + I^{ext}$	t)
	0 0-			

7.3: mean-field arguments: population activity (asynchr. state)

Single

neuron

Input is constant and identical for all neurons

(1)
$$I_0 = [J_0 q A_0 + I_0^{ext}]$$
 $q = \int \alpha(s) ds$

frequency (single-neuron gain function)

$$(2) \quad \nu = g(I_0)$$

Homogeneous network All neurons are identical,

Single neuron rate = population rate

 $\nu = A_0$ (3)

7.3: stationary solution: population activity (asynchr. State) Stationary solution $v = g(I_0)$

=asynchronous state

(1) $I_0 = [J_0 q A_0 + I_0^{ext}]$

(2) $v = g(I_0)$

Homogeneous network, stationary, connected All neurons are identical,

N >> 1 Single neuron rate = population rate

 $v = g(I_0) = A_0$

 I_0

Stationary solution

Next lecture: 11h15 Exercise 1: homogeneous stationary solution (asynchronous) connected N >> 1 Homogeneous network All neurons are identical, Single neuron rate = population rate $\nu = A_0$

Exercise 1, now

7.3: stationary solution: popu	lation activity (asynchr. state)
Stationary solution	A_0
=asynchronous state	$v = g(I_0)$
$^{(1)}I_0 = [J_0 q A_0 + I_0^e]$	
$(2) v = g(I_0)$	I_0
$(3) v = A_0$	Stationary solution
0	
fully Homog	jeneous network, stationary,
connected All neu	rons are identical,
	neuron rate = population rate
-	$v = g(I_0) = A_0$
L	

7.3: stationary solution: population activity (asynchr. state)

Single Population

- population activity
- full connectivity
- stationary state/asynchronous state

Single neuron rate = population rate

$$\nu = g(I_0) = A_0$$

What is this function g?

Examples: - leaky integrate-and-fire with diffusive noise

- Spike Response Model with escape noise
- Hodgkin-Huxley model (see week 2)

7.3: gain function is noise-depend	en
------------------------------------	----

Gain-function g =frequency-current relation

function g can be calculated analytically or measured in single-neuron simulations/single-neuron experiments

$$v = g_{\sigma}(I_0)$$

different noise levels

Biological Modeling of Neural Networks

Week 7: **Neuronal Populations**

Wulfram Gerstner EPFL, Lausanne, Switzerland

7.1 Cortical Populations

- population activity
- columns and receptive fields

7.2 Connectivity - cortical connectivity

- model connectivity schemes

7.3 Mean-field argument - asynchronous state

7.4 Random Networks

- Changing network size
- Balanced state

7.4: mean-field arguments (random connectivity) random connectivit random: number K of inputs fixed random: prob p fixed full connectivity

