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8.1. Aims and challenges
- review: mean-field arguments

8.2. Transients
- generalized integrate-and-fire model
- transients can be sharp or slow

8.3.  Spatial continuum (cortex)
- orientation columns

8.4. Spatial cotinuum (model)
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8.5.  Solution types 
- uniform solution
- bump solution

8.6. Perception
8.7. Head direction cells
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8.1: Aims and Challenges;                             Interacting Populations 

Visual cortex 

Sense of direction
 internal compass

Perception
weak contrasts
world is continuous



Single population
full connectivity

review from Week 7: mean-field arguments 

All neurons receive the same
total input current (‘mean field’)
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All spikes, all neurons
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All neurons receive the same total input current (‘mean field’)
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Review from week7: mean-field arguments 

Ultra-short current pulse
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Review from week 7:  mean-field also works for random coupling 
full connectivity random: prob p fixed

Image: Gerstner et al.
Neuronal Dynamics (2014)

random: number  K 
of inputs fixed



s/1=νfrequency (single neuron)

Homogeneous network
All neurons are identical,
Single neuron rate = population rate A(t)= A0= const

Single 
neuron

0 0( )g I Aν = =

Review from Week 7: stationary state/asynchronous activity 

rate=1/(meanInterval)

0I c=
constant  input

Gain function at appropriate noise level



Review : mean-field argument for homogeneous population 
- single neuron is driven by the ‘population activity’ of all others
- all neurons in populations receive the same input
- mean-field argument work for fully connected and randomly

connected populations
- in the stationary state, the single neuron firing rate is equal to 

the ‘population activity’ of a homogeneous population
- in the stationary state, ‘population activity’ can be predicted by

(i)   single neuron gain function (f-I curve)  
(ii)  external input 
(iii) intra-population coupling strength

- in the stationary state, choice of neuron model irrelevant  
(apart from gain function/f-I curve)
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8.1. Aims and challenges

Visual cortex 

- beyond stationary states

- more than one population

- functional consequences
visual perception?
sense of direction?

transients?

how many? continuum?

Mathematical aims:

Cognitive Modeling aims:



8.1. Aims and challenges: compass and perception

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),

sense of direction?                          visual perception?
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8.2. Aims and challenges

- beyond stationary states
transients?

- but then neuron model matters!
introduce generalized integrate-and-fire models:

- Spike Response Model (SRM)
- Generalized Linear Model (GLM)
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review from week 1 – Leaky Integrate-and-Fire Model



-output spikes are events
-generated at threshold
-after spike: reset/refractoriness

Input spike  causes an EPSP
= excitatory postsynaptic potential

ϑ

Spike emission

u
u

review from week 1 – Leaky Integrate-and-Fire type Model

Leaky 
Integate-and-Fire Model:

passive membrane 
+ threshold
+ reset 

( )sηadd           (spike afterpotential)

equivalent
description



Spike Response Model (SRM)
Generalized Linear Model (GLM)
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firing intensity
(escape noise)

Gerstner et al.,
1992,2000

Truccolo et al., 2005
Pillow et al. 2008
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Spike Response Model (SRM)
Generalized Linear Model (GLM)

( )
0
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∞

+ − +∫potential ( ) restutu =

Gerstner et al.,
1992,2000

Truccolo et al., 2005
Pillow et al. 2008
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8. 2. Transients in a population of uncoupled neurons 

Students:
Which would you choose?



Connections
4000 external
4000 within excitatory
1000 within inhibitory

Population
- 50 000 neurons
- 20 percent inhibitory
- randomly connected

-low rate
-high rate

input

8. 2. Transients in a population of neurons 



Population
- 50 000 neurons
- 20 percent inhibitory
- randomly connected
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8.2. Transients in a population of neurons 

-low rate
-high rate

input



low noise

I(t) h(t)

noise-free

of SRM neurons with noise (escape noise)
uncoupled population

low noise

fast transient

I(t) h(t)

high noise

slow  transient
))(()( tIgtA ≈

But transient oscillations
( ) ( ( ))A t F h t=

( ) ( ( ), '( ))A t g I t I t≈ 

8. 2. Transients for populations of noisy neurons 



I(t) h(t)

(escape noise)

high noise

slow  transient
( ) ( ( ))A t F h t=

( ) ( ( ))A t F h t=

)()()( tIRththdt
d +−=τ

Population activity

Membrane potential caused by input

blackboard

In the limit of high noise,

8.2. High-noise activity equation 





I(t) h(t)

(escape noise)

high noise

slow  transient
( ) ( ( ))A t F h t=

( ) ( ( ))A t F h t=

)()()( tIRththdt
d +−=τ

Population activity

Membrane potential caused by input
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1 population = 1 differential equation

8. 2. High-noise activity equation 



Quiz 1, now

Population equations
A single homogeneous population of neurons is driven by a step 
current  causing a transient response of the population activity. 
[ ] A single cortical model population can exhibit transient oscillations
[ ] Transients are always sharp
[ ] Transients are always slow
[ ] in a certain limit transients can be slow
[ ] An escape noise model  in the high-noise limit

has  transients which are always slow
[ ] A single population described by a 

single first-order differential equation  (no integrals/no delays) 
can exhibit transient oscillations
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Review: Interacting Populations 
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Visual cortex 



Receptive fields:
visual cortex V1

Orientation selective
π

2
π

0

rate

Stimulus orientation

Review:  Receptive fields with Orientation   Tuning



Visual cortex 

Image: Gerstner et al.
Neuronal Dynamics (2014)

Bonhoeffer&Grinvald, 1991; 
Bressloff&Cowan, 2002; 
Kaschube et al. 2010

8.3.  Orientation Map 

pinwheelpopulation of neighboring neurons: similar orientations
As we move along cortical surface: orientation changes



π
2
π

0

rate

Stimulus orientation

Cell 1

8.3. Do Orientation Columns exist? Do identical cells exist? 



π0

rate
Cell 1 Cell 5

2
π

Oriented stimulus

Coarse coding
Many cells
(from different columns) 
respond to a single
stimulus with different rate

8.3.  Do Orienation colums exist? Do identical cells exist? 
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8.3.  multiple populations  continuum
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8.4.  multiple populations  continuum
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Population activity

Membrane potential caused by input
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8. 4: Field equation (continuum model) 
max

F
F

Wilson and Cowan, 1973



Exercise 1.1 now (stationary solution)

Consider a continuum model,
Find analytical solutions:

- spatially uniform solution  A(x,t)= A0

Next lecture at
11:15

If done: start with Exercise 1.2 now (spatial stability)





iθ kθ

8.4:  coupling across continuum

x y
Mexican hat

local excitation,
long-range inhibition



iθ kθ

8.4:  more realistic cortical coupling

Effective long-range negative interaction with local inhibition



( , ) ( , ) ( , ) ( ') ( ( ', )) 'extd
dt h x t h x t R I x t d w x x F h x t dxτ = − + + −∫

8. 4: Summary: Field equations and coupling

-field equations = population activity
models in the spatial continuum

-coupling often  distance-dependent

-activity
-effective long-range inhibition

instead of local inhibitory neurons 
-variable x can represent space or

abstract quantity (e.g., orientation)    

)'()',( xxwxxw −=
))(( thFA =
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8.5.  Two Solution Types (ring model)

Coupling: Input-driven regime

Bump attractor regime

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),



x0

A(x)
I. Edge enhancement

Weaker lateral connectivity

I(x)

Possible interpretation
of visual cortex  cells:

(see later today)

Field Equations:
Wilson and Cowan, 1973

8.5. Solution types: input driven regime



π0

A
II: Bump formation:
activity profile in the absence of input

strong lateral connectivity

Possible interpretation
of head direction cells:
 (see later today)

Field Equations:
Wilson and Cowan, 1972

8.5. Solution types: bump solution



Exercise 2.1+2.2 now (stationary bump solution)

Consider a  continuum model with step gain-fuctnion,
Find analytically the bump solutions

w(x-y)
Next lecture at
11:40

A(x)

h(x) calculate input potential
at location x0

x0

d





)(),( θθ AtA =

Continuum: stationary profile 

θ

Comparison: simulation of neurons
and macroscopic field equation

Spiridon&Gerstner

8.5.  Solution types: bump solution

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),



8.5.  Solution types: multiple bump solutions with local interaction

time

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),



Quiz  see exercises 1 and 2
Solution of Field equations (1-dimensional ring model)

[ ] If a solution exists with a single bump localized around  x0,
equivalent solutions exist  at other locations. 

[ ] If the interaction is Mexican hat, a stationary solution can have
at most a single bump 

[ ] A homogeneous solution (constant in time and space) 
always exists

[ ] A homogeneous solution (constant in time and space) 
is always stable

[ ] If I increase in a model the spatial scale of inhibition, the activity 
profile of  an existing  bump  solution becomes broader

[ ] If I increase in a model the amplitude of excitation and the spatial
scale of inhibition, a bump solution is more likely to exist
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Basic phenomenology 

x0

A(x)
I. Edge enhancement

(Weak lateral connectivity)

I(x)

Possible interpretation
of visual cortex  cells:

contrast enhancement in
- orientation
- location

Field Equations 
for edge enhancement

Wilson and Cowan, 1973
Grossberg, 1973

8.6. uniform/input driven solution  



8.6. Perception -grid illusion 

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),



Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),

8.6. Perception – Mach bands Mach, 1865, 1906



Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),

8.6. Mach bands in a continuum model 

Mexican-hat coupling



8.6: Field models and Perception: contrast enhancement

Shriki et al. (2003):
Ring model in input-driven regime,
driven by broad input (dashed line),
causes sharp activity bump;
See also: Ben-Yishai et al. 1995; 
Hansel and Sompolinsky, 1998

contrast enhancement
 Sharpening



8.6: Field models and Perception: surround suppresion

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),

Ozeki et al. (2009):



8.6: Field models and Perception
-contrast enhancement is a stable

psychophysical phenomenon
-Mach bands are one example
-the activity of V1 cell first increases and

then decreases with size of stimulus
-both excitatory and inhibitory input 

into a cell show similar changes
-Mach bands can be explained by

a continuum model with  Mexican-hat 
interaction in the input-driven regime

-contrast enhancement = ‘sharpening’



Week 8 – Continuum models:
Cortical fields and perception

Wulfram Gerstner
EPFL, Lausanne, Switzerland

8.1. Aims and challenges
- review: mean-field arguments

8.2. Transients
- generalized integrate-and-fire model
- transients can be sharp or slow

8.3.  Spatial continuum (cortex)
- orientation columns

8.4. Spatial continuum (model)
- field equations

8.5.  Solution types 
- uniform solution
- bump solution

8.6. Perception
8.7. Head direction cells

Biological Modeling of Neural Networks

Reading for week 8:
NEURONAL DYNAMICS

Ch. 18

Cambridge Univ. Press



Basic phenomenology 

π0

A
Bump formation

strong lateral connectivity

Possible interpretation
of head direction cells:
always some cells active
 indicate current orientation

8.7. Bump solution  



rat brain

CA1

CA3
DG

pyramidal cells

soma
axon

dendrites

synapses
electrodePlace fields

8.7. Hippocampal place cells  



Main property: encoding the animal’s location

place 
field

8.7. Hippocampal place cells  



Main property: encoding the animal ’s  heading

θ
Φ

Preferred firing direction

r  (θ) i

θ
θi

8.7. Head direction cells  

Taube and Muller, 
Hippocampus 1998,



Main property: encoding the animal ’s allocentric heading

Preferred firing direction

r  (θ) i

θ 
θ i

0

90

180

270 300

8.7. Head direction cells  



8.7. Head direction cells  

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),

Adapted from Zugaro et al. (2003), J. Neurosci. 23:3478-3482



Similar to the rat: head direction cells in fly brain (ellipsoid body)

Seelig and Jarayaman, Nature, 2015,
Neural dynamics for landmark orientation and angular path

integration

stimulus on screen:

activity in 
ellipsoid body

- bump activity persists in the dark
- cue is landmark configuration



8.7. Head direction cells: summary 

head direction cells
- are sensitive to direction of head

with respect to visual cues
- keep their activity if light is switched off
- exist in rodents and in flies
- can be explained by bump solution in ring model 

Taube and Muller, Hippocampus 1998,
Zugaro et al., J. Neurosci.  2003
Seelig and Jarayaman, Nature, 2015
Redish et al., Network, 1996, Zhang, J. Neurosci. 1996



8.7. Summary: field models  

Continuum model provides understanding for:

- head direction cell 
 bumps of activity

- contrast enhancement and some visual illusions
 input driven regime
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