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Exercise 1: Continuous population model

We study a system with lateral connection w(x− y) given by:

τ
∂h(x, t)

∂t
= −h(x, t) +

∫
w(x− y)F [h(y, t)]dy + Iext(x, t), (1)

where F [h(x, t)] = A(x, t) is the population’s activity at the point x at time t.

1.1 Show that, for a constant current Iext, there exists a homogeneous stationary solution h(x, t) = h0
with a constant activity A0 given by:

A0 = F (h0) =
h0 − Iext

w̄
,

with w̄ =
∫
w(x− y)dy.

1.2 We set h(x, t) = h0 + ∆h(x, t) where ∆h is a small perturbation. Linearize equation (1) around h0
by substituting h(x, t) = h0 + ∆h(x, t) and Taylor-expanding F [h(x, t)] until first order. Apply a spatial
Fourier transform (with respect to x) and use the convolution theorem to simplify the resulting temporal
differential equation. Solve this differential equation and perform the inverse Fourier transform on the
solution to obtain ∆h(x, t) =

∫
g(k)dk where

g(k) = C(k)eikxe−κ(k)t/τ .

Identify the function κ(k). For which values of k do we get κ < 0? What does this mean for the stability
of the solution ∆h(x, t)?

1.3 Consider:

w(z) =
σ2e
−z2/(2σ2

1) − σ1e−z
2/(2σ2

2)

σ2 − σ1
,

with σ1 = 1 and σ2 = 10. Sketch the qualitative behaviour of w(z) and∫ +∞

−∞
w(z) cos(kz)dz.

Determine graphically the stability condition.

hint :
∫ +∞
−∞ e−

z2

2σ2 cos(kz)dz =
√

2πσe−
k2σ2

2

Exercise 2: Stationary state in a network with lateral connections

Consider a neural network with lateral connections represented in figure 1: the interaction is locally
excitatory and long range inhibitory:

w(x, x′) =

{
1 |x− x′| ≤ σ
−b |x− x′| > σ

(2)



Therefore σ corresponds to the range of the excitatory connections. The activity A of a neuron at position
x is given by:

A(x) = F [h(x)], (3)

where h(x) is the total potential of the neuron at position x, defined as:

h(x) =

∫
w(x, x′)A(x′)dx′ + Iext(x). (4)

The function F (h) is a simple threshold function:

F (h) =

{
1 h > Θ
0 h ≤ Θ

(5)

In this exercise we do not add any external input i.e. Iext(x) = 0. The aim of the exercise is to find the
neural activity A(x). In order to do so, we assume that A(x) may have a rectangular shape (of breadth
2d and amplitude 1, as shown in figure 1) and we prove this assumption with the following passages.

2.1 Consider a point at location x0 close to x = 2d and calculate its input potential, assuming that
2d > σ.

(Hint: there is excitatory input from the right and there is excitatory and inhibitory input from the left).

2.2 Exploit that at x0 = 2d we must have h(x0) = Θ. Why? Calculate d.

2.3 Convince yourselves that the bump of size 2d is therefore a solution for the activity A(x) and discuss
its properties.
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Figure 1: Spatial structure of the network.

Exercise 3: Stability of the stationary bump solution

We keep the same type of network as before and assume that the network rests in the stationary bump
solution A(x) determined in the previous exercise. We now investigate the stability of that solution. In
order to do so, we perturb the system at time tp by slightly changing the width D(t) of the activity bump



A(x, tp) from 2d to 2d + δ, with some δ = δ(tp) � d as indicated in fig. 2. Use the following steps to
study the stability of the unperturbed solution:

3.1 Discretize time in the underlying differential equation,

τ
∂h(x, t)

∂t
= −h(x, t) +

∫
w(x− y)F [h(y, t)]dy, (6)

using ∆t = τ . Solve for h(x, t+ ∆t) on the left hand side.

3.2 Using the discretized equation, calculate the potential h(x, tp + ∆t) one time step after the pertu-
bation by explicitly evaluating the integral with the perturbed (broadened) activation A(x, tp). Consider
again a position x0 close to x = 2d

3.3 Evaluate the potential at x0 = 2d+ δ. Is it below or above the threshold Θ? What does this mean
for the evolution of the bump width D(t) in the next time step(s)? Based on this, discuss the stability of
the stationary solution A(x).

3.4 Derive an iteration formula for the perturbation length δ(tp + ∆t) after one time step. Justify (e.g.
via complete induction) that the derived formula holds for all following time steps and derive an explicit
formula for δ(tp + n · ∆t), where n is the number of time steps. What is the asymptotic value of δ for
n→∞ and what is the functional form of the underlying decay?
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Figure 2: Illustration of the slight pertubation of the activity bump.


