\qquad

Neural Networks and Biological Modelling Exam 22 June 2016

- Write your name in legible letters on top of this page.
- The exam lasts 160 min .
- Write all your answers in a legible way on the exam (no extra sheets).
- No documentation is allowed apart from 1 sheet A5 of handwritten notes.
- No calculator is allowed.
- Have your student card displayed before you on your desk.
- Check that your exam has 12 pages

Evaluation:

1./6 pts
2. / 18 pts
3. \qquad / 8 pts
4. \qquad / 14 pts (10 plus 4 bonus points)

Total: \qquad / 46 pts (inclues $\mathrm{N}=4$ bonus points)

1 Biophysics of ion channels (6 points)

We consider the following model of a ion channel

$$
I_{i o n}=g_{0} x^{p}(u-E)
$$

where u is the membrane potential. The parameters g_{0}, p and $E=0$ are constants.
(a) What is the name of the variable E ? \qquad
Why does it have this name, what does it signify (give answer in one short sentence)
number of points: 1
(b) The variable x follows the dynamics

$$
\frac{d x}{d t}=-\frac{x-x_{0}(u)}{\tau}
$$

where $x_{0}(u)$ is monotonically increasing and bounded between zero and one. Suppose that, at $t=0$, we make a voltage step from a fixed value E to a new constant value u_{0}. Give the mathematical solution $x(t)$ for $t>0$.
$x(t)=$ \qquad
number of points: 2

Experimental colleagues tell you that they are able to apply voltage steps as in (b) and that by measuring the current they want to determine the parameters g_{0} and p of the ion channel in (a) and (b)
(c) How should they proceed to measure the parameter p ? What would be different between the case $p=1$ and $p=2$? You can sketch a little figure to illustrate your answer.
\qquad
\qquad
\qquad
number of points: 2
(d) Under the assumption that $x_{0}(u)$ is bounded between zero and 1 , how can they measure g_{0} ?
\qquad
\qquad
\qquad
number of points: 1

2 Phase Plane Analysis and separation of time scales (18 points)

Synaptic plasticity happens at different time scales. The weight w of a synapse evolves on a time scale $\tau_{w}=1 / \gamma$ but it is coupled to a slower variable z (time scale $\left.t \tau_{z}=1 / \epsilon\right)$. You may want to think of z as the physical size of the synapse and of w as the number of AMPA receptors.

Here are the two equations that we will study:

$$
\begin{align*}
& \frac{d w}{d t}=\gamma[f(w)-w+z+H] \tag{1}\\
& \frac{d z}{d t}=\epsilon[f(z)-z+w] \tag{2}
\end{align*}
$$

Normally the input H is zero. But during a pairing protocoll the joint activity of pre- and postsynaptic neuron give rise to a positive 'Hebbian' drive $H>0$. The constants γ and ϵ have appropriate units (You may assume $\gamma=0.25$ and $\epsilon=0.05$).

The function f is a third-order polynomial

$$
\begin{equation*}
f(x)=-2 x(1-x)(2-x) \tag{3}
\end{equation*}
$$

where $x=w$ or $x=z$.
(a) Assume $H=0$ and plot the two nullclines. To do so evaluate the w-nullcline at

$$
\begin{array}{ll}
w=0.0 \longrightarrow & z= \\
w=0.5 \longrightarrow & z= \\
w=1.0 \longrightarrow & z= \\
w=1.5 \longrightarrow \\
w=2.0 \longrightarrow & z= \\
z=
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
and the z-nullcline at

$$
\left.\begin{array}{ll}
z=0.0 \longrightarrow & w=\ldots \ldots \ldots \ldots . . . \\
z=0.5 \longrightarrow & w=\ldots \ldots \ldots \ldots . . \\
z=1.0 \longrightarrow & w=\ldots \ldots \ldots \ldots . . \\
z=1.5 \longrightarrow & w=\ldots \ldots \ldots \ldots . . \\
z=2.0 \longrightarrow & w
\end{array}\right)
$$

Plot the two nullclines in the figure on the next page. Annotate your lines by writing e.g., w-nullcline or z-nullcline.
number of points: 3

(b) In the above graph, add an arrow indicating the direction of flow at the point ($w=2, z=0$).
number of points: 1
(c) Keep in mind that $\gamma=0.25$ and $\epsilon=0.05$ and add, in the above graph, representative qualitative arrows indicating the flow in six different regions of the phase plane and on all segments of the nullclines
number of points: 4
(d) Suppose that, because of a past pairing protocol, the synapse is in a state $(w=2, z=0)$. Indicate the trajectory of the synapses in the above graph and label it with A. (As before $\gamma=5 \epsilon$.)
number of points: 1
(e) Suppose that, because of a past pairing protocol, the synapse is in a state $(w=2, z=1)$. Indicate the trajectory of the synapses in the above graph and label it with B. (As before $\gamma=5 \epsilon$.)
number of points: 1
(f) For the cases discussed in (d) and (e) draw qualitatively the trajectory of the synaptic weight $w(t)$ as a function of time. Use the space here:
number of points: 2
(g) At time $t=100$, a pairing protocol is applied which corresponds to a 'Hebbian' input $H=1.5$ which is sustained for a long time.

Redraw qualitatively the two nullclines in the graph here:

number of points: 2
(h) Interpret your results: What happens qualitatively to the nullclines and the fixed points? What does it mean for induction of synaptic plasticity?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
number of points: 2
(i) In the above graph, draw qualitatively a trajectory starting at $(0,0)$. Please use $\epsilon \ll \gamma$.
number of points: 2
Free space for your calculations, do not use to write down solutions/answers.

3 Mean-field models (8 points)

Consider a homogeneous network of N neurons. Each neuron has the same parameters and receives $K \leq N$ inputs from other neurons. An input spike causes a postsynaptic potential $w_{0} \epsilon(s)$ with two rectangular phases: $\epsilon(s)=+3 m V$ for $0<s<1 \mathrm{~ms}$ and $\epsilon(s)=-4 m V$ for $1<s<2 \mathrm{~ms}$. At all other times $\epsilon(s)=0$. Note that $s=0$ corresponds to the spike arrival time. The parameter w_{0} is positive $\left(w_{0}>0\right)$.

The total input potential of neuron i is

$$
\begin{equation*}
u_{i}(t)=u^{\mathrm{ext}}+\sum_{k} \sum_{f} w_{0} \epsilon\left(t-t_{k}^{f}\right) \tag{4}
\end{equation*}
$$

where $u^{\text {ext }} \geq 0$ denotes external input to the network and the sums run over all presynaptic neurons and all firing times, respectively.

Each neuron emits spike trains with a rate of 10 Hz if the input potential is below 10 mV and spike trains with a rate of 80 Hz if the input potential is above 12 mV . The firing rate increases linearly in between.

Assume that connections are random in the following sense: in a network of N neurons, each neuron receives exactly $K=N / 2$ inputs. Take $w_{0}=100 J_{0} / K$ and assume that N is larger than 10000 (formally you can assume $N \rightarrow \infty$).
(a) Assume stationary asynchronous firing and determine the population activity graphically. Consider four cases: $u^{e x t}=5 m V$ and $u^{e x t}=20 m V$ and choose two different values of $J_{0}>0$.
(space for your graphics here)

Complete your graphics on the previous page and write a short comment on your result:
\qquad
\qquad
number of points: 4
(b) Find the solutions for $u^{e x t}=20 \mathrm{mV}$ analytically, as a function of the parameter $J_{0}>0$. (Hint: there are three different regimes).
(space for your calculations here)

If $J_{0}<$ then
\qquad

If $J_{0}>$ \qquad and $J_{0}<$ then
\qquad

If $J_{0}>$ then
\qquad
number of points: 4

4 Stochastic Spike Arrivals and Spiking Probability (10 points +4 bonus points)

Consider a neuron in a network that receives K inputs from other neurons. An input spike at time $s=0$ causes a postsynaptic potential $w_{0} \epsilon(s)$ with two rectangular phases: $\epsilon(s)=+3 m V$ for $0<s<1 \mathrm{~ms}$ and $\epsilon(s)=-4 m V$ for $1<s<2 \mathrm{~ms}$. At all other times $\epsilon(s)=0$.

The total input potential of neuron i is

$$
\begin{equation*}
u(t)=\sum_{k} \sum_{f} w_{0} \epsilon\left(t-t_{k}^{f}\right) \tag{5}
\end{equation*}
$$

where the sums run over all presynaptic neurons and all firing times, respectively.
In the following we assume that all presynaptic neurons fire spikes stochastically (i.e., a Poisson process), each neuron with rate ν.
(a) Determine the mean input potential of the postsynaptic neuron. (assuming K presynaptic neurons, each one firing at rate ν)
$<u>=$
number of points: 2
(b) Evaluate the mean input potential for $K=1000 ; \nu=1 H z ; w_{0}=1$. Pay attention to the units
$<u>=$
number of points: 1
(c) Determine the variance of the potential of the postsynaptic neuron (assuming K presynaptic neurons firing at rate ν where K and ν are arbitrary positive parameters)
$<u^{2}(t)>=$
number of points: 2
(d) Using your results of (a) and (c), determine the standard deviation of the membrane potential
$<(\Delta u(t))^{2}>^{0.5}=\sqrt{<u^{2}(t)>-<u>^{2}}=$
number of points: 2
(e) Evaluate the standard deviation for $K=1000 ; \nu=1 H z ; w_{0}=1$. Pay attention to the units
$<(\Delta u(t))^{2}>^{0.5}=$
number of points: 1
(f) The postsynaptic neuron fires a spike as soon as the membrane potential hits the threshold $\vartheta=4 \mathrm{mV}$ from below. Consider initially $K=1000, \nu=1 \mathrm{~Hz}, w_{0}=1$. Now suppose that we rescale the weights as $w_{0}=1000 / K$ and we increase the number of presynaptic neurons K from 1000 to 2000 or 4000.

Does the likelihood of the postsynaptic neuron to fire a spike increase or decrease with K ? (Justify your answer on the next page)

Increase or Decrease? \qquad

My justification is:
\qquad
\qquad
\qquad
number of points: 2
(g) Bonus: Suppose the postsynaptic neuron fires a spike as soon as the membrane potential hits the threshold $\vartheta=4 \mathrm{mV}$ from below.

Take $K=1000, \nu=1 H z, w_{0}=1$.
Do you expect the neuron to fire a spike in an observation period of 100 milliseconds? Justify your answer.
\qquad
\qquad

My justification is (intuitive, mathematical, OR graphical)
\qquad
\qquad
\qquad
number of points: 2
(h) BONUS Consider the autocorrelation $<\Delta u(t) \Delta u(t+\Delta)>$. Is the autocorrelation at $\Delta=0.9 \mathrm{~ms}$ positive, zero, or negative? (Give an intuitive, or graphical, or mathematical argument).

I predict that $<\Delta u(t) \Delta u(t+\Delta)>$ is \qquad because, intuitively, \qquad
\qquad
\qquad
number of points: 2

