Neural Networks and Biological Modelling Exam
22 June 2016

- Write your name in legible letters on top of this page.
- The exam lasts 160 min.
- Write **all** your answers in a legible way on the exam (no extra sheets).
- No documentation is allowed apart from 1 sheet A5 of **handwritten** notes.
- No calculator is allowed.
- Have your student card displayed before you on your desk.
- Check that your exam has 12 pages

Evaluation:

- $1.\ \ldots .../6 \ \mathrm{pts}$
- 2. / 18 pts
- 3. / 8 pts
- 4. / 14 pts (10 plus 4 bonus points)

Total: / 46 pts (inclues N=4 bonus points)

1 Biophysics of ion channels (6 points)

We consider the following model of a ion channel

$$I_{ion} = g_0 x^p \left(u - E \right)$$

where u is the membrane potential. The parameters g_0, p and E = 0 are constants.

(a) What is the name of the variable E?

Why does it have this name, what does it signify (give answer in one short sentence)

number of points: 1

(b) The variable x follows the dynamics

$$\frac{dx}{dt} = -\frac{x - x_0(u)}{\tau}$$

where $x_0(u)$ is monotonically increasing and bounded between zero and one. Suppose that, at t = 0, we make a voltage step from a fixed value E to a new constant value u_0 . Give the mathematical solution x(t) for t > 0.

 $x(t) = \dots$ number of points: 2 Experimental colleagues tell you that they are able to apply voltage steps as in (b) and that by measuring the current they want to determine the parameters g_0 and p of the ion channel in (a) and (b)

(c) How should they proceed to measure the parameter p? What would be different between the case p=1 and p = 2? You can sketch a little figure to illustrate your answer.

•••••	 	 	 	
•••••	 	 	 	

number of points: 2

(d) Under the assumption that $x_0(u)$ is bounded between zero and 1, how can they measure g_0 ?

.....

2 Phase Plane Analysis and separation of time scales (18 points)

Synaptic plasticity happens at different time scales. The weight w of a synapse evolves on a time scale $\tau_w = 1/\gamma$ but it is coupled to a slower variable z (time scale $t\tau_z = 1/\epsilon$). You may want to think of z as the physical size of the synapse and of w as the number of AMPA receptors.

Here are the two equations that we will study:

$$\frac{dw}{dt} = \gamma \left[f(w) - w + z + H \right] \tag{1}$$

$$\frac{dz}{dt} = \epsilon \left[f(z) - z + w \right] \tag{2}$$

Normally the input H is zero. But during a pairing protocoll the joint activity of pre- and postsynaptic neuron give rise to a positive 'Hebbian' drive H > 0. The constants γ and ϵ have appropriate units (You may assume $\gamma = 0.25$ and $\epsilon = 0.05$).

The function f is a third-order polynomial

$$f(x) = -2x(1-x)(2-x)$$
(3)

where x = w or x = z.

(a) Assume H = 0 and plot the two nullclines. To do so evaluate the *w*-nullcline at

$w = 0.0 \longrightarrow$	<i>z</i> =
$w = 0.5 \longrightarrow$	$z = \dots$
$w = 1.0 \longrightarrow$	$z = \dots$
$w = 1.5 \longrightarrow$	$z = \dots$
$w = 2.0 \longrightarrow$	<i>z</i> =

and the z-nullcline at

$z = 0.0 \longrightarrow$	$w = \dots$
$z = 0.5 \longrightarrow$	$w = \dots$
$z = 1.0 \longrightarrow$	$w = \dots$
$z = 1.5 \longrightarrow$	$w = \dots$
$z = 2.0 \longrightarrow$	$w = \dots$

Plot the two nullclines in the figure on the next page. Annotate your lines by writing e.g., *w*-nullcline or *z*-nullcline.

(b) In the above graph, add an arrow indicating the direction of flow at the point (w = 2, z = 0).

number of points: 1

(c) Keep in mind that $\gamma = 0.25$ and $\epsilon = 0.05$ and add, in the above graph, representative qualitative arrows indicating the flow in six different regions of the phase plane and on all segments of the nullclines

number of points: 4

(d) Suppose that, because of a past pairing protocol, the synapse is in a state (w = 2, z = 0). Indicate the trajectory of the synapses in the above graph and label it with A. (As before $\gamma = 5\epsilon$.)

number of points: 1

(e) Suppose that, because of a past pairing protocol, the synapse is in a state (w = 2, z = 1). Indicate the trajectory of the synapses in the above graph and label it with B. (As before $\gamma = 5\epsilon$.)

(f) For the cases discussed in (d) and (e) draw qualitatively the trajectory of the synaptic weight w(t) as a function of time. Use the space here:

number of points: 2

(g) At time t = 100, a pairing protocol is applied which corresponds to a 'Hebbian' input H = 1.5 which is sustained for a long time.

Redraw qualitatively the two nullclines in the graph here:

(h) Interpret your results: What happens qualitatively to the nullclines and the fixed points? What does it mean for induction of synaptic plasticity?

number of points: 2

(i) In the above graph, draw qualitatively a trajectory starting at (0,0). Please use $\epsilon \ll \gamma$.

number of points: 2

Free space for your calculations, do not use to write down solutions/answers.

3 Mean-field models (8 points)

Consider a homogeneous network of N neurons. Each neuron has the same parameters and receives $K \leq N$ inputs from other neurons. An input spike causes a postsynaptic potential $w_0\epsilon(s)$ with two rectangular phases: $\epsilon(s) = +3mV$ for 0 < s < 1ms and $\epsilon(s) = -4mV$ for 1 < s < 2ms. At all other times $\epsilon(s) = 0$. Note that s = 0 corresponds to the spike arrival time. The parameter w_0 is positive $(w_0 > 0)$.

The total input potential of neuron i is

$$u_i(t) = u^{\text{ext}} + \sum_k \sum_f w_0 \epsilon(t - t_k^f)$$
(4)

where $u^{\text{ext}} \ge 0$ denotes external input to the network and the sums run over all presynaptic neurons and all firing times, respectively.

Each neuron emits spike trains with a rate of 10Hz if the input potential is below 10mV and spike trains with a rate of 80Hz if the input potential is above 12mV. The firing rate increases linearly in between.

Assume that connections are random in the following sense: in a network of N neurons, each neuron receives exactly K = N/2 inputs. Take $w_0 = 100 J_0/K$ and assume that N is larger than 10 000 (formally you can assume $N \to \infty$).

(a) Assume stationary asynchronous firing and determine the population activity graphically. Consider four cases: $u^{ext} = 5mV$ and $u^{ext} = 20mV$ and choose two different values of $J_0 > 0$.

(space for your graphics here)

Complete your graphics on the previous page and write a short comment on your result:

.....

.....

number of points: 4

(b) Find the solutions for $u^{ext} = 20mV$ analytically, as a function of the parameter $J_0 > 0$. (Hint: there are three different regimes).

(space for your calculations here)

If $J_0 < \dots$ then \dots

If $J_0 > \dots$ and $J_0 < \dots$ then \dots

.....

If $J_0 > \dots$ then

4 Stochastic Spike Arrivals and Spiking Probability (10 points + 4 bonus points)

Consider a neuron in a network that receives K inputs from other neurons. An input spike at time s = 0 causes a postsynaptic potential $w_0\epsilon(s)$ with two rectangular phases: $\epsilon(s) = +3mV$ for 0 < s < 1ms and $\epsilon(s) = -4mV$ for 1 < s < 2ms. At all other times $\epsilon(s) = 0$.

The total input potential of neuron i is

$$u(t) = \sum_{k} \sum_{f} w_0 \epsilon(t - t_k^f) \tag{5}$$

where the sums run over all presynaptic neurons and all firing times, respectively.

In the following we assume that all presynaptic neurons fire spikes stochastically (i.e., a Poisson process), each neuron with rate ν .

(a) Determine the mean input potential of the postsynaptic neuron. (assuming K presynaptic neurons, each one firing at rate ν)

< u > =

.....

number of points: 2

(b) Evaluate the mean input potential for $K = 1000; \nu = 1Hz; w_0 = 1$. Pay attention to the units

< u > =

.....

(c) Determine the variance of the potential of the postsynaptic neuron (assuming K presynaptic neurons firing at rate ν where K and ν are arbitrary positive parameters)

 $< u^2(t) > =$

.....

number of points: 2

(d) Using your results of (a) and (c), determine the standard deviation of the membrane potential

 $<(\Delta u(t))^2>^{0.5}=\sqrt{<u^2(t)>-<u>^2}=$

.....

number of points: 2

(e) Evaluate the standard deviation for K = 1000; $\nu = 1Hz$; $w_0 = 1$. Pay attention to the units

 $< (\Delta u(t))^2 >^{0.5} =$

.....

number of points: 1

(f) The postsynaptic neuron fires a spike as soon as the membrane potential hits the threshold $\vartheta = 4$ mV from below. Consider initially $K = 1000, \nu = 1Hz, w_0 = 1$. Now suppose that we **rescale the weights as** $w_0 = 1000/K$ and we increase the number of presynaptic neurons K from 1000 to 2000 or 4000.

Does the likelihood of the postsynaptic neuron to fire a spike increase or decrease with K? (Justify your answer on the next page)

Increase or Decrease?

My justification is:

.....

.....

number of points: 2

(g) **Bonus:** Suppose the postsynaptic neuron fires a spike as soon as the membrane potential hits the threshold $\vartheta = 4$ mV from below.

Take $K = 1000, \nu = 1Hz, w_0 = 1$.

Do you expect the neuron to fire a spike in an observation period of 100 milliseconds? Justify your answer.

.....

My justification is (intuitive, mathematical, OR graphical)

.....

number of points: 2

(h) **BONUS** Consider the autocorrelation $\langle \Delta u(t)\Delta u(t + \Delta) \rangle$. Is the autocorrelation at $\Delta = 0.9ms$ positive, zero, or negative? (Give an intuitive, or graphical, or mathematical argument).

I predict that $\langle \Delta u(t) \Delta u(t + \Delta) \rangle$ is

because, intuitively, \ldots

.....

.....