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1. Behavioral Learning — and Memory

Learning actions:

- riding a bicycle
Remembering facts

-> previous president of the US

- nhame of your mother
Remembering episodes

- first day at EPFL

which parking spot?



1. Behavioral Learning — and synaptic plasticity
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1. Synaptic plasticity — structural changes

Before 2 Mmin 20min 50 min

Yagishita et al.
Science, 2014



1. synaptic plasticity — molecular changes

Bosch et al. 2012,
Curr. Opinion Neurobiol.
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1. synaptic plasticity — connections change

More space In cortex allocated
- musiclans vS. hon-musiclans

Amunts et al. Human Brain Map. 1997
Gaser and Schlaug, J. Neuosci. 2003

More space In hippocampus allocated
- London taxi driver vs bus driver

Macquire et al. Hippocampus 2006




1. Synaptic plasticity

Should enable Learning
- adapt to the statistics of task
and environments
(receptive fields, allocate space etc)
- memorize facts and episodes
- learn motor tasks
Should avold:
- blow-up of activity =~ homeostasis
- unnecessary use of energy

Aim: models that capture the essence



1. Synaptic plasticity: program for this week

-Hebbian Learning
- EXperiments on synaptic plasticity

- Mathematical Formulations of Hebbian Learning

- Back to Attractor Memory Models



1. Synaptic plasticity: summary

Synaptic plasticity (= changes of synaptic contact points) are
the basis of learning.

Learning Is necessary for a variety of different tasks.
Learning leads to measure changes In performance (you get
better at a task) and to measurable changes in the brain.

As an example of a synaptic plasticity rule, we consider

Hebbian learning first.
We start with some experimental data, before move on to the

mathematical formulation.
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2. Classification of synaptic changes: Short-term plasticity
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2. Classification of synaptic changes: Long-term plasticity
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2. Classification of synaptic changes

Short-Term
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hanges ™"
- Induced over 0.1-0.5 sec

- recover over 1 sec

Protocol
- presynaptic spikes

Model
- well established

(Tosdyks, Pawelzik, Markram
Abbott-Davan)

vs/ Long-Term

LTP/LTD/Hebb

Changes

- Induced over 0.5-5sec
- remains over hours

Protocol
-presynaptic spikes + ...

Model
- we will see



2. Classification of synaptic changes

Induction of changes |

- fast (if stimulated appropriately) pre
- slow (homeostasis) L \P?St
J

Persistence of changes
- long (LTP/LTD)

- short (short-term plasticity)



2. Review: Hebb rule
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When an axon of cell | repeatedly or persistently
takes part in firing cell I, then |'s efficiency as one
of the cells firing 1 Is increased Hebb. 1949

- local rule
- simultaneously active (correlations)



2. Synaptic plasticity: Long-Term Potentiation (LTP)

Hebblan Learning Iin experiments (schematic)
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2. Classical paradigm of LTP induction — pairing

e LTP induction: / |
| neuron depolarized
Test stimulus

tetanus at 100Hz (0 -40mV

At 0.1 Hz neuron at -70mV Standard LTP
- _— PAIRING experiment
I .
‘z B Tt
7 .;mt

Fig. from Nature Neuroscience 5, 295 - 296 (2002) ~ rwetmn
D. S.F. Ling, ... & Todd C. Sacktor
See also: Bliss and Lomo (1973), Artola, Brocher, Singer (1990), Bliss and Collingridge (1993)



2. Spike-timing dependent plasticity (STDP)
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2. Classification of synaptic changes

Induction of changes |
- fast (if stimulated appropriately) pre
- slow (homeostasis) * ?St
] A

Persistence of changes
- long (LTP/LTD)
- short (short-term plasticity)

Functionality
- useful for learning a new behavior/forming new memories
- useful for development (wiring for receptive field development)
- useful for activity control in network: homeostasis
- useful for coding




2. Classification of synaptic changes: unsupervised learning

Hebbian Learning
= unsupervised learning
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2.Limits of unsupervised learning

Is Hebbian Learning sufficient?

No! Image: Gerstner et al. NEURONAL DYNAMICS,
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Reward/success

Schultz et al. 1997: Waelti et al., 2001:

- Reinforcement learning: success = reward — (expected reward)
TD-learning, SARSA, Policy gradient  (book: Sutton and Barto, 1997



2. Classification of synaptic changes: Reinforcement Learning

SUCCESS painforcement Learning
= reward + Hebb

Aw;; oc F(pre, post, SUCCESS)

.

local global

broadly diffused signal:
neuromodulator



2. Classification of synaptic changes

unsupervised vs reinforcement

LTP/LTD/Hebb
Theoretical concept

- passive changes
- exploit statistical correlations

e
Pre —__post

i |
J A
-~
RERTIRIN

Functionality

-useful for development
( wiring for receptive field)

Reinforcement Learning
Theoretical concept

- conditioned changes
- maximise reward

SUCCESS
pre
* e

J

Functionality
- useful for learning
a hew behavior



2. Three-factor rule of Hebbian Learning

= Hebb-rule gated by a neuromodulator

Neuromodulators: Interestingness, surprise;
attention; novelty

AW; o F(prT, po\st, MC‘)D)

local global




Imaae: Bioloaical Psvycholoay, Sinauer

Neuromodulator projections

Dopamine

-4 or 5 neuromodulators
- near-global action
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BIOLOGICAL PSYCHOLOGY 7e, Figure 4.5
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2-factor versus 3-factor rules

! | ‘ ‘~ Hebbian:
* ‘post’ = spikes
. "7 Hebbian:
‘post’ = voltage
(i - ¥
m - 3-factor

3-factor = Hebbian combined with
(potentiall delayed) Neuromodulator:

Image: Gerstner et al. (2018, review paper in Frontiers)



2. Summary: Classification of synaptic changes

Several categories can be used to classify synaptic changes:

1) Do changes last for a long time (hours: Long-Term
Potentiation) or do they decay rapidly back to baseline
(around a second: Short-Term Potentiation).

2) Do changes depend mainly on presynaptic and
postsynaptic activity (Hebbian learning/2-factor rule),
or also on the presence of a neuromodulator
(three-factor rule).

3) Learning paradigm: Is the learning scenario just exploiting
Input statistics (unsupervised learning/no teacher, no
reward); or does It also involve notions of ‘reward’ or
'success (reinforcement learning)



Quiz 1. Synaptic Plasticity and Learning Rules |

Long-term potentiation Learning rules
| ] has an acronym LTP [ ] Hebbian learning depends on
[ ] takes more than 10 minutes to induce presynaptic activity and on
| ] lasts more than 30 minutes state of postsynaptic neuron
| | depends on presynaptic activity, but not [ ] Reinforcement learning

on state of postsynaptic neuron depends on neuromodulators

such as dopamine indicating

Short-term potentiation reward

| ] has an acronym STP

[ ] takes more than 10 minutes to induce

| ] lasts more than 30 minutes

| ] depends on presynaptic activity, but not
on state of postsynaptic neuron
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3. Model of short-term plasticity

See Week X on MOODLE or See week 3 on:
http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOQOC1.nhtml

Synapses, dendrites and the cable equation
Part 1 - Synapses (15 min)
Part 2 - Synaptic short term plasticity (9 min)

https://www.youtube.com/watch?v=iEz__SUsJMJ8

Neuronal

Reading for STP: s R
NEURONAL DYNAMICS
- Ch 3.1.3.

Cambridge Univ. Press



http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html
http://www.youtube.com/watch?v=osC58gzrjA0
http://www.youtube.com/watch?v=iEz_SUsJMJ8
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4. Hebbian Learning (rate models)

~pre AN
v, ]
K polst

When an axon of cell | repeatedly or persistently
takes part in firing cell I, then |'s efficiency as one

of the cells firing 1 Is Increased
- local rule Hebb, 1949
- Simultaneously active (correlations)
Rate model:

active = high rate = many spikes per second




4. Rate-based Hebbian Learning
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4. Rate-based Hebbian Learning

- pre \

\\slvv

k post

d
=W = acorrv preV post

dt *

pre
pOSt

Off

on |off | on
on | on | off | off
+ O O 0




Review from week 5. Hebbian Learning




4. Rate-based Hebbian Learning
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- 4. Presynaptically gated plasticity rule

%resynaptically gated Assume activity v >0
_Wij _ agorr (Vipost o 9) Vjpre AWij
dt “ g

ost
V'p




. Blenenstock-Cooper-Munro rule

pre ‘ Bienenstock, Cooper
Q] ‘ ‘ ‘ ‘ ‘ . Munro, 1982
W.
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BCM: 3rd order (‘triplet’) pre
q Vi > 0
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~ 4. Functional Consequence of Hebbian Learning

Fixed rate { = | | O

NS

L A
Jointly variing rate BN O—

Hebbian Learning detects correlations in the input

- Development of Receptive Fields

(see also course:
Unsupervised and Reinforcement Learning)



Exercise 1 now: Bienenstock-Cooper-Munro

_______{@__________________._____
O Take 8 minutes =
‘ N O ipost: |, ) = Wi, PTe : :
\ ! otli) ZJ i1 Discussion of ex
{ O At 10:20
d .
BdCM rUIe corr ost e E W
awij =a, O —9) 4

20Hz

Assume 2 groups of 10 neurons each. All weights equal 1.
a)Group 1 fires at 3 Hz, then group 2 at 1 Hz. What happens?

b)Group 1 fires at 3 Hz, then group 2 at 2.5 Hz. What happens?

c) As In b, but make theta a function of the averaged rate. What happens?




. Synaptic Changes for Development of Cortex

BCM leads to specialized

Initial: .
random N_eurons (developmental learning);
connections Bienenstock et al. 1982
unselective
neurons Development and learning rules:

Willshaw&Malshurg, 1976
Linsker, 1956
KD Miller et al.,, 1959

\ \ output
‘ - { neurons
W{ :
\

output neurons specialize:
Receptive fields

Correlated input



- 4. Models for Hebblan Long-Term-Plasticity

- Many 'Hebbian’ rules

- LTP and LTD

- Can describe RF development

- BCM is a well-known example

- Competition: some synapses
grow at the expense of others



. Summary: Models for Hebbian Learning

Hebbian learning refers to a family of learning rules, rather than one specific
rule.

Rules can be classified by mapping them to a Taylor explansion.

Terms with a negative coefficient induce long-term depression (LTD).

A clever combination of LTP and LTD can explain the development of receiptive
fields (RF).

A clever combination of LTP and LTD leads to competition: some synapses
grow at the expense of others. A well-known example of a Hebbian rule Is the

Bienenstock-Cooper-Munro (BCM) rule
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5. Hebbian Learning
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When an axon of cell | repeatedly or persistently
takes part in firing cell 1, then j's efficiency as one
of the cells firing | Is Increased Hebb, 1949

Experiments: Bliss and Lomo 1973, Levy and Stewart, 1983, ...

Markram et al. 1997, Bi and Poo, 1998, ...
Reviews: Bliss and Collingridge, 1993, Sjostrom et al. 2008...
Markram et al. 2011, ...



5. STDP as Hebbian Learning

Fpome 20Hz 20 min
re " < |
D | L I
I B
” REEREER
postCL*
ong-term plasticity/changes per sist

Changes ; -

- Induced over 3 sec
- persist over hours and days

Models of STDP

Gerstner et al. 1996, Kempter et al., 1999, Song et al. 2000,
Senn et al. (2001), van Rossum et al. 2000, Rubin et al. 2001 before
Shouval et al. (2002), Clopath et al. (2010)




5. Spike-timing dependent plasticity: ‘traces for STDP

_ pre 1N I
N, — ZF
| R A
O | t_‘post B
pOSt i
T, 52 =—Z; +o(t—1t>") jump at presyn. spike
| r % 7" =—7" +o(t _tipost) jump at postsyn. spike
LT = r
T & Wy =a(v)zi ot -t )—b(w;)z ot —t7)
3 GEL pre-before-post post-before-pre
T Simple STDP model
| Dbata: 8- (Gerstner et al. 1996,
- —Bi&Pog,; 1998 - '
U0 9% a0 ¢ Song-Miller-Abbott 2000, etc)



Exercise STDP now:

Take 8 minutes =

C& tjpr‘e\ ___________ X7 (L) Discussion of ex
i — At 10:45.

-

-What Is the shape of the STDP window?
-calculate the effect of one pair of spikes
-calculate the effect of many pairs of spikes




5. Summary: Spike-timing dependent plasticity (STDP

STDP is a form of Hebbian learning induced by spikes.
For a phenomenological model, we can take the view that
each spike arriving at the presynaptic terminal leaves a
trace at the synapse (e.g., amount of glutamate Iin the
synaptic cleft, or bound to the postsynaptic receptor).

If a spike of the postsynaptic neuron coincides with the
trace left by the presynaptic spike, a change happens
(proportional to the monentary value of the trace.
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6. from STDP to rate models
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Exercise 4a: STDP to rate now: Take 8 minutes =

\ - O Discussion of ex
‘ ‘ ‘ 8 V_post At 1120
! |
o L o= :
| .
AW, = ; Wt —t) :
|

with rate Vjpfe |

. . . |
Assume postsynaptic spikes are generated by Poisson process

with rate ,pos |

|

|

|

|

|

|

| ,

: Assume presynaptic spikes are generated by Poisson process |
|

|

|

|

: What Is the expected change of weightsina time T ? |
|



6. from STDP to rate models

\ \ 8
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6. from STDP to rate models

\ \ 8
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%AWU N %i z W (s)S;(t)S ;(t+5)ds
% i =9 (t)o_f W, (=Ss)S(t—s)ds+ S, (t)IW (s)S,(t —s)ds



6. Summary: from STDP to rate models

In an STDP model, changes of synapses depend on the exact
timing of pre- and postsynaptic spikes.

However, If we assume that both presynaptic and
postsynaptic spike trains are generated by a homogeneous
Poisson Process (with stationary firing rates vi and vi), we can
translate the effect induced by STDP after many spikes into
an eqguivalent rate model by evaluation the expected change.

The standard STDP window gives then a rate model
C ViV,
where c Is the integral over the STDP window.



Expectations and Correlations of Poisson spike train:
see week 11.2 or

Watch vide video ‘Membrane Potential fluctuations’ on:

http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.nhtml

direct link:

https://www.youtube.com/watch?v=YTQqOyrFQQ4
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/. Why do we need a Triplet STDP model?

0y T

‘tipost ‘tipost o Lae

STDP window
IS only part of story

Pair-based STDP model
IS not sufficient



/. frequency dependenc of STDP

t

tjpr‘e
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‘tipost
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Sjostrom et al. 2001
See also:

Markram et al. 1997,
Senn et al. 2001,
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/. frequency dependence of STDP

%150 (
- Repetition frequency %
Important .= 100¢
- No LTP at 0.1Hz =
"% 0 4
NoO plastic'ify |

At low frequency



/. Triplet STDP model

Triplet
LTP

-QWJ.F __l_A+Z+ Zslow 5(1: tpost)

post

Triplet



/. Triplet STDP model Pfister and Gerstner, 2006

B z_i-g(t_tjpre) Pre: spike

~_ Post: spike-trace

+,+ S Slow pOSt Pre: spike-trace

Post: spike-now
— | spike-trace




/. Triplet STDP model

N
o

y

-
-
-

normalized weight [%]

U
G -

Pfister and Gerstner, 2006

20 40
~ [H7]

No plasticity
At low frequency

-

Similar triplet mechanism In
Senn et al. 2001,

Rubin et al. 2005,

Clopath et al. 2010



/. Triplet STDP model = BCM model

t

4w

J

-B z;75(t-t;") | Pre: spike
~

Post. spike-trace

+5+ oSlow t - '
+A . 2 o(t—t™) \_ Pre: spike-trace

— | Post: spike-now
slow spike-trace

Assume Poisson firing

a4y —
dth_




/. Summary: Triplet STDP = BCM model

Triplet STDP model

- parameters can be extracted from experimental data

- for Poisson spikes closely related to rate-based BCM

- but captures addition spike-timing effects

- simple pair-based STDP model is not sufficient,
because STDP depends also on repetition frequency
(and not only on relative timing of pairs of spikes).
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Week 13 short-term vs. long-term
Synaptic plasticity and Learning unsupervised vs. reward modulated

3. Model of short-term plasticity

4. Models of long-term plasticity
Wulfram Gerstner - Hebbian learning rules
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.. 5. Spiking Models of plasticity
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st 7. Triplet STDP model
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8. Review: Hebbian assemblies

Recall:
Partial info

item recalled
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8. Preconfigured memory
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8. Learning the memory: very hard
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~ 8. Learning: the task of modeling

Learning Functional or
Algorithms Behavioral
Consequences

Memory formation
Memory retention
Network stabllity
Plasticity data

Svnaptic Plasticity



8. Review: Rate models of Hebbian learning

. bre \ L]
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8. Induction of Plasticity
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- homosynaptic/Hebb (‘pre’ and ‘post’)
- heterosynaptic plasticity (pure ‘post’-term)
- transmitter-induced (pure ‘pre’-term)
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8. Heterosynaptic Plasticity (exper. and model)

3 trains at 1/60 Hz, 10 bursts per train at 1 Hz., 5 spikes per burst at 100 Hz
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8. Induction of Plasticity (rate-based)

- nonlinear Hebb for potentiation
BCM _  pre post \ 2
ey VY (i) Bienenstock et al., 1982
- pre-post for depressign ~ Pfister and Gerstner, 2006
- a;_TD Vjpre Vipost

_

- heterosynaptic plasticity (pure ‘post’)
_azet (VVU o Zij )[Vipost]4

- transmitter-induced (pure ‘pre’)

pre_  pre

+a, ‘/j



8. Plasticity model In network

dw..

j . pre, pre LTD_ , pre_ B post BCM _  pre post \ 2 het post 714

-> Self-stabilizing!

Heterosynaptic plasticity
must act on the same time scale zis o

Zenke+Gerstner, PLOS Comp. B. 2013

Zenke et al., Nat. Comm., 2015 0 10 20 30
Post activity [HZz]




8. Plasticity in feedforward /recurrent connections
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8. Theory and Simulation: first minute
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8. Plasticity model in network: two hours later
Stable memory recall despite

- ongoing plasticity OLLIIXIA

- ongoing activity ///
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8. Synaptic plasticity, Learning and Memory

Should enable Learning
- adapt to the statistics of task
and environments
(receptive fields, allocate space etc)
- memorize facts and episodes
- learn motor tasks
Should avold:
- blow-up of activity =~ homeostasis
- unnecessary use of energy

abstract models capture the essence
(but leave out many, many details)



8. Summary: Synaptic plasticity and Memory

Hebbian rules are a family of unsupervised learning rules which describe
changes that only depend on presynaptic spike arrivals and the state
(depolarization, firing rate, or bursts of spikes) of the postsynaptic neuron.
If we make a Taylor expansion of local unsupervised rules, we find terms
that depend on the correlations (Hebbian terms/homosynaptic terms) and
terms that depend only on the state of the postsynaptic neuron
(heterosynaptic terms). The heterosynaptic terms are useful to control the
total firing activity of a neuron.

A clever combination of BCM-type homosynaptic terms (triplet STDP
model) and of heterosynaptic terms (fourth-order in the postsynaptic firing
rate) enables to build network models that learn to form stable attractors.
These correspond to the attractors we have seen in the weeks on
Hopfield model and memory; but now with true online learning: synaptic
plasticity Is always ongoing (and not switched off during retrieval).



