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Question set 13

Exercise 1: Synaptic Plasticity: the BCM rule

A neuron receives 20 inputs that are organized in two groups of 10 inputs. The two groups fire in
alternation: when group 1 is active, group 2 is silent; when group 2 is active, group 1 is silent. The
input switches between the two groups every second (see figure 1(a)). All initial weights are wij = 1, but
weights can change according to the BCM rule (eq. 1 with ϑ = 20Hz). The firing rate of the postsynaptic
neuron νposti is given by eq. 2. The shape of Φ is shown in figure 1(b).

(a) One postsynaptic neuron receives in-
put from 20 presynaptic neurons.

(b) weight-change as a function of νposti .
The solid line shows it for ϑ = 20Hz.

Figure 1: Network and weight-change
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j

wijν
pre
j (2)

a) Assume that group 1 fires at 3Hz, then group 2 at 1 Hz, then again group 1 etc. How do the weights
of both groups evolve?

b) Assume that group 1 fires at 3Hz, then group 2 at 2.5 Hz, then again group 1 etc. How do the weights
of both groups evolve?

c) The inputs are as in part b, but now you are free to choose theta. Suppose that the synapse can measure
the time-average postsynaptic rate ν. What would you propose as model of ϑ so that the weight-pattern
becomes non-trivial?



Exercise 2: Spike-time dependent plasticity by local variables

The goal of this exercise is to show that it is possible to account for the asymmetry in the STDP window
using a simple microscopic model of synaptic plasticity.
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Figure 2: Memory traces of pre- and post-synaptic spike trains.

Suppose that the change in synaptic weight is controlled by the local concentration of two molecules
xpre and ypost. The substance xpre acts as a memory trace of presynaptic spikes in the sense that each
presynaptic spike triggers an increase in the concentration of xpre:

τ+
d

dt
xprej = −xprej + δ(t− tprej ) . (3)

Similarly, ypost is the trace left by the postsynaptic spike train,

τ−
d

dt
ypost = −ypost + δ(t− tposti ) . (4)

Calculate the form of the learning window ∆w = f(∆t) – where ∆t = tprej − tposti assuming that the
synaptic weights are updated according to the rule

d

dt
wij = a+x

pre
j δ(t− tposti )− a−ypostδ(t− tprej ) . (5)

The constants a+ and a− are both positive.

Hint: Calculate the weight change for a pair of pre/post spikes. Consider the two cases
∆t > 0 and ∆t < 0.

Exercise 3: From spike-time dependent plasticity to rate models

Suppose that we have pair-based plasticity with an STDP window W (tfi − tf
′

j ). The window decays
exponentially and the slowest time scale of the decay is τ−. Every presynaptic spike interacts with every
postsynaptic spike as long as the timing is close enough to fall within the above time window.

3.1 Assume presynaptic spike trains generated by a homogeneous Poisson process with rate νj . Assume
postsynaptic spike trains generated by another, independent, Poisson process with constant rate νi.
How much is the expected weight change ∆wij in a time T , if T >> τ−?

Hint: Write the weight change as an integral over spike trains. Link the expectation over spike trains to
the firing rate.

3.2 Assume presynaptic spike trains generated by a homogeneous Poisson process with rate νj . Assume



postsynaptic spike trains generated by another Poisson process with rate:
νi(t) =

∑
k wik

∑
f ε(t− t

f
k) =

∑
k wik

∫∞
0
ε(s)Sk(t− s)ds.

How much is the expected weight change ∆wij/T in a time T , if T >> τ−?

Hints:
(i) Exploit the autocorrelation of the Poisson process.
(ii) The output spikes are generated with rate νi, but this rate depends on the input.
(ii) Treat the input from synapse j explicitly. Note that the output spike train depends on the input

spikes: If a spike has arrived at time tfj the postsynaptic rate is higher than ’on average’.

Exercise 4: Hopfield networks and Hebbian learning (TODO at home)

Here we explore how we may obtain a Hopfield network with M stored prototypes through Hebbian
plasticity instead of fixing the weights explicitly.

This is achieved by presenting the patterns to a fully connected network and apply a plasticity rule:

d

dt
wij = acorr2 (νposti (t)− ϑ)(νprej (t)− ϑ) , (6)

where a2 and ϑ are parameters of the plasticity model; νposti (t) and νprej (t) are the activities of neurons
i and j at time t.

We present a pattern µ to the network in the following way: Each pixel j of pattern µ, pµj ∈ {−1,+1},
stimulates exactly one neuron j in the network. That neuron’s firing rate νj depends on the pattern:
νj = 0Hz if pµj = −1; νj = 20Hz if pµj = +1.

During that presentation, the network learns the pattern by adjusting its weights according to the plas-
ticity rule given in equation 6. We assume initial weights wij = 0. For this exercise, we use a constant
threshold ϑ = 10Hz.

4.1 We now have the network learn M patterns. Each one is presented once for 0.5 seconds. Show that,
for an appropriate choice of a2, the final weights are given by

wij =
∑
µ

pµi p
µ
j . (7)

Hint: Begin by calculating the weight change induced by presenting a single pattern for 0.5s.

4.2 How does this learning rule map to the general formulation

d

dt
wij = a0 + apre1 νprej + apost1 νposti + acorr2 νprej νposti + . . . ? (8)

4.3 Would you describe this learning procedure as reinforcement or unsupervised learning?


