Neural Networks and Biological Modeling
Professor Wulfram Gerstner

Laboratory of Computational Neuroscience

(QUESTION SET 13

Exercise 1: Synaptic Plasticity: the BCM rule

A neuron receives 20 inputs that are organized in two groups of 10 inputs. The two groups fire in
alternation: when group 1 is active, group 2 is silent; when group 2 is active, group 1 is silent. The
input switches between the two groups every second (see figure 1(a)). All initial weights are w;; = 1, but
weights can change according to the BCM rule (eq. 1 with 9 = 20Hz). The firing rate of the postsynaptic

neuron v/°*" is given by eq. 2. The shape of ® is shown in figure 1(b).
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(a) One postsynaptic neuron receives in- (b) weight-change as a function of l/fOSt.
put from 20 presynaptic neurons. The solid line shows it for ¥ = 20H z.
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a) Assume that group 1 fires at 3Hz, then group 2 at 1 Hz, then again group 1 etc. How do the weights
of both groups evolve?

b) Assume that group 1 fires at 3Hz, then group 2 at 2.5 Hz, then again group 1 etc. How do the weights
of both groups evolve?

¢) The inputs are as in part b, but now you are free to choose theta. Suppose that the synapse can measure
the time-average postsynaptic rate 7. What would you propose as model of ¥ so that the weight-pattern
becomes non-trivial?



Exercise 2: Spike-time dependent plasticity by local variables

The goal of this exercise is to show that it is possible to account for the asymmetry in the STDP window
using a simple microscopic model of synaptic plasticity.
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Figure 2: Memory traces of pre- and post-synaptic spike trains.

Suppose that the change in synaptic weight is controlled by the local concentration of two molecules
P and yP°*. The substance 2P acts as a memory trace of presynaptic spikes in the sense that each
presynaptic spike triggers an increase in the concentration of xPre:

d

Sl = =B (e ). (3)
Similarly, yP°s! is the trace left by the postsynaptic spike train,
d . .
T %ypObt — _ypost + (5(t _ tEOSt) ) (4)

Calculate the form of the learning window Aw = f(At) — where At = 7" — tP" assuming that the
synaptic weights are updated according to the rule
L)
dt

The constants a4 and a_ are both positive.

wij = ap xS (t — 1) — a_yPOrs(t — 7). (5)

Hint: Calculate the weight change for a pair of pre/post spikes. Consider the two cases
At > 0 and At < 0.

Exercise 3: From spike-time dependent plasticity to rate models

Suppose that we have pair-based plasticity with an STDP window W(t{ — tf /). The window decays
exponentially and the slowest time scale of the decay is 7_. Every presynaptic spike interacts with every
postsynaptic spike as long as the timing is close enough to fall within the above time window.

3.1 Assume presynaptic spike trains generated by a homogeneous Poisson process with rate v;. Assume
postsynaptic spike trains generated by another, independent, Poisson process with constant rate v;.
How much is the expected weight change Aw;; in a time T, if T >> 7.7

Hint: Write the weight change as an integral over spike trains. Link the expectation over spike trains to
the firing rate.

3.2 Assume presynaptic spike trains generated by a homogeneous Poisson process with rate v;. Assume



postsynaptic spike trains generated by another Poisson process with rate:

vi(t) = > 5 Wik Zf (t_tk =k Wik fo 5)Sk(t — s)ds.

How much is the expected weight change Aw” /T in a time T, if T >> 7.7

Hints:

(i) Exploit the autocorrelation of the Poisson process.

(ii) The output spikes are generated with rate v;, but this rate depends on the input.

(ii) Treat the input from synapse j explicitly. Note that the output spike train depends on the input
spikes: If a spike has arrived at time tf the postsynaptic rate is higher than ’on average’.

Exercise 4: Hopfield networks and Hebbian learning (TODO at home)

Here we explore how we may obtain a Hopfield network with M stored prototypes through Hebbian
plasticity instead of fixing the weights explicitly.

This is achieved by presenting the patterns to a fully connected network and apply a plasticity rule:

d

dt
where ag and ¥ are parameters of the plasticity model; v (¢) and V}"(t) are the activities of neurons
7 and j at time ¢.

wij = a§™" (P (8) = 9) (v (1) = D) (6)

We present a pattern p to the network in the following way: Each pixel j of pattern u, p;-i e {-1,+1},
stimulates exactly one neuron j in the network. That neuron’s firing rate v; depends on the pattern:
v;=0Hz ifp? =-1Lv;=20Hz ifp? = +1.

During that presentation, the network learns the pattern by adjusting its weights according to the plas-
ticity rule given in equation 6. We assume initial weights w;; = 0. For this exercise, we use a constant
threshold ¥ = 10 Hz.

4.1 We now have the network learn M patterns. Each one is presented once for 0.5 seconds. Show that,
for an appropriate choice of as, the final weights are given by

wl] *szp] (7)

Hint: Begin by calculating the weight change induced by presenting a single pattern for 0.5s.
4.2 How does this learning rule map to the general formulation
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4.3 Would you describe this learning procedure as reinforcement or unsupervised learning?



