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CORRECTION QUESTION SET 12

Exercise 1: Synaptic Plasticity: the BCM rule

1.1 First consider a presynaptic neuron j; taken from the first population. The dynamics of the
strength of the synapse with neuron 7 is such that

1. During the firing of the first population
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According to the graph in fig 1b we see that %wijl is strictly positive. Since increased weights

lead to increasing postsynaptic rate v} ©5® which in turn leads to increasing %wijl, the weights
keep on increasing.

2. During the firing of the second population ¥ = 0 and hence %w;;, = 0. The synaptic

J1
strengths stay fixed.

Therefore we conclude that the synapses of the first population of neurons become stronger with
time.

Now consider a neuron js belonging to the second population. During the firing of the first
population, since v}, = 0, we have
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During the firing of the second group, since initially we have v°°** = 10 Hz which is below threshold,
%wijz is negative and will remain negative (see fig 1b) until the weights reach their minimum value
(say zero — afterwards, weights are artificially kept null). The neuron i has become selective to one

of the two groups, thus achieving group discrimination (which is good for memory).

1.2 The post-synaptic frequencies during the firing of the two groups are respectively 25 Hz and
30 Hz, which is above 9. We are back to the situation described above, and the weights of both
groups will grow indefinitely. No discrimination is made. One could argue that weights of group
1 will grow faster than those of group 2. This is true, but physically “growing without bound”
actually means “growing until a limit is reached”, and eventually the weights of both groups will
end up being similar.

1.3 The idea is to place the threshold ¥ (which is the border between depression and potentiation)
always at the right point to allow discrimination. If the postsynaptic rate increases (in average),
then the threshold should follow quickly. To set things, let us assume that 8 = (v;) (averaged post-
synaptic rate, which can be implemented with a standard low pass filter with long time constant).
In the situation given in 1.2, the threshold would slide until it reaches W = 27.5, in which case
the situation becomes analog to 1.1, allowing group selection. In fact, this explanation is simplistic



in the sense that the weights also change with time: as the threshold slides towards the average
rate, the average rate also increases because weights increase in both groups. It can be shown that
the threshold must vary more rapidly than (v;). In practice, one usually takes 6 = <Vf> (average
squared post-synaptic rate).

Exercise 2: Spike-time dependent plasticity by local variables

From the learning rule
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one can see that weight changes occur only when one of the neurons fire (pre or post).

Let us consider an isolated pair of spikes, “pre before post”. The presynaptic neuron fires at time
t2" and the postsynaptic neuron fires at time P with At = e — Pt < 0.

e When the presynaptic spike occurs, the weight is depressed by an amount a_ - yi(t;)re).
However, it has been a long time since the postsynaptic neuron spiked (“isolated pair”).
Therefore the trace y; has already decayed back to 0: no weight change occurs.

e When the postsynaptic neuron fires, the weight is potentiated by an amount a, - z; (t?OSt).
When the presynaptic spike occured previously (|At| ms ago), the trace z; had jumped from 0
to %, and has been decaying until now (now = t?°*"). We know that the decay is exponential
with time constant 7, so that 2, (t?**") = %e’m”/”.

In conclusion, the total weight change resulting from a “pre-before-post” pair depends on the time
interval At according to
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Let us now consider an isolated pair of spikes in reverse order, “post before pre”. The same
reasoning holds: no potentiation occurs at the postsynaptic spike (ﬂcpost = 0), and the weight is
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depressed by i—: when the presynaptic neuron fires. In conclusion, the total weight change

resulting from a “post-before-pre” pair depends on the time interval At according to

Aw(At > 0) = — 2= 1At/
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We have derived an analytical expression for both parts of the learning window. It is plotted in
figure 1.

Exercise 3: From spike-time dependent plasticity to rate models

3.1 The weight change Aw;; is given by: Aw;; =3, » W(t{ — t; /), where the sum runs over all
spikes occurring within T. We can write this quantity as an integral over spike trains:
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Figure 1: The STDP window
Taking the expectation, we have:
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The second equality comes from the fact that the two Poisson processes are independent.
In words, Eq. 10 tells us that the expected weight change is equal to the area of the STDP window
multiplied by the firing rates and the time interval, as we might have intuitively thought.

3.2 We have: . N
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Taking the expectation, we have:
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We can split now the input spikes into those coming from synapse j and all the rest coming from
other synapses k # j.
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Due to the independence of the presynaptic spike trains we have:

(St —)S;(t = s)) = (Sk(t —5)) (S;(t = 5)) = vpw;.

As we found in exercise 3 of exercise set 11, the autocorrelation of a Poisson process is:
(Sj(t —s")Sj(t —s)) =vi +v;6(s —§).

Thus we obtain:
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Exercise 4: Hopfield networks and Hebbian learning

4.1 We begin by calculating the change of weights Awfj induced by presenting pattern p to the
network for 0.5s:
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The last equality is easily explained: for all i and p we see that if p/" = 1 then v} — 10 =20—10 =
10 = 10p!, and similarly if p! = —1 then v!' — 10 = 0 — 10 = 10p!'.

Thus, by choosing ay = % and summing over all prototype presentations, we have wa”ml =

E pfpé‘, as we wanted. This exercise is intended to convince you that it is possible to learn
memories in a fully interconnected network using a simple Hebbian learning rule.

4.2 Just expanding the given learning rule, we have $w;; = ag9? — agIVPO™ — ay P 4
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asv?**'vP™®. To map this into the general formulation we choose: ag = a29?, a™ = —asd, a}*™ =
—ag¥, a$’ = as.

4.3 The learning is unsupervised, since the network learns implicit associations present in the
input without any additional teaching signal, e.g. when the prototype being presented changed.
We should note however, that learning should be limited to the first presentation of each pattern.
During retrieval, we do not want the weights to change. Such a distinction of ”learn a new pattern”
and "retrieve a known pattern” could be triggered by a novelty related neuromodulator. In that
sense, learning is not purely unsupervised.



