
T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Pierre Dillenbourg

ORCHESTRATION
GRAPHSMODELING

SCALABLE EDUCATION

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7 ORCHESTRATION

GRAPHSMODELING
SCALABLE EDUCATION

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Pierre Dillenbourg

ORCHESTRATION
GRAPHSMODELING

SCALABLE EDUCATION

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

is an imprint owned by the Presses polytechniques et universitaires romandes,
a Swiss academic publishing company whose main purpose is to publish the teaching
and research works of the Ecole polytechnique fédérale de Lausanne (EPFL).

Presses polytechniques et univeristaires romandes
EPFL – Rolex Learning Center
Post office box 119
CH-1015 Lausanne, Switzerland
E-mail: ppur@epfl.ch

www.epflpress.org

© 2015, First edition, EPFL Press
ISBN (version papier) : 978-2-940222-84-1
ISBN (version numérique) : 978-2-88914-378-8
Printed in Switzerland

All rights reserved, including those of translation into other languages. No part of this
book may be reproduced in any form – by photoprint, microfilm, or any other means –
nor transmitted or translated into a machine language without written permission from
the publisher.

The author and publisher express their thanks to the Ecole polytechnique
fédérale de Lausanne for its generous support towards the publication of
this book.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

A Christine, Dinesh, Savita, et Naël

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Contents

Summary	 1

Introduction	 3

Chapter 1  Orchestration Graphs	 11
Point 1	 Horizontal axis	 13
Point 2	 Vertical axis	 17
Point 3	 Topology	 21
Point 4	 Activities	 27
Point 5	 Edges	 33
Point 6	 Skills and competencies	 36
Point 7	 Control structures	 40
Point 8	 Parallelism 	 42
Conclusions	 46

Chapter 2  The Edges Library	 47
Point 9	 Preparation edges	 48
Point 10	 Set edges	 53
Point 11	 Translation edges	 56
Point 12	 Generalization edges	 60
Conclusions	 65

Chapter 3  The Operators Library	 67
Point 13	 Workflows	 70
Point 14	 Aggregation operators	 72
Point 15	 Distribution operators	 76
Point 16	 Social operators	 78
Point 17	 Social distance criteria	 82
Point 18	 Back-office operators	 84
Point 19	 Patterns of operators	 86
Conclusions	 94

Chapter 4  Stochastic processes	 95
Point 20	 Learner states	 95
Point 21	 The states library	 101
Point 22	 States transitions	 112
Point 23	 Matrix entropy	 114
Point 24	 Matrix utopy	 119
Point 25	 Edge elasticity	 123

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

VIII	 ORCHESTRATION GRAPHS

Point 26	 Operators and matrices	 126
Point 27	 Theory plug-ins	 128
Conclusions	 131

Chapter 5  Learning analytics	 133
Point 28	 Cognitive diagnosis	 134
Point 29	 Behavioral abstractions	 135
Point 30	 Diagnosis entropy	 137
Point 31	 The diagnosis axis	 141
Point 32	 The modeling cube	 143
Point 33	 Multidimensional predictions 	 147
Conclusions	 153

Chapter 6  Orchestration	 155
Point 34	 Scope and space	 155
Point 35	 The constraints library	 159
Point 36	 The economy of evolution	 167
Point 37	 Graph adaptations	 170
Point 38	 Graph repairs	 175
Point 39	 Self-improving systems	 177
Point 40	 Participatory graphs	 180
Point 41	 Orchestration load	 181
Point 42	 Classroom usability	 186
Conclusions	 191

Discussion	 193

References	 197

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Summary

A sequence of learning activities can be modeled as a graph with specific prop-
erties. The vertices or nodes of the graph are the learning activities. Learners
perform some of these activities individually, some in teams, and others with
the whole class. The graph has a geometric nature, time being represented
horizontally and social organization (individual, team, class) vertically. These
activities can be inspired by heterogeneous learning theories; a graph models
the integration of heterogeneous activities into a coherent pedagogical sce-
nario. The edges of the graph connect activities. They represent the two-fold
relationship between activities—how they relate to each other from a pedagog-
ical and from an operational viewpoint.

From the operational viewpoint, edges are associated with operators that
transform the data structures produced during a learning activity into the
data structures needed to run the next activity. In this book I will present
26 operators classified into 5 categories. A sequence of operators constitutes
a workflow.

From the pedagogical viewpoint, an edge describes why an activity is nec-
essary for the next activity; it can, for instance, be a cognitive prerequisite, a
motivational trick, an advanced organizer, or an organizational constraint. The
edges are classified in a library of 28 pedagogical ideas. The extent to which
one activity is necessary for the next one is encompassed in the weight of an
edge. The transition between two activities is stored as a matrix; the cell (m,n)
of a transition matrix stores the probability that a learner in cognitive state m
will evolve to state n in the next activity. I propose a list of 28 states that have
a specific meaning in education. The transition matrix can be summarized by
a parameter that constitutes the edge weight; an edge between two activities
has a heavy weight if learner performance in one activity is highly predictive
of success in a connected activity. The graph also constitutes a probabilistic
network that allows predicting the future state of a learner.

When the pedagogical scenario is running, the actual state of the learner
can be inferred not only from his past activities but also from his current
behavior and from the activities of others. Learner modeling combines these 3
sources of information and is hence represented as a cube.

This book does not propose a learning theory. It describes how rich learn-
ing activities, often designed for small classes, can be scaled up for use with
thousands of participants, as in MOOCs. It also describes how a pedagogical

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

2	 ORCHESTRATION GRAPHS

scenario can be adapted to the level of participants or repaired on the fly
when problems occur. The graph describes how the scenario can be modi-
fied, stretched, cut, and extended. Orchestration refers to the real-time man-
agement of pedagogical scenarios to ensure the maximum the satisfaction of
many constraints, listed in this book.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Introduction

This book proposes a language for modeling the design and the orchestration
of sequences of learning activities. In a nutshell, orchestration refers to the
real-time management of pedagogical scenarios and their permanent adap-
tation to the many constraints that have to be satisfied for a lesson to “work
well”, as would a teacher say. This modeling language relies on graphs that
describe educational scenarios from four different viewpoints. In Chapter 1,
the graph describes the structure of activities; who does what and when. It
models the visible part of the educational activities. Chapter 2 proposes a
library of pedagogical ideas that underlie the graph structure. In Chapter 3,
the graph describes the workflow underneath rich scenarios, every edge of
the graph being potentially associated with data transformation operators. In
Chapter 4 and Chapter 5, the graph describes the learner path as a stochas-
tic process, every edge being associated with a probability matrix. In the last
chapter, I explore how analytics contribute to the real-time management of
scenarios and the improvement in their effectiveness over time.

A modeling language is not a theory that predicts how people will learn but
a tool for designers of pedagogical scenarios, as well as scholars working on
learning analytics. A theory can be proven or rejected with empirical data. A
modeling language is not true or false but rather may or may not be useful for
those who attempt to express themselves with this vocabulary and this syn-
tax. My motivation for proposing a formal language is described in the next
paragraphs.

First, modeling lies at the heart of any scientific field. It constitutes a legiti-
mate activity for any scholar and does not require any justification in terms of
outcome or application. Throughout the book, I try to find a balance between
the lack of formalism in learning sciences and the risk of writing down mean-
ingless formulae; quantifying the rich semantics of educational dialogues,
along with the subtle social cues of social situations, could lead to a caricature
of science. Of course, education is not about numbers; it is about inspiring
humans, about passion, and about creating a warm social atmosphere. None-
theless, I am utterly convinced that there is something deeply rational, almost
algorithmic, in the art of teaching. This rational layer constitutes the slice of
the educational realm that defines the perimeter of this book. This modeling
ambition is not restricted to online education, but concerns any classroom
lesson. I will return to this point several times in the book.

Beyond the intrinsic legitimacy of modeling, a second motivation is to
improve the dialogue between learning sciences and computer science.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

4	 ORCHESTRATION GRAPHS

Computer scientists often complain that the learning sciences fail to provide
them with formal models of education. This book results from an attempt to
make a modest step in that direction. John Self (1992) named this effort “com-
putational mathetics,” which could have been the title of this book. The pro-
posed modeling language translates educational scenarios into computational
structures that are familiar to computer scientists, such as graphs or Markov
chains. This book does not describe a platform where language, graphs, and
operators are implemented. Such a platform does not exist, and this book does
not aim to provide the specifications of such a platform. Instead, the proposed
modeling language could be used upstream of the implementation process and
influence more than one educational platform.

On the more applied side, the proposed modeling language could enhance
learning technologies in several ways.
•	 This work has been inspired by the wish to enrich the pedagogy of Massive

Open Online Courses (MOOCs). Many rich learning activities have been
empirically validated with small classes, but, at first glance, it seems diffi-
cult to scale them up to thousands of learners. Are MOOCs condemned to
rely on simple learning activities such as watching videos, answering quiz-
zes, and doing exercises? This book hypothesizes that a formal description
of pedagogical scenarios will allow rich activities to be run on a large scale.

•	 A modeling language could enhance the power of learning analytics; that
is, the processing of traces left by learners during their activities. When
500 sensors are distributed over a mountain, the 3D model of this moun-
tain and the precise location of each sensor are necessary to integrate the
data collected from the sensors into a consistent dataset. The graphs pre-
sented in this book constitute the 3D model of a lesson. The three dimen-
sions are time, social structures, and diagnosis inference levels. I postulate
that learning analytics will exploit the traces of learners more accurately
once these traces have been mapped onto a model of the learning activities.

•	 If the modeling language was used by different platforms, data from differ-
ent MOOCs could be compared, since it would be possible to identify what
is comparable or not between two MOOCs. I hope that one day data from
MOOCs will be made available to the whole learning community, and not
only to the institution that owns the MOOC. Other scientific fields made
a quantum leap forward when they succeeded in efficiently sharing their
data. This major achievement would, however, remain unproductive unless
there was a description of MOOCs precise enough to support comparisons.

•	 This modeling language could provide the programming abstractions
required to make the code of learning environments more explicit and less
ad-hoc.

This book was written for researchers in education and learning technol-
ogies, as well as for computer scientists developing new educational environ-

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 INTRODUCTION	 5

ments. The proposed language is suited to describing learning technologies,
especially online education—namely MOOCs. However, the scope of this book
is not limited to MOOCs. I believe that the proposed modeling language is
relevant for any formal educational context. At a first glance, a lesson on sub-
traction for 20 pupils in an elementary school classroom does not have much
in common with an academic MOOC on digital signal processing, with 20,000
students. Under the surface though, both can be modeled as learning activity
graphs. In other words, this is not a book restricted to MOOCs, but the rise of
MOOCs has prompted the need to formalize rich learning activities in order
to bring them to scale.

Orchestration graphs describe the space of pedagogical scenarios that can
be elaborated. A scenario is a sequence of activities devoted to a set of learn-
ing objectives. This book is neither a practical guide for creating a scenario
or a MOOC, nor a theory that prescribes how scenarios or MOOCs should
be designed. Learning theories have to be “proven” in some way. A modeling
language is neither true nor false; it may or may not be useful. Therefore, this
model will be validated if future platforms are implemented on the bases pre-
sented in this book and if these implementations actually enable rich peda-
gogical scenarios on a large scale. Another way in which it could be useful is in
providing a more specific description of MOOC activities, thereby enhancing
learning analytics.

This book contains some mathematical notations. Although they are not
necessary for understanding the modeling language, I hope that learning sci-
entists will nonetheless find them useful. These mathematical elements are
not intended to be a contribution to either mathematics or machine learning;
more modestly, I have used them as anchors for articulating the educational
processes to existing computational models.

The presentation of the modeling language is arbitrarily segmented into 42
points. Other than the nod to marathon friends, this didactic decomposition
has no deeper meaning than building the model incrementally.

Any modeling activity implies some simplification of the reality being mod-
eled, acting as a lens that reveals some aspects but ignores others. While this
book only looks at the social and cognitive dimensions of learning, this is not
to deny the importance of other dimensions, such as emotional and cultural
ones. I will come back to the limitations at the end of the book. Simplification
is the price to pay for elaborating a new modeling language. Later on, this
language will have to be enriched in order to cover more dimensions of the
education process.

About Scale
MOOCs have attracted millions of students, and yet, their pedagogy is often
less sophisticated than state of the art pedagogy in learning sciences. This
book explores the possibility of extending rich learning activities to large audi-
ences. The scale is the ratio between the number of teachers and the number of

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

6	 ORCHESTRATION GRAPHS

students in the same class. It ranges from 1:1 (e.g., a private ski lesson), to 1:25
in European elementary schools, to 1:80 or 1:400 in lecture theatres, and up
to 1:150,000 in MOOCs. Actually, a more realistic ratio would be 5:150,000,
as there are probably 4 teaching assistants who would second the teacher in
such a MOOC. When I write “the teacher” in this book, I am referring to the
whole teaching team.1 For teacher and learners, I use “he” as a gender-neutral
pronoun that could be read as “he or she.”

What is the relationship between scale and pedagogy? Scaling up learning
activities can be viewed as a loss of pedagogical richness, made acceptable by
the benefits of giving broad access to education for a marginal increase in cost.
Though for simple learning activities, scaling up actually implies only a negli-
gible loss of quality; for instance, the amount that John learns from watching a
video or from answering quizzes will not vary greatly if there are 10,000 other
students doing the same activity. However, some learning activities that are
manageable with small classes do not scale up; for instance, guided discovery
(e.g., learning from a simulation) is only effective with guidance at an appro-
priate level (De Jong & van Joolingen, 1998), which can partly be automated,
but which does not scale as easily, as illustrated by Figure 0.1. Team problem
solving is also limited in scale, since the core mechanisms of shared mean-
ing making are limited to small groups. Of course, a class of 5,000 students
could be divided into 1,000 teams of 5 students. However, since self-regula-
tion skills are often below what teams require in order to be effective, it cannot
be trusted that these teams would in fact self-regulate, and the management of
1,000 teams by a teacher would prove intractable.

Some activities scale well, some don’t. Does it matter? Would 1:10,000
activities be more effective if they reproduced the pedagogical scenarios used
in 1:1 situations? The ratio 1:1 is often presented as the optimal condition for
learning. The idea behind “individualized instruction” is to keep large class
activities as effective as 1:1 activities. A seminal paper from Bloom (1984)
showed that a 1:30 lesson can get close to 1:1 efficiency if the learners’ pre-
requisites are systematically consolidated before the lesson. But is 1:1 really
the Holy Grail in education? A Chinese tradition was for a prince not to learn
alone with a tutor but for another child to be brought to the palace to learn
with him (Chan & Baskin, 1988). The scale 1:2 was considered as better for the
prince than the 1:1 scale. In the Swiss vocational education system, an appren-
tice works 4 days per week in a company, understanding one specific con-
text. On his weekly day at school, he can share the experience of the 19 other
apprentices working in other companies. He is able to discover the variety of
processes that exist for the same tasks across various workplaces and thereby
disentangle what is specific to each context from what is true in any context.

1	 A new phenomenon has emerged with MOOCs—in some cases, so many people volunteered
to be teaching assistants that the scale became 25:10,000. We can’t simplify it to 1:400, since
25:10,000 requires a much more complex organization than 1:400.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 INTRODUCTION	 7

In this context, 1:20 is pedagogically richer than 1:1. What if activities could be
more effective with 1,000 students than with 20? The philosophy of this book
is to view scale as a pedagogical opportunity instead of as a phenomenon that
filters out rich learning interactions.

In learning technologies, the balance between individual adaptation and
social interaction has evolved over decades. Since the 1960s, individual adap-
tation has been the leitmotiv of computer-based education. If the key is to
adapt instruction to individual needs, learners should work individually on
computers. However, since in the past there were more students than comput-
ers, two or more learners were often assigned to one machine. Surprisingly,
this situation turned out to be more effective than individual work (Dickson &
Vereen, 1983); the “loss” due to a lower accuracy in individualization seemed
to be somehow overcompensated for by the gains generated from verbal inter-
actions in front of or through a computer. This gave birth to the field of com-
puter-supported collaborative learning (CSCL). This evolution in learning
technologies is represented in Figure 0.2 as a left movement of the pendulum.
The evolution from individualized instruction to CSCL is depicted by the red
arrow in the in the 1990 pendulum.

Figure 0.1  The relationship between the interaction richness of a pedagogical scenario and its
scale. This graph is not built from empirical data but is based on common sense or experience in
educational practices. The red line corresponds to the aims of orchestration graphs—to be able
to scale up rich learning activities without sacrificing their interaction richness. On the red line,
we have to invent activities that take advantage of scale. Peer grading constitutes a first example
on this path.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

8	 ORCHESTRATION GRAPHS

In early years of 2000, researchers in CSCL understood that collaborative
activities had to be more structured in order to be effective. The mere fact
that teams work together on a task does not guarantee that they engage in
rich interactions such as explanation, argumentation, or mutual regulation.
Along with some colleagues, my team therefore developed so-called collab-
oration scripts (Dillenbourg, 2002; Weinberger & Fischer, 2006), where a
script is a pedagogical scenario that structures team interactions by defining
roles, phases, differences in viewpoints, and so on. For instance, a well-known
script, called “Jigsaw” (Aronson et al., 1978), provides each team member
with a subset of the information required to carry out the task. To achieve its
goal, the team therefore needs to integrate the contribution of each individual

Figure 0.2  The individual-social pendulum in learning technologies—the individual force pulls
the ball to the right; the social force pushes it to the left.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 INTRODUCTION	 9

member. Another example of script is ArgueGraph (Dillenbourg & Jermann,
1999; Dillenbourg & Hong, 2008); this scenario fosters argumentation by
forming pairs of individuals with contrasting opinions. In the 2000 pendulum
in Figure 0.2, the development of script is depicted as a pendulum movement
to the right, back to the center of the social-individual continuum, because
scripts prescribe individual processes within team processes. Team cognition
is not viewed as an emergent property but is “engineered” by fine-tuning indi-
vidual processes within teamwork. These scripts can be viewed as the ances-
tors of the graphs presented in this book, the latter being a generalization of
the former. The ArgueGraph script will namely be used in this book to explain
the functional role of a workflow in a pedagogical scenario.

The 2010 pendulum in Figure 0.2 depicts recent movements of the pendu-
lum in two opposite ways—to the left side of the continuum, which corresponds
to cMOOCs, based on connectivism (Siemens, 2005), and to the right side, the
academic teaching style reflected in xMOOCs. The large scale MOOCs distrib-
uted by actors such as Coursera or EdX have been xMOOCs. This distinction
has somehow become obsolete, but, in a nutshell, cMOOCs build upon the
social nature of learning, while xMOOCs focus on individual learning. Actu-
ally, this x/c dichotomy is more conceptual or ideological than a real conflict
in practice. In a pedagogical scenario, educational practices are not exclusive;
some activities can be close to x and others closer to c. For instance, we asked
students to watch xMOOCs in teams of 4, and they reported this as being a
very positive experience (Li et al., 2014). The complementarity of learning
activities inspired by divergent learning theories is central to this book. The
need to integrate activities into a consistent learning scenario, despite the het-
erogeneity of these activities, is very much reflected in the modeling language.

Personal note
The style of this book is sometimes schizophrenic. I propose a formal language
that emphasizes the rational side of education, but, from time to time, I add
comments based on personal values. This dualism is intrinsic to education—
even when scientists argue rationally and rigorously about data, methods, or
theories, their reasoning is shaped by their values and ideas of what educa-
tion should be. Any educational debate mixes rigor and emotion. A scientist
should never “believe” in his theory, despite the evidence, and an educational-
ist should always “believe” in the learner’s success, despite the obstacles. This
is why an educational scientist is schizophrenic. For me, an effective lesson
(when all the students are “with” the teacher) is as admirable as a snake-like
ski trace in powder snow. Effectiveness is beauty. This will appear in the text
as I make occasional digressions from the modeling language.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Chapter 1

Orchestration Graphs

The modeling language proposed in this book aims to describe every kind
of pedagogical scenario. By “pedagogical scenario,” I mean any sequence of
learning activities, also referred to as a lesson plan, a didactic sequence, or a
script. A pedagogical scenario will be modeled as a graph, with specific prop-
erties that I will present throughout the 42 points of this book. Describing a
lesson plan as a graph may seem pointlessly complex as most lessons, as well
as most existing MOOCs, are built as a linear sequence of activities. How-
ever, pedagogical scenarios based on a richer structure also exist, and, with
orchestration graphs, I aim to capture these richer scenarios. Therefore, I will
extract the workflow that underlies these scenarios; that is, the (often invis-
ible) sequence of data transformations between activities. I hypothesize that
formalizing the workflow of a pedagogical scenario will enable our community
to scale up learning activities that may initially appear as non-scalable.

A model is like a lens; it constitutes a specific way of looking at reality,
emphasizing some elements, variables, or phenomena. The proposed mod-
eling language pays particular attention to the way educational scenarios
concretely unfold with time, what happens practically during the course,
and what needs to be repaired. The term “orchestration graph” embeds this
pragmatic viewpoint: “orchestration” refers to the real-time management of
learning activities (Dillenbourg, 2013) such as launching activities, managing
time, circulating data, and adapting the scenario on the fly. The term “orches-
tration” is not the optimal metaphor, because orchestration differs from con-
ducting an orchestra. I will come back to this controversy in Point 41. But,
intuitively, it is true that there is a touch of the maestro in the performance
of a talented teacher enthusiastically conducting rich class activities, running
across multiple planes (individual, team, and class activities—see Point 2),
with or without computers. How does an elementary school teacher adapt the
current activity if two students missed the previous activity or if a crane comes
into view in front of the classroom window and starts to operate? How does a
university lecturer react when he notices that he is losing the attention of his
audience? How does a MOOC teacher cope with thousands of complaints that
the last video was incomprehensible? Of course, the adaptation of instruc-
tion is not a new topic, but this term usually refers to the process of adapting
instruction to individual learner needs. The notion of orchestration is broader.
It includes the selection of the most appropriate activities for the learners,

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

12	 ORCHESTRATION GRAPHS

but it also extends to very practical aspects of classroom management such as
managing time (“I have 5 minutes left—it’s too late to start a new chapter”),
managing space (“My classroom is too small to move chairs while forming
teams”), assessment constraints (“I have to issue individual grades because
the school does not accept team grades”), energy constraints (“I will use peer
grading because the number of assignments to grade is too high”), and safety
constraints (“The students cannot explore the city on their own, so each team
will investigate architectural aspects of the same street”). Managing a lesson
or a MOOC requires continual regulation—monitoring the learners’ activity,
adapting some activities, or even modifying the scenario. For this reason, this
book follows a kind of systemic viewpoint on the educational ecosystem, in
which the scenario is a species that constantly needs to adapt to the constraints
of its environment in order to “work well.” As a consequence, the proposed
modeling language has to capture the flexibility of a pedagogical scenario, that
is, the features that make the orchestration process easy or difficult.

There is a contradiction between these two first paragraphs: the first one
claims that scale requires automated workflows, while the second explains
that orchestration requires flexibility. This tension will be present through-
out this book—a “flexible workflow” is an oxymoron, like a deafening silence.
This tension constitutes an interesting challenge for computer science: how to
modify, skip, and reorder the various steps of data processing without break-
ing data consistency?

A distinctive feature of orchestration graphs is the integration of hetero-
geneous activities; individual learning activities, teamwork, and lectures are
integrated into a single pedagogical scenario—hopefully one that is consist-
ent. The proposed language breaks down the walls of didactic churches by
articulating activities inspired by different learning theories (e.g., behavio-
rism, mastery learning, constructivism, and socio-cultural theories) within
the same scenario. Of course, orchestration graphs can also be used to model
homogeneous pedagogical scenarios, that is, scenarios in which all activities
are inspired by the same learning theory. The point is that the design of heter-
ogeneous scenarios requires paying special attention to how diverse learning
activities are integrated into a consistent whole—both pedagogically consist-
ent and operationally consistent. Orchestration graphs have been designed to
express this consistency.

In summary, the language I propose in this book describes pedagogical
scenarios that (1) integrate heterogeneous activities (2) into a workflow that
(3) remains flexible. The language will therefore provide several viewpoints on
a pedagogical scenario.
•	 In Chapter 1, a graph describes the structure of activities: who does what

and when. It models the visible part of the educational activities. The eight
points of this chapter describe each constituent of an orchestration graph.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 13

•	 In Chapter 2, a set of graph edges is described: edges embed the pedagogi-
cal ideas or the rationale underlying the scenario.

•	 In Chapter 3, a graph describes the workflow underneath rich scenarios,
with some edges of the graph being associated with a data transformation
operator. This chapter describes several categories of operators and pro-
poses design patterns that can be built with these operators.

•	 In Chapter 4, a graph describes the learner path as a probabilistic net-
work: every edge is associated with a transition matrix. The eight points of
this chapter articulate stochastic models with graph components and lay
the groundwork for the development of learning analytics in Chapter 5.

•	 Finally, Chapter 6 analyses the concept of orchestration with the concepts
and the modeling language developed along the previous chapters.

Point 1  Horizontal axis
Orchestration graphs are based on sequences1 of activities placed in a two-di-
mensional space. I will start with the horizontal dimension, which determines
the position of an activity in time. This first point begins with the basics; more
substance will come in the next points. To illustrate this axis, let’s consider a
scenario for a geometry course in an elementary school. The classroom holds
25 children who are about 9 years old.

10:00 a.m. Activity 1 	 The teacher summarizes the lesson from the previous week where pupils
learned to calculate the surface of a rectangle, first by counting square
units, and then by measuring its dimensions. He then informs the stu-
dents that the goal of the current lesson is to use similar methods to
measure the surface of a triangle.

10:10 a.m. Activity 2 	 The teacher forms pairs, giving 2 paper rectangles of the same size, but
of different shapes to each pair. He asks the students to measure the sur-
face of these rectangles, with each member of the pair using one of the
two methods from the previous week, and then to compare the results.

10:15 a.m. Activity 3 	 The teacher asks the pairs to cut the rectangles in such a way that one
rectangle becomes 2 triangles, to calculate the surface of these triangles,
and to compare it to the surface of the rectangle.

10:30 a.m. Morning break

10:45 a.m. Activity 4 	 The teacher distributes non-rectangular triangles and asks teams to
search for a method for measuring surfaces. After a while, he invites the
teams to use scissors to find a solution.

1	 Later on, graphs will include richer structures than sequences and therefore justify the term
“graph.”

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

14	 ORCHESTRATION GRAPHS

11:00 a.m. Activity 5 	 The teacher asks the pupils to show their solutions to the class. Then, the
teacher summarizes the solution to the class and demonstrates how to
find the height of any triangle.

11:10 a.m. Activity 6 	 Each student receives a sheet with 5 triangles and is asked to draw the
altitude of the triangles and calculate their surface.

11:25 a.m. Activity 7 	 The pupils have to copy to their notebook the summary written on the
blackboard by the teacher.

This scenario can be modeled as a simple sequence of activities: doing an
exercise, writing a summary, listening to the teacher, and copying the black-
board contents. Some of them (e.g., activity 7) are not “learning” activities as
such, but are activities performed by the learners (see Point 4). These activi-
ties actually populate a significant part of classroom life, but have rarely been
taken into account by educational theories. In Figure 1.1, each activity is mod-
eled as a rectangle whose length is proportional to the activity duration and
that is placed from left to right in chronological order. The 10:30 a.m. pause
appears as a gap on this timeline.

An activity will be defined by several more parameters that will be incre-
mentally introduced in this chapter. Let’s start with a simple definition:

A pedagogical scenario is a sequence (a1, a2, … , ai, … , an) where ai is the
ith learning activity.

Let’s now examine what can be considered as a radically different con-
text—an online course at university level. This is a fictitious example.

Week 1 		 In a MOOC on urbanism, online students follow video lectures 1, 2, and 3.
Weeks 2–3 	 Students have to write a case study about a city, selected from a list of 10

cities proposed by the teacher. They upload their report as a PDF file.
Week 3 		 The system creates a forum for each of the 10 cities. In the forums, stu-

dents are asked to discuss the main urbanism challenges in the city they
have selected. They draw up a list of challenges and vote for the 3 main
ones.

Week 4 		 Each student has to analyse 2 case studies from another city, with respect
to the 3 challenges selected on Week 3.

a1 a2 a3 a4 a5 a6 a7

10
:0

0

10
:1

0

10
:1

5

10
:4

5

11
:0

0

11
:1

0

10
:3

0

11
:2

5

11
:3

0
Figure 1.1  A simple sequence of learning activities.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 15

Week 5 		 Students follow video lectures 4 to 6.

Week 6 		 Students have to annotate a map of the city they selected and point out 3
places that illustrate the concepts taught in lecture 6.

Week 7 		 The system automatically forms groups of students who annotated the
same map area for the same city. It creates an online conferencing space
for them and asks them to produce a common map.

Week 8 		 The teacher presents a real-time video lecture where he discusses the most
interesting and least interesting maps produced by students.

This scenario can be represented by the same kind of timeline as the geom-
etry lesson:

As emphasized in the introduction to this chapter, a distinctive feature
of these two examples is that they are composed of heterogeneous activities.
Some activities are performed individually, others are done in teams, and
some are conducted with the whole class. Some activities are computer-based
and others don’t rely on digital technology.2 For too long, pedagogical prac-
tices were clustered together by unnecessary orthodoxies such as behavio-
rism, constructivism, project-based learning, and problem-based learning.
However, in daily practice, teachers tend to integrate various models. For
instance, elementary school teachers blend global and analytic methods for
learning to read. At university level, lecturing is combined with guided-dis-
covery lab sessions. At the other end of the scale, researchers tend to iden-
tify themselves with a theoretical perspective, probably because excellence
in research requires a clear theoretical framework. I am convinced that the
transfer from research to practice would be enhanced if researchers would
integrate multiple perspectives into consistent pedagogical scenarios. I refer
to these scenarios as integrated learning scenarios, since they integrate
activities borrowed from multiple theories. These activities are not merely
juxtaposed; instructional design is not about assembling a bit of everything.
They are expected to form a consistent whole. The need for integration comes
from the heterogeneity of activities. There would be no need for integrating

2	 With technologies such as tangible interfaces and paper-based interfaces, the frontier between
what is computer-based or not is actually vanishing. Lecturing on a blackboard is not called
“chalk-based teaching”: the use of technology should not define the nature of the learning
activity.

a1

Week 1

a2

Week 2 Week 3

a3

Week 4

a4

Week 5

a5

Week 6

a6

Week 7

a7

Week 8

Figure 1.2  A simple sequence of activities in a MOOC.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

16	 ORCHESTRATION GRAPHS

activities if they were similar or grounded in the same learning theory. The
proposed modeling language describes how heterogeneous activities form a
coherent structure.

Orchestration graphs describe pedagogical scenarios that can integrate
heterogeneous activities. They specify the pedagogical and functional rela-

tionships between activities.

The integration of activities will be modeled by making the relationship
between activities explicit. This relationship is two-fold. First, it is a peda-
gogical relationship—one activity activates cognitive and/or motivational pro-
cesses that can be exploited by the next activity. Second, it is also an oper-
ational relationship—it describes how the data required to run the current
activity are generated from the data that produced in the previous activity.

Orchestration graphs model the structure of the activity
sequence, not the details of each activity. The reason for this structural focus
is that the language is intended to model the orchestration process, not the
learning mechanisms; this book does not propose a learning theory.

Let me now formalize the horizontal dimension of orchestration graphs,
that is, the time dimension.

An activity ai runs from starting time ts
i to the ending time te

i.
The duration of ai is di = te

i – ts
i

Time is counted as the number of time units (e.g., seconds, weeks) from
the start of the scenario and is denoted by t0, t0 =0

The time lag between the end of activity ai and the beginning of aj is
denoted by lij = ts

j – te
i

The scale of the horizontal axis is left to the designer: in the first example
the scale unit is minutes, while in the second example the scale unit is weeks.

It may sound like overkill to formalize simple things such as duration
or lag. The role of these parameters will become clearer later on, but time
is clearly not a simple implementation issue—it’s the main constraint in any
educational or training institution, and maybe the most coercive constraint.
Any formal educational system relies on an implicit or explicit contract that
some skills will be acquired within a time budget. In the European Credit
Transfer System (ECTS), the time budget is counted in credits (28–30 hours
of work for one student). Efficient teachers permanently monitor time and
balance what should be done with how much time is left. Underestimating the
time budget (we rarely overestimate it), can lead to stress, dropping out, and
to incomplete skills. We will also see that the lag between two activities has
an influence on the effectiveness of the scenario: what a learner learned today

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 17

might still be available on the same day, but 6 months later, it will need to be
refreshed.

Point 2  Vertical axis
In the geometry example presented in Point 1, the activities are based on 3
different organizations of work. In a1 and a5, the teacher is speaking to the
whole class and collecting feedback. In a2, a3, and a4, learners work in groups,
namely pairs. Finally, activities a6 and a7 are carried out individually. These
changes in the social organization of activities constitute another salient
aspect of pedagogical practices. Therefore, the social structure of the peda-
gogical scenario will be represented on the vertical axis of the model.

This dimension is treated as discrete; it is an ordered set of levels. Actually,
since the word “level” is used for describing many things, I prefer the word
“plane.” This term comes from Vygostky (1994), who differentiated between
the intra-individual plane (the space of cognitive processes), the inter-indi-
vidual plane (where intersubjectivity occurs), and the social plane (shaped by
its culture). The two examples presented in Point 1 stretch over three social
planes.
•	 On the individual plane, students work on a task by themselves (e.g.,

read a text, write a summary, do an exercise).

•	 On the team plane, students work in small groups, typically made up of
2 or 3 students for problem solving, 4 to 6 students for projects, and 8
or more students for brainstorming or “problem-based learning” (PBL).3
They are assigned a joint task to achieve; for example, to build a piece of
software, to create a document, to invent an advertisement slogan, or to
conduct an experiment. Within the team, individuals may be assigned
different roles (see Point 8), but, at the end, they need to converge on a
joint product.

•	 On the class plane, the activity involves all the students4 in the class:
they do activities such as listening to lectures, participating in discus-
sions, presenting posters, or visiting a museum together. Class activi-
ties do not exclude individual interactions among learners (e.g., asking
questions to the neighboring student or whispering), but the intended
interactions are those that occur between the class and the teacher. The
concept of class is used in a broad sense: it refers to the set of participants

3	 There is no maximal size for groups; one group can be made up of two groups of 50 people
who collaborate on the same project. On the other hand, a group of 10 students that listens to
a lecture independently from one another while the rest of the class does another activity, is
more like a class, and hence called a “subclass” (see Point 7).

4	 Or a subset of the students, if the class is split into subclasses (see Point 7).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

18	 ORCHESTRATION GRAPHS

to a session where the scenario is run, independently from the physical
location of participants.

This second dimension is independent from the time dimension (horizon-
tal axis) and hence placed vertically on orchestration graphs, as illustrated in
Figure 1.3.

In diverse educational practices, pedagogical scenarios may involve
broader circles; namely actors who are not in the classroom or who are not
MOOC participants. Therefore, orchestration graphs are extended with three
more planes. To illustrate them, let’s consider the scenario modeled by Figure
1.4. A biology teacher presents a lesson (a1) and then sets up a session of indi-
vidual exercises (a2). After the second lecture (a3), students go to the science
lab where they run experiments in teams (a4). With the data they collected,
they write a report individually (a5). On the following week, the class goes
out to study the same phenomenon on a field trip (a6). By using the pictures
taken in the field and the data collected in the lab, students create a poster to
be presented during open days (a7), when parents visit the school. This poster
will also be published on the school web site (a8).

This example illustrates three higher social planes.
•	 On the periphery of the class, activities involve actors who do not “belong”

to the class (e.g., students, teachers, assistants), but who nonetheless have

a1

a2 a3 a4

a5

a6 a7

10
:0

0

10
:1

0

10
:1

5

10
:4

5

11
:0

0

11
:1

0

10
:3

0

11
:2

5

11
:3

0 Time

Pl
an

e

Individual

Team

Class

a1

a2

a3

a4

a5
1. Individual

2. Team

3. Class

4. Periphery

5. Community

6. World

a6

a7

a8

Figure 1.3  Adding the vertical structure to the model presented in Figure 1.2.

Figure 1.4  The biology scenario that expands to 6 planes.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 19

a stable and explicit educational relationship with the class, such as school
actors (the director, other teachers, other classes from the same school or
classes in another school who have a partnership with that class), parents,
and workplace supervisors. If the scenario is based on a computational
environment, these people typically have a log-in to the online platform
used by the class.

•	 On the community plane, activities engage temporary actors from the
local community, such as a museum guide or a butcher invited to explain
his profession, or from the broader community, such as an expert in
astronomy who agrees to answer participants’ questions. The “commu-
nity” around a class is the set of people who have occasional interactions
with the class, as they would have with any other class in the community,
but do not have specific ties with that class.

•	 On the world plane, activities include disseminating information via the
Internet, radio, publications, exhibitions, and forums. On this plane, inter-
actions include feedback on online objects (e.g., “likes” or forum postings),
but there is no intention to build a personal relationship between the class
members and online anonymous actors.

Activities beyond the class circle did not wait for the invention of the
Web, however. They existed many years before; for instance, in the peda-
gogical approach of Célestin Freinet, (1966) which included gardening activ-
ities (periphery plane), inter-school correspondence (community plane), and
printing a school journal (world plane).

The vertical dimension of the model is a set of 6 social planes:
{π1, π2, π3, π4, π5, π6}

A class is a set of students engaged in the same session of a pedagogical
scenario.

The class of students is denoted by S. It corresponds to π3. A student is
denoted by s.

By integrating different social organizations into a common structure,
orchestration graphs instantiate the didactic ecumenism I preached in the
introduction. I explained that the individual-social dialectic has been central
to educational debate and has led to practices perceived as mutually exclusive.
This war is over: the brain is both a social machine from the software view-
point and an individual device from the hardware viewpoint. Educational sce-
narios should therefore not hesitate to cross the boundaries between planes
on a regular basis.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

20	 ORCHESTRATION GRAPHS

It is important to emphasize that a plane does not describe the indi-
vidual cognitive processes, but the social structure of activities—
which tasks are assigned to whom and who is supposed to interact with whom.
During a lecture (π3), students process the teacher’s discourse on their own,
which is an individual cognitive activity, but the main space of interaction is
the class. Conversely, when a learner solves a problem alone, his cognition is
shaped by language, therefore the cognition is partly social, but the plane of
this activity is π1 and not π3. So, the social plane is an orchestration concept; it
describes the organization of learning, not the cognitive processes.

Another important clarification is that a plane does not correspond
to a physical space or to a virtual space. It is true that some spaces are
more appropriate for some activities—a classroom is appropriate for π3 and
a library for π1, a forum for π3 versus a shared online document for π2 or
an email for π1. In on-campus courses, the spatial constraints influence the
vertical axis of the graph, that is, the social structure of the scenario. Educa-
tional practices have indeed been fossilized in formats such as a “2-hour lec-
ture + 1-hour exercise,” in which the former occurs in a lecture theatre (π3)
and the latter in the student’s dorm room (π2). As these room constraints
are often associated with scheduling constraints, they may actually shape
the scenario more than pedagogical considerations. To summarize, in daily
practice, social planes are often associated with physical spaces. But orches-
tration graphs do not encapsulate this constraint. If activities from various
planes could be conducted in the same space, the scenario would be more
flexible (e.g., inserting a 15-minute exercise between two short lectures of
15 minutes).

Finally, I have to acknowledge that the proposed segmentation into 6
planes is a simplification and is arbitrary. First, graphs may adopt a more
intricate social organization, for instance merging groups from two different
classes for special interclass activities. The proposed modeling language sim-
plifies this by associating a learning activity with a single plane. An activity
that stretches over more planes, for instance, a team project in which each
individual has specific subactivities, can be modeled (Point 7), but it has to be
broken down into multiple activities for the sake of consistency with the rest of
the model. The second simplification is that educational practices vary within
a plane; for instance, although classes of 300 students have to be handled dif-
ferently from classes of 30 students, orchestration graphs do not differentiate
between them. The notion of plane does not correspond to the notion
of scale: 1,000 students may do exercises individually (π1), while 10 students
may listen a lecture (π3).

Nonetheless, this segmentation of the social space into 6 planes, despite
being arbitrary, seems to match a broad range of practices. I have been using
these levels for a decade, and they fitted well with the educational scenarios
that I encountered during that period. The modeling language could probably
be adapted to a different set of planes, as long as they are hierarchized. For the

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 21

clarity of this book, henceforth I will stick to the six planes and, in particular,
to the three lower planes.

Point 3  Topology
Since each activity can be placed horizontally (Point 1) and vertically (Point 2),
orchestration graphs are laid out on a two-dimensional space. The horizontal
dimension is time, represented from left to right, and the vertical axis is the
set of social planes.

Each activity ai: (ts
i, te

i, πi) is represented by a rectangle
in the space Time × Plane

The vertical position of the rectangle ai is the plane πi , πi ∈ { π1, π2, π3, π4,
π5, π6}

The height of the rectangle is fixed for full classes. Half height will be used
for subclasses (Point 7).

Horizontally, the left side of the rectangle ai is placed at ts
i and the

rectangle length is di

The simplest example is the graph of a lecture that includes 2 activities: at
π3, the professor speaks for 45 minutes and at π1, when students are invited to
ask questions for the last 5 minutes. In the peer instruction method (Courch
& Mazur, 2001), the lecturer interrupts his lecture (a1) on a regular basis and
presents a multiple-choice question (Figure 1.5). Each student answers indi-
vidually with a clicker (a2) and then has a few minutes to convince his neigh-
bor (a3). The pair answers again and all answers are collected on the teacher
slides (through an “aggregation” operator—see Point 14). The teacher pro-
vides feedback and additional explanations (a4); for instance, addressing the
misconceptions behind the incorrect answers that he deliberately integrated
into the quizzes. This sequence is repeated several times in a lesson.

Class

Team

Individual

a1

a3

Lecture

Answer

Argue

Feedback

a2

a4

Figure 1.5  Graph showing the peer instruction method.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

22	 ORCHESTRATION GRAPHS

In problem-based learning (Figure 1.6), the teacher starts by presenting
a problem to the class (a1); for instance, a medical case. Teams of 8 students
meet and decide what they have to learn (a2) in order to solve the problem.
Each student addresses different aspects of the problem, collects knowledge
(a3) from the library or the web, and reports to the team, which then collec-
tively elaborates a solution with a tutor (a4). Ideally, the solutions feed the
teacher’s next lecture (a5), which will elaborate on what students have learned
while solving the problem.

An xMOOC (Figure 1.7) is generally a weekly sequence in which students
watch a video and answer quizzes individually. After a few videos, they have to
work on their weekly assignments. The forum maintains an interaction space

at π3 while conducting mostly individual activities at π1. The forum activity
is represented as being parallel to the main activity, since students may go
back and forth between the forum and other activities. Parallel activities are
described in Point 8.

Using a MOOC with on-campus students (Figure 1.8) leads to pedagogical
scenarios that have been labeled “flipped class”: students watch the lecture
(videos) at home and meet the professor for sessions that allow richer interac-
tions. The off-campus individual activities (video watching and quiz answer-
ing), may, for instance, be followed by a practice session5 on campus, where

5	 Also referred to as ‘recitation session’

Class

Team

Individual

a1

a3

a2 a4

a5

Intro
Distribute

Collect knowledge

Solve

Debrief

Class

Team

Individual

Video Quiz

Forum

 Assignment Video Quiz Video Quiz

Figure 1.6  Graph showing problem-based learning.

Figure 1.7  Graph showing a standard xMOOC.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 23

students do their exercises under the supervision of teaching assistants. Later
on, the teacher sets up a debriefing session whose contents are elaborated on
the basis of the most common mistakes found in the assignments, as well as
from the questions asked during the practice sections.

These examples describe standard practices. The goal is, of course, to go
beyond these basic scenarios and to model richer scenarios. I will progres-
sively enrich the modeling language throughout the book in order to represent
richer pedagogical scenarios.

Let me now formalize the definition of an orchestration graph. Formally
denoted by the letter G, a graph is defined by the pair (A,E) where A is the set
of vertices, in this case activities, and E the set of edges6 that connects two
activities:

G = (A,E) where A = {ai} for i= 1, … , n and E = {eij| ai, aj are the vertices
of eij, for i=1, … , n–1, j=2, … , n, i ≠ j}

The graph vertices are the learning activities.
The edges that connect two activities represent the pedagogical and

computational dependencies between these activities. The edge between ai
and aj is denoted by eij.

An activity aj is pedagogically dependent on previous activity ai if ai has a
high probability of bringing the learner to a state that is necessary for aj to

have a high probability of success.
An activity aj is computationally dependent on previous activity ai if ai

generates data that are necessary for conducting aj.

Graphically, an orchestration graph can be represented as in Figure 1.9.
We will see in Chapter 4 that pedagogical dependency actually relates two

states rather than two activities—the state of the learner at the end of ai and
the state of the learner at the end of aj. The graph of activity somehow doubles
as a graph of learner states, one per activity. Let’s keep things simple until
then, though, and consider a simple graph with activities as edges.

6	 I will often consider cases where j = i+1.

Class

Team

Individual

Video Quiz

Forum

 Assignment

Video Quiz Video Quiz

 Questions and
answers

Figure 1.8  Graph of a flipped class based on an xMOOC.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

24	 ORCHESTRATION GRAPHS

If ai is conditional to ai+1, which is conditional to ai+2, a dependency there-
fore exists between ai and ai+2. The edge between ai and ai+2 is, however, not
represented on the graph, because this would clutter the graph. I only rep-
resent edges between successive activities (plus looping edges—see Point 7).
Other dependencies can be inferred from the transitivity of conditions.

An orchestration graph has several properties that will be examined
throughout this book. Graph properties are usually captured by adjectives—an
orchestration graph is a weighted directed geometric graph.
•	 It is a weighted graph because there is a probability factor associated

with each edge. This weight estimates the dependency between ai and aj.
A weight close to 1 indicates that completing ai leads to a greater chance
of success in aj. A strength value of 0 would mean that it is not useful to
complete ai in order to complete aj. We’ll see in Chapter 4 how this weight
is calculated. Through experience, a teacher knows that some learning
activities can be shortened or skipped because they are not located on the
critical path to learning. Conversely, for other activities, he knows that,
even though it might take a long time, there is no point in moving to the
next activity as long as students have not completely mastered the current
activity. The edge weight will determine if an activity can be easily skipped
or shortened.

•	 It is a directed graph because edge eij implies that ai is conducted “before”
aj, as explained in Point 1. This “before” relationship will be interpreted as
“completing ai is a condition for beginning aj.”

•	 It is a geometric graph because the vertices are associated with a geomet-
ric configuration—a specific position in the space π × t. This topology is
further explained below.

If the reader is familiar with graphs, he may directly jump to the next
point. Interpreting a graph consists in giving meaning to the edges between
the graph vertices. I illustrate the role of the graph topology with a variety of
graphs that are not orchestration graphs. The first example graph represents

Class

Team

Individual

a1

a3

a2

a4

a5

Periphery

Community

World

Time

Pl
an

e e2,3

e3,4

e4,5

e1,2

Figure 1.9  General structure of an orchestration graph.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 25

a simple ontology. In such a graph, the relationship between vertex V1 and
vertex V2 often means something like “V1 is a subclass of V2.” Hence, in Fig-
ure 1.10, the ontology represented is identical in both graphs; what matters is
that V1 is connected to V2, but the relative position and space of V1 and V2 is
irrelevant.

In other graphs, for instance, those resulting from social network analysis,
the length of edges may convey a quantitative meaning such as the frequency
of messages between two persons respectively represented by vertices V1 and
V2. In a recommender system, the edge length could be the similarity of the
objects purchased by these two individuals. For instance, in Figure 1.11, Graph
3 means that Savita and Dinesh like similar music, while Näel has divergent
musical tastes. Conversely, Graph 4 and Graph 5 mean that Savita’s musical
choices are closer to Näel’s. In these graphs, the relative position of objects
conveys information. Therefore, Graphs 4 and 5 are equivalent as the dis-
tances are identical, with the absolute position of vertices being meaningless.

Finally, in other graphs (Figure 1.12), including orchestration graphs,
the absolute position of vertices conveys information. For instance, the rel-
ative distance between key European capitals is identical in the symmetrical
Graphs 6 and 7, but the former better represents the geographical reality of
Europe. It does not mean that Graph 6 is correct and Graph 7 is incorrect.
Both constitute a form of data visualization that is to be interpreted based on
the semantics of its constituents, namely the existence of edges, their direc-
tion, their length (hence the relative position of the vertices), and the absolute
position of vertices. In fact, any grammar rule for visualization can be inverted
to convey another meaning. In Figure 1.12, Graph 8 illustrates an interesting

dogs

cats

mammals

dogs
cats

mammals

Graph 1 Graph 2

Dinesh

Naël

Savita

Dinesh

Naël

Savita Graph 3

Graph 4

Dinesh

Naël

Savita

Graph 5

Figure 1.10  Graph with “is-a-subclass-of” links.

Figure 1.11  Graphs where distance represents quantitative relationships.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

26	 ORCHESTRATION GRAPHS

visualization, by breaking the geographical mapping rule. It plays with the
contrast between geographical locations and distances; if the length of edges
in Graph 8 is inversely proportional to the number of bilateral visits among
the 3 governments, this graph would nicely visualize what was called the “Ger-
man-French couple” in the development of European Union policies.

This short detour aims to clarify that orchestration graphs have a specific
geometry, in which the relative horizontal position indicates the time ordering
and the absolute vertical position indicates the social structure of activities.
There is a North and a South, an East and a West, a below and a between,
a long and a short, and so on. Orchestration graphs are hence described as
geometric graphs. An orchestration graph has a visual signature, a kind of
gestalt. For instance, a glance at Figure 1.13 tells the reader that the scenario
modeled in Graph 9 has been flipped for Graph 10—this is the famous flipped
classroom often referred to in describing the use of MOOCs with on-campus
students. The comparison between Graphs 10 and 11, if they have the same
horizontal scale (i.e., the same time unit) intuitively reveals a difference in the
level of integration between learning activities.

Berlin

London

Paris

Graph 6

Berlin

London

Paris

Graph 7

Berlin

London

Paris
Graph 8

Graph 9

Class

Team

Individual

Graph 10 Graph 11

Figure 1.12  Graphs where absolute and relative positions matter.

Figure 1.13  A gestalt reading of orchestration graphs.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 27

Point 4  Activities
While points 1 to 3 of this chapter described the structure of orchestration
graphs, points 4 to 6 will describe the elements placed on that structure.

The vertices or the nodes of orchestration graphs, that is, the atoms of
the scenario, are learning activities. So far, I have used “learning activity” in
its everyday meaning,7 which is to perform a task such as listening to a lec-
ture, watching a video, calculating a sum, or writing a summary. An activity
describes what students are supposed to do, according to the scenario design,
for instance: “The students have to calculate the standard deviation of the
data set collected in the previous activity and enter the value into the tool.”
This being a broad definition, I have refined it to the following five elements:
•	 An activity can last 2 seconds or 2 months. Is “Writing a summary” a sin-

gle activity or should it be decomposed into subactivities such as “Read
the text,” “Identify key ideas,” and “Order key ideas”? One way to answer
this question is to define levels of granularity; for example, activity, sub-
activity, task, subtask, and action. However, any activity can be further
decomposed into subactivities, recursively down to neuronal activation.
The question therefore is: how far should an activity be decomposed in the
modeling of a pedagogical scenario? What is worth modeling? Given the
nature of orchestration graphs, it is not worth decomposing a task further
if the teacher will not orchestrate its subtasks. For instance, if the activity is
to write a summary, without any intervention regarding how the students
formulate their summary, it can be modeled as a single activity. If, how-
ever, the teacher aims to separate it into two subactivities—the phase of
extracting ideas from the text and the phase of arranging them into a new
text—then it should be modeled as two activities.

•	 The way a specific student actually performs the activity (e.g., the values
he introduced, the time taken, or the number of trials) is not included in
the term “activity,” but will be referred to as his behavior. Nor are the cog-
nitive processes engaged by the learner to perform the predefined activity
included in the concept of “activity.” The term “learner activity” describes
what students are asked to do. I could call it the “prescribed activity.”

•	 Some activities performed by learners cannot strictly be qualified as “learn-
ing activities”; that is, students are not exactly learning anything, but they
have to perform an activity required for continuing the learning scenario.
This could be finding 2 peers to form a team, installing a piece of software
on their computer, or passing a prerequisite test. Since these activities
cannot be neglected from the viewpoint of orchestration, I have chosen to
represent them explicitly in the graphs, in the same way as any learning

7	 I do not refer to the way this term is used in “activity theory.”

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

28	 ORCHESTRATION GRAPHS

activity. The term “learning activity” can therefore be considered as synon-
ymous with “learner activity.”

•	 Orchestration graphs describe the activities of the learners and not the
activities of the teachers. This may sound like a contradiction to my focus
on orchestration, but it is somehow similar to a musical score that describes
what musicians have to play, but nonetheless determines what the conduc-
tor has to do. Teacher activities do somehow mirror the learners’ activities
and could be represented as another dimension (Prieto et al., 2011). This
would however make the graph representation more complex, while I am
trying to keep it simple.

•	 Some activities are more important than others. As we’ll see in Chapter 2,
certain activities are only there to prepare for a later activity or to further
exploit what learners have done in a previous activity. In a pedagogical
scenario, there are often one or a few activities that constitute the key ele-
ment(s) of the scenario—its cornerstone or pivot point. The importance
of such an activity will be expressed by the weight of the edges that con-
nects the two activities (Point 5). In graph representations, this importance
could be expressed by any graphical mark such as a thicker box line or a
different color,8 as illustrated in Figure 1.14.

Since activities are the core elements of orchestration graphs, I will now
describe them in detail. Such a formal description may again seem useless at
this stage, but it includes eight parameters whose usefulness will appear in the
following chapters.

V = {ai} | ai: ts, te, π, object, product, {c}, traces, {metadata}

8	 I will leave the choice of a graphical grammar for implementation time.

Class

Team

Individual

Intro
Distribute

Collect knowledge

Solve

Debrief

Figure 1.14  The same PBL graph as in Figure 1.6, with a visual marker for the cornerstone activ-
ity “team problem solving.”

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 29

The first three parameters, ts, te, and π, have already been described, so I
will now describe the five other parameters.

Object(s): The object is the input to the activity—what students receive
as part of their instructions and have to process during the activity. I denote
objects by square brackets, as in the following examples: “Watch video [v35.
avi],” “Invent 5 sentences that includes the structure [despite of],” and “Cal-
culate the standard deviation from the data in [file.ex32.txt].” The object can
be generated by an operator; for example, “Compare the air pressure of [X]
and [Y],” where the system selects locations X and Y in real time as two points
on the planet that have the same altitude, but different weather conditions. An
activity can have several objects as an input.

Product(s): Some learning activities produce a result, an answer, or
a solution—the output of the activity. The term “product” does not refer to
the cognitive traces left by the activity (i.e., the learning effects), but to the
answer or solution. An activity such as “Memorize these 5 city names” has
no product, since there is no response or solution to be produced. In comput-
er-based education, as well as in classrooms, the products of activities are not
just volatile objects for evaluating an activity. They become persistent (data)
objects that can be stored and sometimes reused in activities that occur later
in the graph. The pedagogical exploitation of the “emerging objects,” as Ulrich
Hoppe called them (Wichmann et al., 2010), is a distinctive feature of modern
learning technologies.

Competencies {ci}: Some learning activities target specific competen-
cies, sometimes a single one, and often several ones. Some of them are just
logistical activities and are not related to any skill. This parameter is devel-
oped in Point 6.

Traces: Some activities such as reading a document do not generate a
product, as defined earlier, but do nonetheless leave traces of the learner’s
activity; for example, navigation acts during a video (the sequence of clicks on
the “pause,” “play,” or “forward” buttons), the number of zoom in/out actions
while reading a map, or the gaze patterns of learners recorded with an eye
tracker. Keeping track of traces is an added value of digital tools in educa-
tion—it allows teachers to have a closer look at what is happening to learners.
Let me emphasize how these learning technologies have evolved—they have
developed from analyzing only activity products (the answers) to processing
the many tiny digital footprints left while producing the answers. The same
evolution (basically from deductive to inductive science) characterizes many
disciplines and is now influencing education.

Metadata: In digital documents, metadata refer to information pieces—
mostly keywords—that describe the file: who created it, in which language,
with which tool, and so on. In orchestration graphs, metadata document the
activities. The simplest example is to give a name to an activity, such as, “Pre-
senting Kolmogorov-Smirnov” or “Part II: Causal Adverbs.” Other metadata
can indicate the copyright status of a document, its time validity, its level of

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

30	 ORCHESTRATION GRAPHS

difficulty, or the target audience. The function of educational metadata is to
provide teachers/systems with information useful for deciding if an educational
resource (e.g., a document or an activity) is relevant for the learning goals of
the scenario to be designed, and if it is, how it can be exploited. In orchestration
graphs, metadata should also include the design rationale of the activity,
that is, a few lines of text that explain why an activity has been created, refer-
ring to intrinsic or extrinsic constraints that justify design choices (Point 35).
If the teacher who is conducting the pedagogical scenario is not its author, he
will need this information for deciding which modifications he can carry out on
the scenario. Metadata are the key elements in sharing educational resources
among teachers, or for allowing learners to identify the resources they need.
Educational metadata have been the object of attention for two decades. Some
standards have been developed in the learning technologies community for
effectively sharing educational resources through repositories of “open edu-
cational resources” (OER). Allow me a short parenthesis about OERs.

The idea of OER is close to the MOOC idea, but with a lower grain size;
what is shared is a set of examples, questions, or exercises, rather than
courses. OER repositories are actually more “open” than MOOCs, in the
sense of “open source” (everyone may contribute). Intensive and clever
work has been done on these standards; we should not reinvent the wheel
and reuse them to enrich the description of activities. Unfortunately,
OERs haven’t reached a very large audience so far. Several factors may
explain this low development of OERs. Giving access to one’s own teach-
ing material is feasible. Even if the complexity of some metadata schemes
can be a black hole for teachers’ energy, there are ways to automatically
extract some of the metadata. Indeed, the difficulty is less in letting others
use one’s material than reusing the material developed by others. Bor-
rowing educational material requires trust and the ability to address the
contents in the same way the resource creator saw them, with the same
level of granularity, the same approach, and maybe the same scientific
notation. The work on educational metadata has perhaps come too early
in the development of learning technologies. The current rise of online
education could lead to its renaissance.

The activity parameters relate the activity descriptions to various areas of
learning technologies—metadata connect activities with repositories on educa-
tional resources, traces connect activities with learning analytics (Chapter 5),
while objects, products, and competencies will be explained hereafter in rela-
tion to mastery learning. Describing a learning activity in terms of input and
output sounds a bit like good old cybernetics. I don’t do it because of a sense of
nostalgia, but for the two following reasons. First, the structure of data before
and after an activity is an essential element of workflow, which in turn is the
backbone of orchestration graphs (see Chapter 3). We’ll see that the same

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 31

activity ai may trigger different cognitive processes depending on the way data
have been processed before ai; for instance, finding a solution to a2 could either
lead to consensus or conflict, depending on whether team members received
the same or conflicting evidence. The second reason for specifying the input
and output of an activity is in order to elaborate a description of activities that
is precise enough to situate an activity into existing classifications of cognitive
activities. For instance, if the object is a concept definition and the product is a
classified instance, the cognitive process is deductive. Conversely, if the object
is a set of examples and the product is the concept definition, the activity is
inductive. Bloom et al. (1956) and Guilford (1965) have developed domain-in-
dependent classifications of mental operations. D’Hainaut (1985) defined 6
categories of cognitive activities based on the relationship between the object
and the product. These taxonomies are more than theoretical instruments;
they play a key role in instructional design—it is “hygienic” to analyze the
level of the designed activities within a taxonomy. By distinguishing between
low-level and high-level activities, cognitive taxonomies reduce the risk of a
disease that is endemic to education—low-level activities, especially repro-
duction/memory tasks and simple application tasks, being overrepresented in
educational practices (probably because they are easier to design and evaluate
than higher-level activities).

These taxonomies originate from an effort to make instructional design
more rational, and more effective overall. The activity parameters connect
orchestration graphs with an educational theory developed in the 1960s
under the name “mastery learning” (Bloom and Carroll, 1971). This theory
is not so popular anymore, maybe due to its behaviorist roots or to its exag-
gerated fragmentation of learning activities into small steps. It would, how-
ever, be a mistake for today’s learning technologies to neglect a theory that has
developed highly effective methods. This effectiveness is principally related
to a close control of individual progression—checking that each step has been
mastered before moving to the next one. In this theory, pedagogical scenarios
are enriched with 4 types of tests—they are not, properly speaking, “learning
activities,” but “learner activities.”
•	 At the very beginning of a graph, a prerequisite test verifies if the learner

possesses the skills necessary to succeed in the graph activities with rea-
sonable probability. What can be negatively perceived as an entry filter is
actually respectful of the learner’s time; it would be a wasted effort to let
someone invest hours in a pedagogical scenario if he is certain to fail.

•	 At the beginning, a pretest also verifies if, by any chance, the learner
already possesses some of the skills he is supposed to acquire in the graph.
This increases efficiency—namely, minimizes learning time—by allow-
ing the learner to skip parts of the graph that correspond to the skills he
already masters. Moreover, this is useful for calculating the learning gain,
which establishes how much knowledge the learner gained between the

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

32	 ORCHESTRATION GRAPHS

pretest and the post-test. Additionally, it allows the use of the pretest as a
covariate when analyzing post-test scores.

•	 In mastery learning, a graph is often structured into modules, with a mod-
ule being simply a segment of the graph. In this case, intermediate tests
measure the skills after each module. They serve both as a post-test for that
module and as a test of prerequisites for the next module (if there is a pre-
requisite relationship between them). It does not have to look like a test; it
can simply be one of the activities of the graph.

•	 At the end of a graph, a post-test or final assessment verifies if the learner
has acquired the skills he was supposed to acquire. This is the exam.

a1
a2.1
a2.2

Prerequisite test

Remediation

a3

a4

a5

a6

a7

a8

Pretest

Post-test

Int. test

Redo [a4 a5]

Skip [a4 a5]

Item order

D
iff

ic
ul

ty

Uphill strategy: go up until he fails

Downhill strategy: go down until he succeeds

Discriminant strategy: increase/decrease
difficulty based on success – cut the space in 2

Figure 1.15  Tests shown in the graph (top) and testing strategies (bottom). After the prereq-
uisite test (a1), learners may get a specific remediation activities test (a2.1 or a2.2.) and then take
the test again. After the pretest, they may skip some activities. In the strategy graph, red dots are
items that the student failed.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 33

One could wonder when students learn, if they spend most of their time
sitting tests. Fortunately, adaptive testing strategies reduce the time spent in
testing. They are illustrated in Figure 1.15. In a prerequisite test, the learner
is supposed to have already acquired the measured skills. Therefore, complex
items are tested first; if the learner succeeds, the test may stop, but if he fails,
subskills have to be tested, recursively through the map of skills (Point 6).
Conversely, the pretest measures skills that the learner is not supposed to
have, since he joined in order to learn them. Therefore, basic skills are meas-
ured first. If the learner does not master skill X, there is no point in testing
skill Y, if X is a prerequisite of Y. If there is no hypothesis about the student’s
level, the optimal testing strategy follows a sorting algorithm: first select an
item in the middle of the difficulty scale; if he succeeds/fails, select an item at
the middle of the upper/lower half of the scale; and so forth.

Point 5  Edges
In orchestration graphs, activities are connected by links or edges. An edge
between two activities represents a double dependency between these two
activities.
•	 The conditional dependency between two activities is a measure of how

much the former is a condition for the latter. If the learner failed an activ-
ity, does he have a chance of succeeding at the next one? If time is too
short, can an activity be skipped without endangering the whole scenario?
The set of conditional dependencies between activities constitutes a proba-
bility network and is the core of the stochastic approach that will be devel-
oped in Chapter 4. This dependency will be modeled as a transition matrix
(Point 22).

•	 The data dependency between two activities describes how data are trans-
ferred between them. For instance, in a peer-critiquing scenario, a student
writes a text (a1) that another student comments on (a2), and then the orig-
inal author revises his text (a3). To operate this scenario, the product of
ai (the text) becomes the object of a2, and the product of a2 (comments)
becomes the object of a3. The transformation of data between activities
constitutes a workflow, described in Chapter 3 as a sequence of operators.
Workflows enable a scaling up of learning activities, since they automat-
ically perform the manipulations that a teacher would have performed
manually.

Two activities can be pedagogically dependent without being functionally
dependent, for instance, if learners acquire a skill that is a prerequisite for
the next activity, but there is no data transfer between these two activities.
Inversely, if the first activity involves entering the references of the location

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

34	 ORCHESTRATION GRAPHS

where students will collect soil measurements, these data are necessary for
running the next activity (producing a map with all measurements), but not
cognitively required for reading the map. These two dependencies are con-
ceptually so different that I could actually represent them as double edges,
but the graphs would then become unreadable. Instead, these two dependen-
cies are stored as different parameters associated with an edge, as explained
hereafter. Allow me to stress this duality, which could be confusing for the
reader; a graph is a structure that plays two different, but complementary,
functions— an operational function as a workflow and a descriptive function
as a stochastic model. The superposition of these two functions is essential for
the remainder of this book.

The edges have a further, third function; in some cases, an activity can
connect to two subsequent activities, and the decision criteria to branch to one
or the other is also stored in the edge, as control structures (Point 7). These 3
functions of edges are summarized in Figure 1.16.

An edge is defined by its 2 connected vertices, plus the 5 parameters
described below. I will outline all 5 parameters now, despite the fact that some
of them will only become relevant in later points.

We define the set of edges as E = { eij} where eij is a tuple (ai, aj, {opera-
tors}, {controls}, label, weight, elasticity).

Operators: The parameter {operators} is a set of operators that describes
the data dependencies—how data structures generated by learners when per-
forming ai are transformed into data structures necessary for conducting aj.
In the previous peer-critiquing example, the operator stores all texts written
in a1 and distributes them to students in a2. Simply stated, an operator is a
little piece of software that stores and processes data. Another example is a

a1
a3

a2 a4

a5

ai

aj

Lag

 Workflow
operators

Transition matrix

Controls

Figure 1.16  A zoom into the edges of an orchestration graph.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 35

scenario in which the learner who finds a solution to activity a1 is then asked to
collaborate in a2 with a student who did not find the same solution in a1. Chap-
ter 3 presents a variety of operators and explains how they form a workflow.

Controls: The parameter {controls} allows richer graph structures, with
loops and forks. These controls are described in Point 7. If an edge ends with
several possible activities, these controls decide which activity will be selected
next. Edges with multiple ends aj, ak, … will be modeled in a slightly different
way.

In that case E = { eij} contains tuples eij of the form (ai, {aj, ak,…}, {opera-
tors}, {controls}, label, weight, elasticity).

The next 3 parameters (label, weight, and elasticity) define the conditional
dependencies between two activities. Edges connect consecutive activities
(j=i+1), but conditions are transitive; if ai is a condition for aj and aj for ak, the
edges eij and ejk implicitly contain eik. As mentioned earlier, I do not represent
eik, which keeps the graph readable.

Label: The label defines the pedagogical relationship between two activ-
ities. Why is activity ai a condition to run activity aj: is it a prerequisite, a
motivation trick, or an illustration? The edges encapsulate the key pedagog-
ical ideas behind the pedagogical scenarios. I will therefore devote the next
chapter to these labels.

Weight: The weight of edge eij is denoted by ωij and expresses the impor-
tance of the conditional relationship between ai and aj, that is, how much a
student’s performance in ai will determine his performance in aj. Two activi-
ties related by a heavy weight edge are strongly interdependent. One example
of strong dependency is when ai is a cognitive prerequisite to aj, that is, if the
learner cannot learn the contents of aj without having acquired the contents
of ai. Another example is the previously mentioned peer-critiquing scenario;
a2 cannot be conducted without a1 since the learner cannot comment on a
text that has not been written. Edges with a low weight correspond to oppo-
site cases, where ai can be “nice to have,” but not strictly necessary for aj. For
instance, activity a1 is sometimes introduced to motivate students to do a2 by
showing them how the skills to be acquired in a2 are useful in real-world prob-
lems. If a1 has to be skipped, the chances that students are interested in a2 will
be lowered, but not reduced to nil; a1 can still be conducted with reasonable
chances of success. Another example is if a1 presents the demonstration of
a statistical theorem; understanding the demonstration is great for shaping
students’ minds, but not strictly necessary for applying statistical methods.
The weight of edges influences the flexibility of a graph: if it is necessary to
skip ai, for instance due to time pressure, it will be less detrimental to do so if
ωij is low.

The weight of an edge could be represented on the graph by the thick-
ness of the line that connects two activities, by a color intensity scale, or by a
numerical value displayed next to the edge. I will leave this detail to the future
implementation of this modelling language into a platform.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

36	 ORCHESTRATION GRAPHS

Let’s consider a problem-solving activity in which the solution is either
correct or incorrect. The weight can then be expressed in Bayesian terms as
the probability of succeeding aj relies on the condition of having succeeded ai.

ωij = p (Aj | Ai) where Ai is the event in which “the learner found the
correct solution to ai”

In many cases, however, the result of an activity is more subtle than sim-
ply “correct/incorrect.” If it is a metric value, for example, a score between 0
and 20, then a correlation coefficient could be used, even though the relation
between the success at two activities may not be linear. In other cases, the
result of an activity will be a set of discrete states. In this case, the probability
will not be a single value, but a probability matrix that represents the transi-
tion between each possible state at the end of ai and at the end of aj. We will
see in Chapter 4 how the information contained in such a transition matrix
can be summarized by a single numerical value, which will be used as the edge
weight.

Elasticity: The effect of ai on aj often fades out with time (e.g., as the lag
between two activities increases); learners might forget what they learned in
a previous activity, and the motivation created at the beginning of a lesson by
presenting an interesting application example does not last forever. In other
words, the weight between two edges can be strong if lag is short, but may
decrease as lag increases. Therefore, I use the metaphor of elasticity, in its
everyday meaning. If we stretch a rubber band, it will lose thickness, and if
one continues stretching, it will eventually break. Similarly, the conditional
relationship between two activities will decrease as the time lag between them
increases. This concept is refined in Point 25.

The elasticity of an edge eij is a function that defines how ωij decreases as
the time lag lij increases.

Point 6  Skills and competencies

The goal of a teacher who designs a pedagogical scenario is that students
acquire knowledge, competencies, or skills. These target skills are called peda-
gogical goals, objective outcomes, or learning outcomes. One often dissociates
the contents or knowledge to be acquired (e.g., “What is the definition of the
‘variance of a distribution’”), from the skills (e.g., being able to calculate the
variance), and from competencies (e.g., being able to argue with data-based
arguments). The latter are also called “transversal skills,” as they apply across

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 37

domains.9 D’Hainaut (1983) dissociated the ends of an educational system
(e.g., to train civil engineers), the intermediate goals (e.g., to estimate risks),
and the course-specific objectives (e.g., to combine uncertainty measures
along 3 dimensions of a oil reservoir). I will not enter into the terminological
details concerning the differences between all the terms used in the last sen-
tences for describing the same lexical field, not because these differences are
not important, but because this debate conceals the message contained within.
Please allow me a detour to defend a teleological approach to education.

When a civil engineer has to build a bridge, he does not first decide that
the bridge will have four arches because he and his father have always built
bridges with four arches. He first analyzes the situation in terms of who is
going from where to where. However, in contrast, we do instead tend to teach
the way we have been taught. A rational approach to education—which this
book argues for—starts from the endpoint: what should students be able to do
at the end of their course? It does not really matter if “What the students are
able to do” is called a skill, a competency, a learning outcome, or a pedagogical
objective. It does not really matter if the learning outcomes are formulated
according to a specific syntax. The point is that a pedagogical scenario is built
in reverse. Defining the final skills is not a pointless pedagogical sophistica-
tion or a bureaucratic chore. It is about designing education with an engineer-
ing mind.

Let’s define C as the set of content knowledge, skills, and competencies to
be acquired. Even if this is only presented as the 6th point in this book, the first
step in instructional engineering is to define C. The second step is to analyze
C, that is, to determine the components of C. In general, C is divided into a set
of skills {c1, c2, …, cm}. The number of skills, m, may differ from the number of
activities in the graph. Once C as been decomposed, different subsets of {ci}
are associated with different activities. Figure 1.17 illustrates two methods for
task decomposition: for procedural skills, C is broken down into an algorithm
(on the left), while declarative knowledge is instead depicted as a graph of
concepts or a semantic network (on the right).

The decomposition of C raises the same issue as the definition of activities;
at what point should we stop decomposing C, that is, consider the subskills in
ck as an atom? The designer may stop decomposition in the following cases:
•	 If ck can be considered as a prerequisite for the average student. This

should be verified at course entry (see the prerequisite test, Point 4).
•	 If ck is a cognitive black box, that is, if it cannot be decomposed into mean-

ingful subactivities. This is the case for “Capital (Belgium) = Brussels” or
for “4 × 5 = 20.”

9	 But they are often not entirely domain-independent, as revealed by theories of situated
cognition.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

38	 ORCHESTRATION GRAPHS

•	 If ck is a didactic black box, that is, if there is no intervention in the learners
activity during ci. For instance, if a graph includes an argumentation task,
two models are possible. If the designer defines argumentation roles (Wein-
berger et al., 2007), one learner proposing claims to be refuted by his peer,
these roles should be modeled explicitly as subactivities (see Point 7). Con-
versely, if argumentation is free, it should be modeled as a single activity in
the graph. This won’t prevent the teacher from regulating it. A MOOC video
is therefore considered as a single activity, even if it covers several topics.

•	 If an activity related to ck does not provide analytics. For instance, if stu-
dents have to write an essay, should the grammatical subskills be mod-
eled? If students upload a document in which most grammatical mistakes
have been automatically corrected, grammatical skills won’t be measura-
ble. If they use specific text-entry software that records all edits, they could
be modeled.

In behaviorist pedagogy, there is direct mapping between {ci}, a set of sub-
skills, and {ai}, a set of graph activities—a1 is associated with c1, a2 with c2, a3

Find summit opposite to ab

Measure [c – ab]

Select a base

Measure the base

Multiply

Divide by 2

ab

Draw line by c orthogonal to ab

c

height

h
b

hb

surface

Triangle abc

c
a

b

A triangle is a polygon
with 3 vertices

A polygon is a plane
figure bounded by a
finite chain of straight

line segments

A plane is a flat two-
dimensional surface

A line segment is the part of
a line that is bounded by two

distinct end points

The vertex of an angle is the
point where two line

segments join or meet

A right triangle is a triangle in
which one angle is a right tangle

In a right triangle, the square of the hypotenuse is the sum
of the square of the two other sides

A right angle has an
amplitude of 90 degrees

A hypotenuse is the side of a
right triangle opposed to the

right angle

Figure 1.17  Left: A “mathetic analysis” (D’Hainaut, 1983) draws the algorithm of the activ-
ity, that is, given the input presented to the learner, what are the points he must perform in
order to calculate the expected output. Each element may be decomposed into sub-elements.
Red elements are prerequisites and therefore not further decomposed. Right: A semantic analysis
(D’Hainaut, 1983) consists in building a semantic network. Red elements are prerequisites and
therefore not further decomposed.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 39

with c3, and so on. There can also be incremental mapping: a1 is associated
with c1, a2 with c1+c2, a3 with c1+c2+c3, and so on. However, this is not a gen-
eral rule in instructional design—any kind of mapping is possible. Moreover,
an orchestration graph may include activities that do not target specific skills
such as motivation and logistical activities, as well as activities that target mul-
tiple skills. In other words, activity graphs and skills graphs are connected, but
they are not isomorphic.10

10	 https://www.coursera.org/course/microcontroleurs

Figure 1.18  Enriching online education with physical interactions.

Example 1 (top left): A tangible interface for a tangible simulation—apprentices place small plas-
tic shelves on the table, and the augmented reality system overlays the warehouse activity, such
as forklift movements (Zufferey et al., 2009).

Example 2 (top right): A tangible interface for carpenters—apprentices develop spatial reasoning
skills by moving wooden blocks, and the augmented reality system overlays their three orthogonal
projections (Cuendet et al., 2013).

Example 3 (bottom left): Haptic saw—apprentices have to cut a virtual piece of wood on a com-
puter, with the same force feedback as with a real saw, but completed with digital feedback on the
saw movements (Akshay et al., 2013).

Example 4 (bottom right): Microcontroller toolkit—in this MOOC10, the assignment consists of
physically assembling a microcontroller. The assignment is evaluated by connecting the micro-
controller to a computer. This toolkit is sold for 20 Swiss francs.

https://www.coursera.org/course/microcontroleurs

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

40	 ORCHESTRATION GRAPHS

When talking specifically about MOOCs, there is a fear that some skills
cannot be taught via MOOCs, because they cannot be assessed online.
•	 The first limitation concerns high-order thinking skills. Universities are not

only expected to teach concepts, laws, and procedures, but also high-order
skills, such as critical thinking, rigorous reasoning, creativity, collabora-
tion, information retrieval, and project management. The evaluation of
these skills seems a priori not to be compatible with multiple-choice ques-
tionnaires and only partly compatible with peer grading. It requires rather
ill-defined, open, multi-steps tasks that are not easy to evaluate on a large
scale. This is a concern that needs to be taken into consideration if MOOCs
are to be used for entire curricula. One solution is to ask participants, after
completing 3 or 4 MOOCs, to elaborate a capstone project, that is, a project
that integrates the skills acquired in each MOOC, but new ways of follow-
ing large numbers of projects nevertheless have to be invented.

•	 The second limitation in regards to the range of skills comes from the
interface between the learner and the digital environment; beyond the
keyboard, mouse, or touch surface, do MOOCs allow for the teaching of
physical skills, such as professional gestures? In actual fact, the develop-
ment of tangible interfaces, augmented reality, and haptic devices extends
the capacity of online education to include physical skills, as illustrated by
the examples in Figure 1.18.

Point 7  Control structures

Up to now, the presented graphs have been restricted to a linear sequence of
activities. Two more structures are necessary to broaden the range of ped-
agogical scenarios that can be described with orchestration graphs—loops
and conditions. It is, of course, possible to add other structures such as func-
tional calls, that is, embedding subgraphs within graphs. However, as often
mentioned, I strive to keep orchestration graphs simple. My experience is
that sophisticated scenarios are hard to orchestrate for teachers. In addition,
learners also suffer from intricate scenarios, since they also have to learn what
to do, when to do it, and how to do it. This was evident to us when we tested
a scenario where the complexity of the graph absorbed most of the attention
and energy that the learners should normally devote to learning, and teach-
ers to teaching (Berger et al., 2001). In summary, I have kept this modeling
language simple, but, by adding loops and conditions, it becomes possible to
model richer graphs.

Control structures are associated with edges in order to separate activities,
as independent software components, from the control structures, as other
independent software components (namely a set of “if-then” conditions).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 41

Branching: A key decision to be taken when a graph is executed is “What
to do next?” A branching operator implements the choice between two or more
activities. In Figure 1.19, after a short lecture (a1) that reminds students of the
theory, the teacher asks them to solve exercises (a2). The branching condi-
tion will be based on their score in a2; if the class is working fine globally, the
teacher will resume the lecture (a3), but if the test results were not sufficient,
the teacher will propose more exercises (a4).

Who actually makes branching decisions? If the decision criteria are able
to be calculated, the system can decide; if a more global grasp of the context is
required, the teacher can decide; the teacher can also make decisions based on
analytics generated by the system, and finally, learners themselves can make
decisions. The ratio between the number of decisions made by the system/
teacher and the number of decisions made by learners is called the “balance
of control.” Along with the individual-social pendulum (see Introduction), the
notion of balance of control has generated a passionate debate in learning
technologies. Early computer-assisted instruction systems gave low control to
learners, while educational microworlds such as LOGO gave them full control.
In a nutshell, the former were relatively boring and the latter rather ineffec-
tive. This generated a strong argument between, respectively, the quest for
effectiveness and the goal of developing user autonomy. The same difference
exists today between xMOOCs and cMOOCs; the graph is rather rigid in the
former, while full control is left to learners in the latter. One would expect
mixed control, where both the system and the learners share decisions, to be
optimal. This optimum is, however, rather difficult to implement, as learners
must have the freedom to chose their activities, and the system must be able
to monitor their uncontrolled activity in order to make relevant suggestions.

Looping: Some sub-sequences of the graph sometimes have to be repeated
several times. They constitute a loop, defined by three arguments: when does
it start and end,and how many times is it repeated (e.g., “5” or “Until time is
over”). In some cases, certain activities are only executed on some iterations
(e.g., the first time, the last time).

a1 Class

Team

Individual

Lecture

Branching

a2 a4

a3

Lecture

Exercises Test

Figure 1.19  A branching structure.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

42	 ORCHESTRATION GRAPHS

Point 8  Parallelism
In a graph, parallel activities are activities that occupy the same time slice of
the lesson,11 on the same plane or on different planes. These parallel activities
can be independent from each other or interdependent. Activities are inde-
pendent if they satisfy two criteria. First, each learner participates in only one
activity at the same time. Second, the actions of learners in one activity do
not influence the actions of other learners in other activities.12 In other cases
(which will be illustrated hereafter), the activities are called interdependent.

I will firstly describe independent activities. Typically, they are conducted
when the class is partitioned into subclasses, often 2 to 4. The subclasses form
a partition of the class in the mathematical sense of the word “partition”; each
student belongs to one and only one subclasss. A subclass is different from a
team; teams (π2) have to achieve a task together, while in a subclass, students
might all do individual exercises without interacting with each other (π1), or
they might do different types of team projects (π2), or they might attend dif-
ferent lectures (π3).

One reason for creating subclasses is logistical constraints (Point 35),
for instance, the need to reduce the number of students per activity. This is

11	 I use the term “parallel” rather than “synchronous” to avoid confusion with synchronous
communication tools used in online education.

12	 If, for example, each team within the class conducted an urbanism study where they analyze
the same concepts but for a different city, I would model all their projects as a single activity,
because even if the object varies, the activity is the same.

Lecture

Answer

Argue
Feedback

Lecture

Answer

Argue

Feedback

Figure 1.20  The peer instruction graph (top) from Point 3 is presented as a long sequence and
is then modeled as a simple loop—question-answer-argue-feedback (bottom).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 43

typically due to physical constraints, such as the room size or the number
of devices. This occurs in science labs, where the number of devices often
defines the subclass size (Figure 1.21). Logistical constraints also apply to
online education, for instance, when there is limited access to resources such
as remotely controlled experiments, a time-consuming automatic grader, or
human coaching.

A second reason for splitting a class into smaller subclasses is the manage-
ment of verbal interactions; it is difficult to manage seminars, case studies, or
language games with more than 25 students.

A third reason for parallelism is in order to operate adaptive instruction
(Figure 1.22), that is, to differentiate the activities assigned to different sub-
classes.13 A subclass gathers students who have some characteristics in com-

13	 These homogenous subclasses are often named “level group”; I do not use this name since it
would lead to confusion with group/team activities (π2).

a1 Class

Team

Individual

a2

a3

a2

a3

Lecture

Lab experiments in teams

Individual exercises

Social operator

a1

a2

a3

a4

a5

Class

Team

Individual

Test

Conversation

Exercises

Social operator

Figure 1.21  Parallel activities for logistical reasons. After the lecture, the class is split into 2
subclasses. While one subclass does lab activities (a2), another subclass does individual exercises
(a3), and then they switch. I represent subclasses with thinner rectangles to give a visual impres-
sion that they hold fewer students than the whole class. The red circle represents the social oper-
ator used to split the class into 2 subclasses (see Point 16).

Figure 1.22  Parallel independent activities for subclasses with different levels. The graph illus-
trates a German lesson. All students start with exercises on sentence construction (a1), which
are automatically graded. In the edge e1,2, the social operator forms two subclasses, based on a1
scores. Then, the best students participate in dialogue activities with the teacher (a2) while the
others continue individual exercises (a3). It is easier for the teacher to manage dialogue among
students who have a homogenous level of dialogue skills in German. After a break, the groups
switch activities.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

44	 ORCHESTRATION GRAPHS

mon; for example, “Those who failed the pretest,” “Those who had never
studied biology before,” and “Native speakers.” To form subclasses based on
student similarities or differences, a graph applies social operators, described
in Chapter 3. The basic idea behind subclasses is to reduce class heterogene-
ity; each subclass is less heterogeneous than the main class.

These ways of orchestrating class activities illustrate a first type of par-
allelism—namely between activities conducted by different students inde-
pendently from each other. A second type of parallelism occurs between
activities that are not independent, that is, they remain coupled despite the
fact they occur at different planes. They create dependencies between these
planes. A common example of interdependent activities is when students are
assigned different roles for a team activity; roles differentiate the activity of
each individual (π1) within the team effort to achieve the task (π2). In pro-
ject-based learning, a team is often structured around several roles, such as
leader, notes taker, timekeeper, information seeker, and summarizer. Roles
can even be used within pairs, for instance, when one learner is presenting
a claim and the second one is critiquing it. Roles can be domain-specific, as
in the example represented in Figure 1.23. In a lesson on earthquakes, my
colleague A. Parriaux (2009) introduced the problem (a1): “How to avoid a
major earthquake in San Francisco? In Denver, the city injects water in the
fault. This increase of fluidity facilitates the friction between tectonic plates,
which creates tiny earthquakes. These small earthquakes reduce the tectonic
tensions, which could prevent a main earthquake. Should San Francisco do
the same?” Each team comprises 4 roles: the mayor of San Francisco (a2a), a
seismology expert (a2b), a security officer (a2c), and an insurance agent (a2d).
These four roles are represented as individual activities. After a while, stu-
dents are redistributed into “expert groups”; those playing the mayor’s role
discuss their views with the mayors of other teams (a3a), and so forth. In fact,
the sequence a2–a6 is repeated several times. Finally, teams make their deci-
sions (a4), which are then aggregated by the teacher (a5).

a1

a2

a3a
a3b
a3c
a3d

a4

Task groups

Decision

Expert groups

Roles

Intro

a2a
a2b
a2c
a2d

a5

Debriefing

Figure 1.23  Role-based activities structure teamwork—a scenario in geology.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION GRAPHS	 45

To implement interdependent activities, roles can be set up in 3 ways.
•	 Roles can be defined by the instructions given to students, such as “Your

role is to regulate the participation of all team members,” “Your role is to
verify the data produced by other team members,” or “You will partici-
pate in this debate as if you were the president of an extreme-right party.”
Some pedagogical scenarios include a role-training activity in which learn-
ers practice their role and get feedback on how well they played their role.

•	 Roles can be enforced by the interface. In online education, the interface
can be designed in such a way that a learner playing a role only has access
to the subset of the functionalities that is specific to his role. In physical
classrooms, when several learners sit in front of one computer, roles can
be implemented by multi-mice interfaces; each mouse can only access the
interface elements that correspond to its role (Infante et al., 2009).

•	 Roles can be induced by a distribution operator (see Chapter 3); the oper-
ator purposely provides different pieces of information to different team
members, which will lead them to contribute differently to teamwork. For
instance, the learner playing the role of the geology expert in the above
example will receive geology maps, while the one playing an insurance
agent will receive a set of cases where an insurance company has to pay for
a natural disaster.

The idea of roles is not necessarily related to the notion of role-play, even
though the engagement that a role-play activity may produce is not negligi-
ble. Actually, in collaborative learning, roles are mainly designed for reducing
collaboration pitfalls such as social loafing (one team member lets the other
ones do all the work), (see Point 21). There is evidence that roles enhance col-
laborative learning (Schellens & al., 2005). In other approaches (Weinberger,
REF), students are expected to internalize the roles they play; playing the role
of “provide counter-evidence” would lead students to acquire richer argumen-
tation skills.

These roles implement dependencies between π1 and π2. Can a graph
include dependencies between other planes? An example of π2–π3 depend-
ency is “concurrent design,”14 used with EPFL Space Center students. Several
teams located in the same room work in parallel on complementary aspects of
a satellite (energy, communication, or mechanics) while constantly following
what other teams do. Any design change by one team is immediately propa-
gated to the design process of the other teams.

In regards to dependencies between π1 and π3, Szewkis et al. (2011) invented
“silent collaboration,” an original graph in which 40 students edit a table
together (Figure 1.24). Every learner (π1) is in charge of one cell on a digital
table, projected at the front of the class (π3). The table contains 25 words—5

14	 http://space.epfl.ch/page-39445-en.html

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

46	 ORCHESTRATION GRAPHS

columns refer to the grammatical nature of the word (adverb, adjective, noun)
and 5 rows describe its first letter. Initially the words are misplaced, and each
student, responsible for one cell, has to find a peer with whom to exchange his
word until every word is in the right place. In the physical classroom, each stu-
dent’s mouse—up to 40 mice connected to the same computer—controls his
own cell in the table, where he can propose, accept, or reject an exchange. In
a MOOC, the same graph could be implemented with the operators described
in the next chapter.

Conclusions

This first chapter describes a very generic structure, which could model many
processes other than pedagogical scenarios. So far, orchestration graphs con-
stitute a syntactic structure, without much semantics from the field of educa-
tion or learning sciences. The semantics will now be explored systematically
through 3 libraries. In Chapter 2, I will present a library of edges, with each
edge encompassing a pedagogical idea. Chapter 3 describes a library of data
transformation operators associated with edges. In Chapter 4, I will propose a
library of learner states that have a specific relevance for orchestration graphs.
In other words, I have so far described the bones of orchestration graphs;
the next chapters will add the muscles, the digestive system (operators), and
finally the blood system (the evolution of states as a stochastic process).

Figure 1.24  The “silent collaboration” scenario (Szewkis et al., 2011) (courtesy by M. Nussbaum).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Chapter 2

The Edges Library

Defining an educational scenario as a set of edges and vertices may sound ter-
ribly technical. This chapter introduces educational semantics. The edges of
an orchestration graph embed the pedagogical idea that led the graph designer
to place one activity next to another. The label of the edge eij defines the peda-
gogical relationship between ai and aj. The term “label” is used in graph theory
to associate an edge with a value, an identifier, or anything that is meaningful
in the domain modeled by the graph.

This chapter proposes a library of 28 labels that can be associated with an
edge eij, that is, an edge between ai and aj. This library is structured into 4
categories. It is not proposed as a new ontology for education, but simply as a
way to structure the chapter:
•	 The preparation edges connect two activities when the learner has a

higher probability of succeeding at aj if he carried out ai before ai.
•	 The set edges connect two activities when the skills or contents addressed

in ai and aj are in relationship with each other; for example, subset/super-
set, whole/part, and siblings.

•	 The translation edges connect two activities in which the same content
is addressed under different formats, representations, notations, or view-
points. Learners therefore have to translate the representation used in ai
into the representation used in aj.

•	 The generalization edges introduce variations of the content or skills
across the space of generalization, namely introducing the student to more
general, less general, or analogical contexts from ai to aj.

The labels in the categories “set” and “generalization” are associated with a
symbol (+, – or =) if ai is positioned above, below, or at the same level as aj in
the space of transitions that will be presented in the following points.

There is a typical approach in computer science to distinguish the structure
from the contents that fill the structure. These contents are typically organized
into some kind of library. Graph structure has been presented in Chapter 1.
The edges library (and the other libraries presented later on) results from this
content/structure dissociation.

An edge between two activities can be associated with more than one label;
for instance, an interesting case study can prepare learners for the next activ-
ity, both as a motivation edge and as an analogy edge.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

48	 ORCHESTRATION GRAPHS

Table 2.1  A library of edge labels for orchestration graphs.

Preparation Set Translation Generalization
(P) Prerequisite (S+) Aggregation (T) Proceduralization (G+) Induction
(P) ZPD (S+) Expansion (T) Elicitation (G+) Deduction
(P) Adv. organizer (S–) Decomposition (T) Alternate (G+) Extraction
(P) Motivation (S–) Selection (T) Reframe (G+) Synthesis
(P) Anticipation (S=) Juxtaposition (T) Reverse (G=) Analogy
(P) Logistics (S=) Contrast (T) Repair (G=) Transfer
(P) Data collection (S=) Identity (T) Teach (G–) Restriction

Some of these edges could also be used to describe the cognitive processes
that occur inside an activity. Since any activity can be split into subactivi-
ties, as explained in Chapter 1, there is no fundamental difference between
an intra-activity relationship (i.e., inter-subactivities) and an inter-activity
relationship.

The specific terms I have chosen for naming edges are not essential. One
could certainly argue about many of them. What is important is not the mean-
ing of specific labels but the variety of labels described hereafter. This diver-
sity is important for two reasons. First, it illustrates the scope of pedagogical
scenarios that can be modeled with orchestration graphs. Even if a graph has
only three activities, placed at six possible planes, hence two edges, this library
of 28 edges allows for 282  ·  6=4704 graphs. Second, the diversity allows for
building graphs that explore the whole knowledge space. The set of edges
builds a complete mesh around this space. I will now describe point by point
the many dimensions of this mesh.

Point 9  Preparation edges

This first category includes edges (noted as “P”) that simply connect two activ-
ities, where one activity prepares learners for the next one. This is rather basic,
but it gives the fundamental idea of educational design; given the target skills
C, which activity an (the last activity) would prepare learners for C, then which
activity an–1 would make learner s able to do an, and so on recursively. The
former activity increases the chances for the latter one to be effective. In some
cases, the latter simply cannot proceed without the former being completed.
There is a continuum of dependency levels between the two activities, the
dependency being measured by the weight of the edge.

Edge (P) Prerequisites: This label characterizes an edge eij if students
acquire in ai the skills {ci} that are prerequisite to succeed in aj and to acquire
{cj}. The term “prerequisite” implies that the probability of acquiring {ci} is
very low if the student has not previously mastered {ci}. For instance, sub-
tractions without borrowing should be mastered before those where students

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 49

must borrow. The prerequisite relationship between skills can be extracted by
applying the content analysis methods described in Point 6.

The importance of prerequisite edges is central to mastery learning (Bloom,
1984); as explained in Point 4, it is a waste of effort for learners to try and
achieve aj if they have not mastered ai before. Taking care of prerequisites is
a basic idea, but prerequisite gaps, especially when accumulated over school
years, is a main cause of school failure.

Edge (P) ZPD: This label characterizes an edge eij if a student acquires in
aj the skills {cj} that are located in his “zone of proximal development,” given
the skills {ci} that he has acquired during aj. The concept of ZPD, well known
in instructional psychology, has been defined by Vygostky (1962) as “the dis-
tance between the actual developmental level as determined by independ-
ent problem solving and the level of potential development as determined
through problem solving under adult guidance, or in collaboration with
more capable peers.” In other words, ZPD refers to the difference between
what the learner could perform individually in ai (π1) and what he can collab-
oratively perform in aj (π2), with a more knowledgeable person. Such a graph
is illustrated in Figure 2.2. From a workflow viewpoint, a edge with a ZPD
label will be associated with a social operator (see Point 16) that will select

Class

Team

Individual

Learn vocabulary on drugs

Debate on drugs

Prerequisite

Debate on drugs

Intrinsic motivation

Class

Team

Individual

a2

a1

ZPD

Solve equations

Solve equations

Figure 2.1  Edge labels in a “German as foreign language” graph. The graph includes a group
debate on a topic; for example, drugs. This generates some frustration among learners due to
their lack of vocabulary. This frustration hypothetically creates motivation to learn new vocabu-
lary. This activity is a prerequisite for the debate that will follow.

Figure 2.2  In the first activity, students solve equations individually. The teacher analyzes their
work and identifies those who concentrate on algebraic manipulations compared to those able to
think in terms of problem-solving strategy. In the second activity, a student from the first category
is asked to work with a student from the second category. The latter is expected to convey his
strategies by arguing about the choice of equation manipulations proposed by the former.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

50	 ORCHESTRATION GRAPHS

two learners s1 and s2, based on their knowledge state in ai (see Chapter 4), in
such way that, by interacting with s2 during aj, s1 will be able to perform aj, an
activity that he could not perform alone.

Some colleagues will be upset with my claim that ZPD edges constitute
a special case of prerequisite edges, but they do, even if they originate from
radically different theories of learning; while the term “prerequisite” is often
used when talking about cognitive skills, from an individual cognition view-
point, the ZPD stresses verbal interactions in a social context, namely among
peers (or in child-adult interactions). In socio-cultural theory, the learning
mechanisms behind the ZPD is that a learner appropriates the language used
by a more advanced peer while collaborating on tasks that he could not tackle
individually. If I were to talk with a physicist about quantum theories, I would
not understand and hence not appropriate anything he tells me. He is simply
not in my ZPD. The claim that ZPD constitutes some kind of a prerequisite
illustrates the pedagogical ecumenism I promote in this book.

Edge (P) Advance organizer: This label characterizes an edge eij if
ai pre-activates cognitive structures that will facilitate aj. This pre-activated
structure has been called an “advance organizer” by Ausubel (1960). In the
example presented in Figure 2.3, the teacher first explains that the goal of
the lesson is to be able to locate a point on a plane. Then, students play naval
battles in pairs, which serve as advance organizers for the lecture on the Car-
tesian plan. I tried this graph with success on low achievers, and it “worked
extremely well.” The battle is, of course, also an extrinsic motivation factor.

One could also consider an advance organizer as a kind of prerequisite, but
the activity ai does not actually target specific skills; it only pre-activates struc-
tures that will hence be more rapidly activated during learning. It is partly
similar to the “priming” effect observed in psychology; if I say “banana” to you
5 times and then ask you to cite a color, there are more chances that you will
say “yellow.” Now, an advance organizer is more than just a priming effect; it
pre-activiates a structure on which the students will be able to associate the
pieces of knowledge acquired during the scenario. This effect is rather useful
for inductive learning. In these scenarios, also called “guided discovery learn-
ing,” teachers expect learners to induce a new concept or rule by identifying

Class

Team

Individual

Play naval battle

Teach the Cartesian coordinate system

Advance organizer
and extrinsic motivation

Didactic
elicitation

“What you will learn today”

Figure 2.3  Edge labels in a mathematics MOOC.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 51

the features that are common to a set of instances. In reality, an infinite set
of common features exists among a finite set of objects, and hence an infinite
space of generalization. Two quadrilaterals do not only have in common
the features that the teacher expects learners to compare (relative length of
the side, angle amplitude, parallelism between sides). They also have many
other shared features; they are drawn in the same color, the same teacher has
drawn them, on the same day, on the same support, they are neither big nor
small, they are boring or cute, and so on. The term “guided discovery” refers
to the need for the teacher to guide learners during induction by leading them
towards the relevant criteria for induction. Advance organizers are among the
tricks that teachers may use for driving the learner’s attention to the relevant
criteria.

Edge (P) Anticipation: This label characterizes an edge eij if ai inform
students about what they will do during aj and/or during the whole scenario—
which activities are planned, when, where are scenario activities located in the
map of the course, which competencies they are expected to acquire at the end
of the graph, and how these competencies will be evaluated (see Figure 2.3).
This edge concerns the relationship between the first activity and the whole
graph, but as explained earlier about the transitivity of edges, only the edge
between ai and ai+1 is represented on the graph. These activities provide stu-
dents with a mental map of the path they have to follow. Students understand
more of the activities they encounter, since they know where they are going.
Tourneur (1975) showed that explicitly communicating the learning goals of a
lesson increases the learning results of the students. It is therefore not a waste
of time to spend 2 minutes at the beginning of a graph to present an overview
of what will come next.

Edge (P) Motivation: This label characterizes an edge eij if ai motivates
students to perform aj and/or do the whole scenario. Motivation sounds like
a concept borrowed from grandfather-pedagogy or even as a behaviorist con-
cept; children will be motivated to learn multiplication tables by the promise
of receiving chocolate if they perform well. In educational games, discreetly
renamed “serious games” (as if learners should be ashamed of having fun while
learning), motivation is often extrinsic to learning; for example, the will to win
against one opponent, competition with many opponents, or the increase in a
score. These incentives may lead learners to increase the effort they put into
learning activities. In university teaching or in MOOCs, this extrinsic motiva-
tion is the desire to get a certificate. University lecturers know that the trick,
“What I am going to explain now corresponds to an exam question” boosts
attention during a lecture. Extrinsic motivation is not a bad thing, but it tends
to be ephemeral. Moreover, it may lead learners to find alternative strategies
to reach the target reward with less effort. As some frustrated teachers say,
“They will look for any way of getting the certificate without having learned
anything.” Therefore, it is important to try raising the learner’s intrinsic moti-
vation, that is, his motivation to acquire skills or knowledge because these new

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

52	 ORCHESTRATION GRAPHS

skills or this new knowledge will later on enable him to do something he could
not do before. Intrinsic motivation could simply be the fact that ai presents
examples of how a skill taught in aj will allow students to solve an interesting
or important problem in their future (professional) life. Another intrinsic way
to motivate students is to present a problem in which the skills previously
acquired are not sufficient (Figure 2.1) or produce an incorrect answer (Figure
2.4).

Edge (P) Logistics: This label characterizes an edge eij if ai is required
to set up the environment necessary to be able, practically speaking, to con-
duct aj—to log in to a digital environment, to prepare tools for a lab session,
to download and install the software necessary for an activity, to cut pieces
of paper for a lesson on symmetry, to change the room configuration before
teamwork, and so on. The term “logistics” is not negative, these activities are
important in order to run the scenario. This emphasizes the pragmatic view-
point on education that underlies the concept of orchestration.

Edge (P) Data Collection: This label characterizes an edge eij if ai aims
at collecting data to be used in aj. Many scenarios include data collection activ-
ities, such as field trips in schools, measurements in university labs, and data
mining in online environments. In some cases, these activities are not actually
proper learning activities, but simply provide the data necessary for the next
activities. In this case, the data collection edge can be seen as a subcategory of
the logistics edge. In other cases, the ability to collect data can be a learning
goal; for instance, where to collect it, how to avoid measurement biases, which
frequency, which precision, and how to store data. Chapter 3 presents peda-
gogical tricks regarding this edge; the way data is collected may determine the
cognitive processes when these data are processed. For instance, the diver-
sity of the data collected (e.g., the acidity of the river respectively measured
upstream and downstream of the city) defines the space of comparisons that
can be conducted later on in the scenario.

Class

Team

Individual

Predicted failure

Lecture on new model

Logistics

Summary last course’s model

Intrinsic motivation

Installing software

Figure 2.4  Edge labels for a science MOOC. The teacher reminds students of the model taught
the previous week and asks students to install a new simulation tool (logistics edge). He gives
them a phenomenon for which the previous model produces incorrect results, which will justify a
revision of the previous model.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 53

Point 10  Set edges
This category of edges connects two activities in terms of the relationship that
characterizes the contents addressed in each activity. The contents are knowl-
edge elements—concepts, examples, data, principles, laws, rules, algorithms,
and so on. Are the contents being addressed in aj a subset, a superset, or a
complementary set to those addressed in ai? These edges can connect more
than two activities. The various labels are described as moving upwards (S+),
downwards (S–) or transversally in the hierarchy of subsets and sets; if Ki
and Kj are the sets of objects addressed respectively in ai and aj, the edge eij is
labeled S+ if Ki ⊂ Kj. Conversely, eij is labeled S– if Ki ⊃ Kj. In the other cases,
the label is S=.

Edge (S+) Aggregation: This label characterizes an edge eij if learners
acquire skills in ci that will be aggregated in cj. Let’s consider 3 activities, a1,
a2, and a3, with two edges, e1,2 and e2,3. An example of aggregation would be
if the learner acquires skill c1 in a1, then skill c2 in a2, before doing an activity
a3 in which he has to integrate c1 and c2 into a new skill c3. For instance, if c1
concerns negative exponents (n-a = 1 /na) and c2 concerns rational exponents
(n1/a = a√n), these two skills can then be “chunked” (Laird et al., 1986) into a
new skill that allows, for instance, calculating the value of n-1/a. In an “Eng-
lish for non-native speakers” course (Figure 2.5), c1 could target the ability to
build a question in English, while c2 could be about the construction of nega-
tion, and chunk c3 would be about the construction of negative questions. As
explained earlier in regards to multiple edges, I would then label e2,3 as aggre-
gation and e1,2 as “juxtaposition” (see this label hereafter), but I would not
explicitly represent e1,3 (simply for the sake of keeping the graph easy to read).

Edge (S–) Decomposition: This label characterizes an edge eij if learn-
ers acquire skill c1+c2 in ai, then work only on skill c2 in aj, as explained in
Figure 2.5. This edge is less common than the previous one, since many

Class

Team

Individual

Positive
questions

Aggregation

Introduction

Negative sentences

Negative
questions

Decomposition

Negative
questions

Negative
questions

Figure 2.5  After an introduction, the teacher splits the class into two subclasses, those who have
already studied how to form questions and negative sentences in English, and those who have not.
The novices do individual exercises on each skill (first questions and then negative sentences),
and finally these two skills are aggregated during pair dialogue exercises that include negative
questions. The more experienced subclass starts directly with the pair dialogue exercises, but the
students who encounter difficulties are then redirected towards individual exercises on each skill.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

54	 ORCHESTRATION GRAPHS

pedagogical scenarios follow the basic pedagogical principle of progressivity;
the sequence of activities goes from the simple to the complex, from the easy
to the difficult, from blue ski slopes to black diamond ones. Situations do exist,
however, where inverse progressivity is more relevant. The first situation is
remediation, that is, courses that compensate for the skills that students were
supposed to possess at the beginning of a course, but do actually not. If some
skills are not mastered, the system will focus on the weakest subskill and so on
recursively. Typically, in the exponent example presented for the aggregation
label, one would proceed the other way around, from c3 to c1 or c2. Another
reason for inversing progressivity is motivation; it allows the teacher to start
from a real-world problem that is meaningful and then break it down pro-
gressively into elements that students can learn before reaggregating them.
This inverted progressivity is, for instance, present in problem-based learning
scenarios. It is especially relevant in corporate training, because it allows for
starting from the problems that trainees encounter at their workplace.

Edge (S–) Selection: This label characterizes an edge eij if aj (usually
at the end of the graph) addresses a selection of the key elements that have
been addressed in ai and/or in previous activities. For instance, among all
the dates presented in a history lesson, the final activity will select the most
significant ones; among all the paintings of Picasso, his best known works will
be selected; among the causes of diabetes, the 3 most frequent ones will be
integrated; among the many types of whales, the 3 clearly distinct ones will
be selected. The selection relies on criteria such as “It is worth remembering
this in 10 years” or “This will be tested in the exam.” I differentiate this type
of summary from a real synthesis. A synthesis includes some elaboration on
relationships between content elements, some structuring or abstraction, and
is therefore listed in the G+ category (Point 12). Here, the summary simply
re-represents some selected items among those previously presented. The
summary contents is a subset of what been presented in the scenario, which
is why it is labeled S–.

Edge (S+) Expansion: This label characterizes an edge eij if aj reuses
content that was used in ai but expands on it in terms of number of examples,
quality or quanitity of data, etc. For instance, if students uploaded pictures of
the geological phenomenon under scrutiny, the expansion consists in adding
their geographical location, or links to other pictures of the same location,
or links to the relevant phenomenon, or comments, or feedback. The mate-
rial has been enriched. If students collected pictures of paintings, they would
have to find more information on them (scenario illustrated in Figure 2.6). If
students have to produce sentences in ai, the expansion could be to permute
the words of these sentences, following certain grammatical rules, in order
to expand the set of produced utterances. If during ai, students calculated
some features based on a geometrical figure they constructed on paper, the
next activity might be to automatically repeat the same to 1,000 variations of
the same figure. The rationale of expansion is to have a sufficiently broad or

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 55

sufficiently rich set of data, measures, or examples before conducting induc-
tive or abstraction activities (see G+ edges in Point 12). With the amount of
information available on the web, many ways of expanding material exist:
on-line lexicons, translation tools, conversion tools, encyclopedia, bibliogra-
phies, and so on. The expansion can be done manually by the teacher or by
automated operators, classified in Chapter 3 into the “back-office” category.

Edge (S=) Juxtaposition: This label characterizes an edge eij if the order-
ing of ai and aj is not determined by cognitive prerequisites or by any onto-
logical or epistemological considerations, but simply by the need to address
one item at a time. Let’s consider a MOOC on physiology, with an activity on
the bones in the arm and an activity on the bones in the leg. These activities
are not conditional to each other, but are simply two subsets of the skeleton
that can be taught in any order. Therefore, this label simply means that the
connected activities are independent subsets of a larger goal. It is important
to make explicit that the order is arbitrary, so that it can be modified without
consequences. The weight of an edge with this label will be very low.

Edge (S=) Contrast: This label characterizes an edge eij if Ki and Kj,
respectively addressed in ai and aj, are mutually exclusive subsets of K, the
set of contents addressed in the scenario. These subsets may be used later on
for induction and discrimination (see G+ edges in Point 12). While juxtapo-
sition edges connect content that is more or less independent (except when it
belongs to the same superset), contrast edges connect two contents that are

Class

Team

Individual

Identification

Contrast

Picture collection

Expansion

Periphery

Community

Impressionism Pointillism

Identification

Figure 2.6  Through their social network, MOOC participants collect pictures of well-known
paintings from the 19th or 20th centuries that people have in their home, office, or any local place.
The participants have to explore the web to find out which pictures belong to impressionism
and, if possible, who the painter was, which country he was from, and in which year the picture
was painted. The selected pictures and the additional information are uploaded and aggregated
through an operator (see Point 13) for illustrating a video lecture on impressionism. The learning
environment allows the teacher to sort the paintings by painter, country, and year. Then, the
teacher introduces pointillism. The participants’ weekly assignment is to identify pointillist pic-
tures among those they collected and again to find out who the painter was.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

56	 ORCHESTRATION GRAPHS

opposite to each other: positive versus negative instances, crime rates in coun-
tries with or without the death penalty, medical cases where the patient has
disease X versus cases where he has similar symptoms but another disease,
impressionist painters versus pointillist painters (Figure 2.1), the digital solu-
tion versus analogical ones, and so on.

Edge (S=) Identity: This label characterizes an edge eij if ai and aj are
(almost) identical. Some skills, mostly procedural skills, require intensive
practice before learners become fluent. In this context, aj may be a set of exer-
cises very similar to ai, but it consolidates the skills practiced in ai, often with
a slight variation or slight increase in difficulty. This is central to most “drill
and practice” scenarios, which may sound terribly boring, but are useful for
acquiring certain skills and for being able to operate them with a minimal
cognitive load.

In summary, S labels describe a sequence of activities that evolve along
various subsets of content. If a set and its subsets (and recursively their sub-
sets) are represented by a tree (Figure 2.7), the S edges represent up/down
movements or left/right movements within this tree structure. If, as often
happens, subsets are not mutually exclusive, the tree is then a graph, which
won’t fundamentally change the value of addressing the same content at var-
ious levels of aggregation.

Point 11  Translation edges
The same piece of knowledge can be represented in several forms and for-
mats: as a definition versus as an algorithm, with concrete elements versus
with abstract symbols, as a pie chart versus a histogram, on a linear scale ver-
sus a logarithmic scale, and so on. Translation edges connect activities where
the same contents are being processed under different formats, expressions,
or representations. Education would greatly benefit from having more activi-
ties that imply some representational translation.

Edge (T) Proceduralization: This label characterizes an edge eij if the
aim of aj is for learners to translate the knowledge acquired in a declarative

S-

S+

S= S=

Figure 2.7  Structure of the content sets covered by activities.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 57

format in ai into procedural knowledge. Let’s imagine that learners have to
learn how to calculate the surface of a triangle. A declarative format for this
knowledge is that “the surface of a triangle is half the product of its base by
the height relative to the base.” The procedural version is an algorithm for
calculating this height: (1) select one side, (2) measure it, (3) find the oppo-
site summit, (4) draw a line segment from this summit perpendicular to the
selected side, (5) measure it, (6) multiply both measures, and (7) divide the
sum by 2. This procedural knowledge should be mathematically equivalent to
the declarative knowledge, but, from the cognitive viewpoint, they are two dif-
ferent things. This label is indeed common in instructional design; the learner
has acquired some declarative knowledge in ai that will be applied to specific
objects in order to provide an answer in aj. For instance, he learns the defi-
nition of a concept and then has to identify examples in a set; he learns how
to calculate the Eigen values of a matrix, which he will apply to n matrices.
Proceduralization, as its name indicates, turns declarative knowledge into
procedural knowledge (Figure 2.8). This is often associated with compilation;
the repeated application of a procedure reduces the cognitive load required to
operate this procedure.

Edge (T) Elicitation: This label characterizes an edge eij if the aim of aj
is for learners to translate the knowledge acquired in a procedural format in ai
into declarative knowledge. This edge is the inverse of the previous one, pro-
ceduralization. In activity ai, students have learned an algorithm to calculate a
result or perform a task, and activity aj aims to turn this procedural knowledge
into declarative knowledge. Elicitation can be quite difficult; try to explain in
words how you tie your shoelaces, how you convince your opponents, how
you solve complex problems, or how you manage your team. In many cases,

Class

Team

Individual

Procedure
Elicitation

Intro

Quiz

Proceduralisation

Task

Concepts

Figure 2.8  After an introductory video, the participants in this MOOC, “Introduction to statis-
tics,” are split into 2 subclasses for individual activities. In the first subclass, students acquire pro-
cedural knowledge—how to manually calculate the standard deviation for a set of 20 data points.
In the second subclass, students acquire declarative knowledge—the concepts of dispersion,
heterogeneity and variance, illustrated by graphical representations. Then, each student from a
subclass is paired with a student from the other subclass, and collaboratively they have to do a
quiz that measures declarative knowledge and then a task that requires procedural knowledge.
To be able to collaborate with their peer, those who acquired declarative knowledge individually
have to proceduralize it with the help of their peer, and those who acquired procedural knowledge
individually have to elicit it (next edge label).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

58	 ORCHESTRATION GRAPHS

procedural knowledge is efficient because it is compiled (or automated), and
eliciting this knowledge—turning it into words—is far from simple. There are
cases where it seems, however, better to wait for the practice to be semi-com-
piled before eliciting it. In computer science, defining concepts such as “A
variable is a container that stores values” or “Recursion describes an object
that includes itself” do not make any sense for students. In my experience, it
is more effective to let them use these elements for a while before eliciting this
knowledge through a debriefing lecture or a collaborative task. Forcing peers
to elicit their knowledge in order to convince their teammates is one of the
reasons why collaborative learning is useful.

Edge (T) Alternate: This label characterizes an edge eij if aj addresses the
same contents as ai, but with a different external representation. Research in
instructional psychology has shown that using multiple representations can
have a positive effect on learning outcomes (Ainsworth, 1999); for instance,
mathematical contents that have been presented as a matrix in ai and are then
presented as a transition graph in aj. Such a shift among representations is
essential in early numeracy for children, passing from concrete, to semi-con-
crete, and then to abstract representations of quantity. Shifting representa-
tions has a double role. If the learner understood the concept in ai, the rep-
resentation shift in aj will deepen his understanding by dissociating the con-
cept from one particular mode of representation. If the learner did not under-
stand the concept in a1, the representation shift in a2 constitutes a second
chance to grasp it. Some earth maps display the South Pole at the top and the
North Pole at the bottom; they prove that every representation conveys some
bias and, therefore, that multiple representations allow a broader semantic
coverage of the concepts to be learned. The alternate edge is not only bound
to graphical representations, it also concerns alternative notations, alterna-
tive formats, and overall alternative approaches, methods, algorithms, and
solutions. Time constraints too often prevent teachers from letting students
elaborate multiple solutions to the same problem or from presenting multi-
ple solutions to them, even though this could be fundamental for students to
understand that the same problem can be addressed in different ways.

Edge (T) Reframe: This label characterizes an edge eij if aj addresses the
same contents as ai, but with a different viewpoint, approach, scale, frame,
context, or unit. For instance, ai uses a geometric referential that is absolute,
while in aj, all equations are modified using an object-specific referential. In
ai, a medical case is analyzed from the viewpoint of the patient, while in aj it
is analyzed from the point of view of the medical team. In ai, companies are
compared in terms of stock value, while in aj they are compared in terms of
potential growth. In ai, the transportation costs are described in pounds per
gallon, while in aj they are measured in euros per liter. This edge also applies
when implementing a change of scale, when what has been studied at the
neuronal level is reconsidered at the brain level; from a water molecule to a
cloud, from a village to a country, or from a function to an entire software.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 59

Finally, this edge may connect activities that provide different viewpoints, as
illustrated by Figure 2.9: for instance, an and then

Edge (T) Reverse: This label characterizes an edge eij if aj addresses the
same contents as ai, but in a reverse way—from B to A instead of from A to B.
A typical transition in pedagogical scenarios is to connect two activities that
use the cognitive function ƒ in ai and ƒ-1 in aj. If the student in ai learned the
formula that calculates the surface of a triangle from its base length and its
height, an inversion would be to ask him in aj to calculate, for instance, the
height of a triangle from its surface and base length.

Edge (T) Repair: This label characterizes an edge eij if the function used
in ai to find a solution is applied in aj in order to find an error in a task, or in an
exercise that has been solved. It can be viewed as a subtype of the reverse edge,
but it is worth making it a category, as it is a common educational practice.

Edge (T) Teach: This label characterizes an edge eij if the learner has
acquired some skills in ai that he will teach or transmit to another learner in
aj. If the student simply repeats as teacher what he heard as learner, there
won’t be major learning effects. Learning comes from the processing required
to prepare teaching material. By experience, many teachers know that “you
don’t know a topic before you have taught it.” This is confirmed by empir-
ical evidence regarding the effectiveness of “learning-by-teaching” (Bargh &
Schul, 1980; Chase et al., 2009).

In summary, T labels describe transitions between activities in which the
contents are addressed under different formats, representations, or view-
points. These different forms of what could be seen as the same piece of
knowledge (e.g., as the same entry in an encyclopedia) are not actually the
same piece of knowledge from a cognitive viewpoint. Figure 2.11 shows two
axes of the space created by these edges, concrete versus symbolic and declar-
ative versus procedural. Many other dimensions also exist (represented by
grey arrows) such as cognitive versus kinesthetic, verbal versus spatial, and
so on.

Class

Team

Individual

Reframe

Video1

Role Play Role Play Role Play

Reframe

Video2 Video3 Video4

Figure 2.9  This MOOC concerns conflict negotiation skills for humanitarian workers. In the
first video, the teacher introduces the history of the conflict between X and Y. The second video
is a set of excerpts from television news produced by camp-X and the third video by camp-Y.
After V2 and V3, the students participate in a 60-minute role-playing game where they simulate
negotiation via an online conferencing tool. In the last video, the teacher presents techniques for
conflict negotiation that participants apply in the last role-playing activity.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

60	 ORCHESTRATION GRAPHS

Point 12  Generalization edges

The fourth category of edges describes the relationship between two activities
that differ by the level of generalization of the contents being addressed. G+
edges generalize whatever has been learned in the former activity; for instance,
abstract principles or inducing categories. G– edges describe the relationship
between two activities, such as the second zoom-in on particular cases of the
general elements acquired in the previous activity. While G+ edges imple-
ment inductive learning scenarios, G– edges implement deductive scenarios.
Finally, G= describes the relationship between two activities located at the
same level of generality, such as in analogy.

Edge (G+) Induction: This label characterizes an edge eij if the aim of
aj is for students to elaborate some general knowledge from the set of specific
elements encountered in ai. Typically, a set of examples is processed in ai,
then the concept to which these examples belong to is elaborated in aj. For
instance, in botanic studies, students might examine the properties of tree
leaves in ai before classifying them into various categories during aj. Or, in ai,
students measure the dimensions of various triangles and estimate their sur-
face with paving methods, and then in aj, they elaborate a general formula for

Teach

Learn

Class

Team

Individual

Intro

Teach Test

Concrete

Symbolic

Procedural

Declarative

Figure 2.10  After a general introduction on DNA, the class is split into 3 subclasses. In each
subclass, students learn about different topics individually, namely DNA replication, DNA tran-
scription, and reverse transcription. Then, students form teams of 3 in which each student has to
teach the other two what he learned individually. The scenario ends with a quiz test in the lecture
theatre, using clickers, where each team is scored based on the answers given by the team mem-
bers who have been taught (the teaching peer is not allowed to reply).

Figure 2.11  The multidimensional space of formats.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 61

calculating the surface of a triangle. Induction is the essence of constructivism,
the art by which a teacher may create the “aha!” moment. Our brain is a per-
manent inductive machine; once we know two people from the same country,
we cannot avoid inferring (over-) generalizations. Despite this innate induc-
tion talent, school induction is as difficult as the inductive reasoning involved
in scientific discovery. Since learners are expected to induce knowledge faster
than humanity discovered it, the pedagogical scenario needs to scaffold the
inductive process. This scaffolding will come from advanced organizers (the P
edge), as well as from the careful selection of positive and negative instances.
In particular, teachers can play with so-called “near-miss” examples; these are
negative instances that differ from positive ones by a single feature, such as a
rectangle, which is a square that doesn’t have isometric sides. Induction con-
sists of building a large tree of generalizations, based on the combination of
all possible features, such as when we play MasterMind. Near-miss examples
allow learners to isolate one feature and therefore to prune the generalization
tree. Another form of guidance for induction is the divergence of viewpoints
triggered by social interactions; Schwartz (2005) showed that pairs build
more abstract representations than individuals, since this shared representa-
tion has to bridge the mental images that peers elaborate individually.

Edge (G–) Deduction: This label characterizes an edge eij if the aim of aj
is for students to apply a general rule, definition, or principle to a specific ele-
ment they acquired in ai. This edge is the opposite of induction; it goes from
the general to the particular. It is overrepresented in pedagogical scenarios,
which often start by a set of definitions and then invite learners to apply them
to specific cases.

Edge (G+) Reflection: Experience per se is not knowledge; some peo-
ple may repeat the same mistakes their whole life; reflection is required to

Induction

Collecting
examples

Class

Team

Individual

Intro

Searching
for the rule

Applying
the rule

Building the
definition

Induction
Deduction

Reverse

Figure 2.12  The teacher explains the goal—to find the rule that calculates the number of diag-
onals in a polygon from the number of edges. He assigns a number between 3 and 8 to each
student. Each student draws a polygon with the number of edges assigned to him. Then, students
form teams of 4 made up of students who drew a polygon with a different number of edges. They
try to find the rule. After a while, each team presents its solution(s) to the class. The teacher
compares the invented rules, proposes counter-examples that disprove some proposed rules, and
ends up writing the formal rule. Finally, he asks students to apply the rule (G– Deduction edge
label) in a reverse way (T– Reverse edge label) to calculate the number of edges of a polygon with
35 diagonals.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

62	 ORCHESTRATION GRAPHS

turn experience into knowledge. The label ‘reflection’ characterizes an edge
eij if the aim of aj is for students to elaborate knowledge by reflecting on the
experience they gained in ai. Some scenarios follow an approach à la Dewey
(1938), where students acquire experience in ai from which they are expected
to extract knowledge during aj. Typically in ai, students carry out some exper-
iments, solve a problem, or explore a complex environment, while aj includes
activities such as teacher-led debriefing or reflection activities (comparing,
analyzing, annotating, commenting, etc.). The term ‘reflection’ describes the
activity in aj but, as an edge label, it refers to the pedagogical relationship
between of aj and ai. For dual vocational education, we developed a pedagog-
ical model, the “Erfahrraum” (Dillenbourg & Jermann, 2010), which orches-
trates the reflection process, illustrated in Figure 2.13.

Edge (G=) Analogy: This label characterizes an edge eij if the aim of aj is
for students to solve a problem through analogy with a problem they solved in
ai. Typically, students solve a problem in ai, for instance with the teacher (π3),
and are then asked to solve a similar problem individually (π1) by analogy with
the first problem. Analogy is a powerful, but slippery form of reasoning; situ-
ations may be superficially similar but deeply different. This is especially the
case when analogies are made across different disciplines, such as a waterfall
to explain electricity measures or a musical metaphor, such as orchestration,

Class

Team

Individual

Annotate pictures

Reflection

Take pictures

Periphery

Peer discussion

Debriefing

Reflection

Reflection

Figure 2.13  In a dual educational system, apprentices work 4 days per week in a company (π4)
and attend school one day per week. In an “Erfahrraum” scenario, technologies are used in ai for
capturing experience in a workplace. For instance, in the first activity, future bakers take pictures
of their products, or car mechanics record their own actions with a head-mounted camera. This
captured experience is uploaded to the apprentices’ learning journal. The next activities trigger
several forms of reflection upon the captured experience. In the second activity, they annotate the
objects saved in their own learning journal. In the third activity, they compare their own objects
with the objects captured by their peers; for instance, two breads baked by apprentices, or they
analyze the mistakes they made while changing the battery of a car. In the last activity, the teacher
extracts lessons from this material; for instance, pointing out the most common mistakes or the
differences between companies.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 63

for describing pedagogical scenarios. It is, however, central to several peda-
gogical scenarios, namely case studies, which are very popular in fields such as
management, medical diagnosis, and, of course, law studies. Being an expert
in a field often means having accumulated a large collection of cases, each of
them being representative of a set of similar cases. The expertise lies in the
criteria used for selecting the most relevant previous case for tackling the cur-
rent situation. This expertise is often a highly compiled knowledge and hence
requires elicitation edges (T).

Edge (G=) Transfer: This label characterizes an edge eij if the aim of aj
is for students to apply the skills they acquired in ai to a new context. Transfer
is the Achilles’ heel of formal education; students rarely spontaneously trans-
fer what they learned in a specific situation to a new situation. A pupil who
is able to solve “If 1 bottle of milk costs 5 francs, how many can I buy for
35 francs” will not necessarily be able to solve the problem “If a car travels a
distance of 1 kilometer in 5 minutes, how many kilometers will the car travel
if it continues at the same speed for 35 minutes.” Liters and kilometers or
francs and minutes are not the same entities in the real world. The cognitive
schema acquired in one context does not spontaneously apply to another con-
text. Scholars differentiate near-transfer, where only surface features of the
situation vary, from far-transfer (Perkins & Salomon, 1992), where the deep
structure of the situation has to be adapted. I do not consider near-transfer
as transfer and recommend that pedagogical scenarios strive for far-trans-
fer. This issue is not specific to children. Some of my colleagues complain
that their students (e.g., in a computer vision class) cannot apply algorithms
learned the previous year in a math class. This phenomenon can be explained.
Learners’ cognitive schema are naturally anchored to the learning context,
bound to examples used during lectures or exercises, and these anchors are
not recognized in the new situation. Low transfer is part of human nature, but

Class

Team

Individual

Personal context

Induction

Theory

Comparing contexts Induction Transfer

Contexts 1 to 5 Comparing contexts

Figure 2.14  This corporate training MOOC starts by watching several videos that introduce
management concepts such as corporate silos and developing examples of silos across 5 compa-
nies. Then, trainees are asked to prepare a poster that describes a silo they have identified in their
own branch of the company. They upload their poster. After this online part of the scenario, the
participants go to Zermatt for a residential seminar, where they work in small teams and compare
how silos exist in different contexts. In the last activity, the coach leads a debriefing activity in
which the comparison is extended to all examples uploaded by participants.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

64	 ORCHESTRATION GRAPHS

can be compensated for through well-designed pedagogical scenarios. Experi-
ments show that the probability of being able to transfer increases if the exam-
ples used in activities vary systematically, re-instantiating them in radically
different contexts. This would be the purpose of such an edge.

Edge (G–) Restriction:1 This label characterizes an edge eij if the aim
of aj is for students to reduce the scope of validity of what they learned in
ai. Orchestration graphs need an edge for a common situation in which the
concept, rule, or theory presented in ai actually constitutes a temporary over-
generalization; it is taught as if it is always true, even if it is not the case. This
overgeneralization is the price to pay for simplicity; teaching the rule and its
exceptions at the same time could confuse students. Therefore, in several sce-
narios, an activity first leads students to acquire a general rule, principle, or
algorithm, and then another activity reduces the generality and the scope of
validity of this general knowledge. An activity on the components of demo-
cratic systems would be followed by examples of countries where the pres-
ident is elected with 99% of the votes. A physics law that worked well with
all examples in ai will then be confronted with cases where it does not apply;
for example, extreme temperatures and materials with unique properties.
Restriction consists in pointing out exceptions to a general rule, specifying
limits of validity, conditions of applicability, pointing out “special cases,” and
so on.

Edge (G+) Synthesis: This label characterizes an edge eij if aj provides a
synthesis of what students have learned in ai and in previous learning activ-
ities. The summary edge is placed in the S– category (Point 10) if this sum-
mary is a mere selection of the key elements taught before, that is, a subset.
However, a real synthesis is much more than just a selection. It elaborates
relationships between elements taught distinctively, points out similarities,
false friends, complementarities between methods, the relative strengths of
theories, and so on. It helps learners to build a higher-level vision of what they
learned, which is why I label it as a G+ edge.

In summary, G labels describe the evolution of the graph on the level of
generality, which is represented vertically in Figure 2.15. The space is repre-
sented as a cone because a piece of knowledge at a high abstraction level cov-
ers more contexts (T or S) than a piece of knowledge located at the lower level.

1	 Since I have used an “induction” label, one might expect to find a “discrimination” label;
learners elaborate concepts or rules by induction over positive instance, but also by discri-
minating positive against negative instances. It is, however, reasonably hard to dissociate
induction and discrimination, since asking “How is A similar to B?” is the same question
as asking “How is A different from B?” Discrimination is to induction what half-full is to
half-empty. So, this is why I have left discrimination within induction.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE EDGES LIBRARY	 65

Conclusions
This list of labels is certainly not exhaustive, and the proposed classification
is not perfect. There are some overlaps, but this is not a real issue, since the
goal of such a list is to promote diversity. Instructional designers should use
the table of edges as a kaleidoscope, that is, to look through this lens in order
to diversify the activities. This concern for diversity is not specific to orches-
tration graphs; it is relevant for any instructional design. Nonetheless, I hope
that by making the relationship between activities explicit and by proposing a
broad range of potential relationships, the proposed modeling language will
enrich the diversity of activities that learners will encounter within pedagog-
ical scenarios.

My personal view on education is that diversification is more impor-
tant than adaptation. At the class level, diversification actually embeds
adaptation—the more diverse the learning activities, the higher the probabil-
ity that learners will encounter an activity adapted to their personal needs.
But, the diversification of activities is even more important for an individual
learner, because knowledge is not monolithic. Let’s consider various pieces of
knowledge such the triangle, adverb, passive voice, democracy, surrealism,
standard deviation, Pythagoras, Renaissance, Ohm’s laws, Fourier trans-
forms, or restricted relativity… Each of these elements can be considered as
“a piece of knowledge” and expressed by a definition, a set of principles, or an
algorithm. In their external representation, they can be monolithic, a “thing”
captured by a finite set of symbols. This is the encyclopedic view of knowledge,
a way of storing knowledge in persistent media, the way we often measure it
during exams. But, knowledge is different. It is the capacity to act, to tackle
situations. In this way, the Pythagoras theorem that can be cited during an
exam is not the same piece of knowledge as the one used to calculate the size
of a triangle, nor the one for the height of a pyramid. What I have just called a
“piece of knowledge” is not actually “a piece,” but rather a mesh of knowledge
fragments that have been acquired in various contexts and through various
representations. In the brain, a piece of knowledge does not correspond to a
small, identifiable set of neurons. Any of these concepts can activate very dif-
ferent areas. Knowledge looks more like a tree than like an apple, more like a
cloud than like a stone.

G-

G+

G= G=

Figure 2.15  The space of generalization.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

66	 ORCHESTRATION GRAPHS

The implication of this epistemological stance is that education needs
diversity. It is crucial to address the same elements from a multiplicity of for-
mats, viewpoints, representations, and levels of generalizability. If the graphi-
cal representations used for each set of edges (Figure 2.7, Figure 2.11, and Fig-
ure 2.15) are overlapped, a multidimensional mesh is obtained, as represented
in Figure 2.16 (left). I recommend designing orchestration graphs where the
learner crosses this mesh in multiple ways, as many ways as time permits. You
can’t be said to “know” a forest if you only run on a path that crosses the forest
or goes around the outside of it; you can only “know” a forest once you have
run across it in all possible directions, as well as off the paths.

The reader may wonder why this space and the navigation across multiple
forms of the same knowledge is not integrated in the graphical representation
of orchestration graphs. Orchestration graphs are already represented in a 2D
space and a 3rd dimension will be introduced in Chapter 4: it would make no
sense to try to add the many dimensions to the knowledge mesh. Orchestration
graphs propose a simplified view. In metaphoric terms, the sequence of activi-
ties form a complex manifold trajectory across the knowledge mesh space and
it has to be unwound and placed on the simplified structure of orchestration
graphs, as illustrated by Figure 2.16 (right).

Figure 2.16  Left: The scenario gathers activities that lead learners to cross the mesh in multiple
directions. Right: The path is then unwound on the 2D graph space.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Chapter 3

The Operators Library

Chapter 1 illustrated pedagogical scenarios that correspond to well-known
educational practices, such as problem-based learning, peer instruction, and
adaptive instruction. The library of edges described in the second chapter
opens the door to a much broader variety of pedagogical scenarios. These
scenarios are more sophisticated, but a teacher who navigates easily in the
knowledge space can manage them with 20 or 30 students. The question
addressed in this chapter is how these scenarios can be brought to a scale of
100 or 10,000 students.

Scaling up requires translating some of the orchestrating actions that a
teacher would manually perform with a small class into operators that can be
automatically computed with a large number of participants. I will illustrate
the notion with—please excuse me—one of my own scenarios. ArgueGraph
is a scenario that scaffolds cognitive conflict between peers. It is inspired by
socio-constructivist theories that predict that the interactions necessary to
overcome a cognitive conflict enhance learning (Mugny & Doise, 1978). The
ArgueGraph scenario includes 5 activities.
•	 In a1, each student responds to an online multiple-choice questionnaire.

The questions do not have right or wrong answers, but reflect different
viewpoints. For each answer, the student has to write a few words justify-
ing his choice.

•	 In a2, the system produces a map of opinions, and the designer associates
every answer in a1 with an (x,y) value on the map. The teacher discusses
this map with students, who often comment on their absolute positions
and their position relative to their friends. The system forms pairs of stu-
dents in a way that maximizes their distance on the map, that is, it finds
students whose responses in a1 reveal opposite opinions.

•	 In a3, pairs answer the same online questionnaire as in a1. The environ-
ment provides them with the answers and justifications provided by each
peer in a1. Pairs must select a single answer. They are also asked to justify
their choice by writing a few words in a text box.

•	 In a4, the system aggregates the responses and justifications entered by
individuals in a1 and by pairs in a3. The teacher uses this list to build a
lecture fed with the students’ contributions. During this semi-improvised
lecture, he asks them to provide further clarifications, to rephrase their

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

68	 ORCHESTRATION GRAPHS

justifications, and to compare them. He reformulates the students’ justifi-
cations using the correct terminology and integrates them into a consistent
theoretical framework.

•	 In a5, each student writes a summary of the arguments collected by the sys-
tem in a1 and a3, structured according to the framework presented in a4.

This graph usually spreads across 3 periods of 50 minutes. The learning
analytics we conducted revealed that when students expressed conflicting

a1

a3

a2 a4 Class

Team

Individual a5

Individual
Questionnaire

Opinions map

Write summary

Debriefing
lecture

Argumentation

Questionnaire

Discuss the map

Summary tool

Operator1

Operator2

Operator4

Debriefing tool

Operator3

Operator5

Figure 3.1  ArgueGraph (Jermann & Dillenbourg, 1999). The symbols “Op” refer to dataflow
operators as explained hereafter.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 69

opinions on a1, they produce significantly1 more novel elements and more
elaborated arguments in a3 (Jermann & Dillenbourg, 1999). When I con-
ducted this graph with various classes, I used to break for 15 min between a3
and a4. Almost invariably, students would come back after the break, still very
high in energy, which was reflected by a high participation during a4. They
were eager to defend the position they selected in a3. Once, I had to postpone
a4 by a week, and it failed miserably—all the energy had vanished, students
participated in a4 without the same engagement as usual. This anecdote illus-
trates Point 5—this edge has a limited elasticity; stretching it over time leads
to a loss of effect.

The ArgueGraph scenario illustrates the relevance of data operators in
orchestration graphs. This scenario includes 5 operators, illustrated by red
circles on Figure 3.1.

Operator1: 	 After a1, an operator aggregates student answers in order to compute the
horizontal and vertical position of each learner and produce the opinion
map. This is an example of an aggregation operator (Point 14).

Operator2: 	 Another operator uses the position of each student in order to form pairs of
individuals with conflicting opinions, which is communicated to learners
during a2. This is a social operator (Point 16).

Operator3:	 For a3, an operator aggregates—for each pair formed in a2—the answers
that the two peers gave individually in a1. This is also an aggregation
operator. This operator does indeed combine data produced in a1 and in
a2, except that it is placed on the edge e2,3, given the transitivity of edges
explained in Chapter 1.

Operator4: 	 For a4, an operator counts all the answers and justifications per question,
for each individual and each team. This aggregation operator produces
several pie charts and tables that the teacher can use during the debriefing
lecture.

Operator5: 	 For a5, an operator produces a list of all data collected per question, which
students will use to write their summary.

A graph of data operators constitutes a workflow—in our case, an educa-
tional workflow. A central point of this book is that these operators are not
simple implementation details; they translate a pedagogical idea
(in ArgueGraph, the socio-cognitive conflict) into an operational struc-
ture. They therefore constitute the core element of this chapter. The peer
grading process that is implemented in many MOOCs is another example of
a sequence of operators: the uploaded documents are assigned randomly to
reviewers and distributed, reminders are generated, reviews are collected and
processed to compute the grade, and so on. These operators bring peer grad-
ing to a scale that was not possible before.

1	 Of course, the results provide some evidence that this scenario is effective, but they do not
validate the way I model the scenario.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

70	 ORCHESTRATION GRAPHS

As a corollary to the previous point, an educational workflow enables
heterogeneous activities to be functionally integrated. In the past,
the reification of pedagogical models into incompatible technologies polarized
the educational landscape; for example, the constructivism behind LOGO was
considered incompatible with the behaviorist grounds of drill and practice
software. Technically speaking, they actually were incompatible. Fortunately,
the evolution of software architecture has reduced the technical incompat-
ibility between tools—a microworld can be integrated with a collaboration
tool, or a drill and practice with a project-based tool. Components from alien
environments exchange information; for instance as web services. A physics
MOOC in which a quiz measures students’ misconceptions can export data to
an educational simulation, which will generate experiments that correspond
to the detected misconceptions. Passing data across activities corresponds to
the idea of educational workflow developed in this chapter.

In a MOOC, the workflow conveys digital objects; for example, written
essays, environmental data collected by learners, or the comments associated
with other reports. Actually, workflows also exist in physical classrooms; when a
teacher distributes rock samples to students, collects response sheets from indi-
viduals, or asks peers to exchanges their copies, he operates a workflow in the
same way Jourdain was speaking in prose. Such physical workflows do not scale
up as easily as digital workflows. However, one reason for which paper is still so
ubiquitous in classroom routines is that paper workflows have great advantages
in terms of visibility and flexibility (Dillenbourg et al., 2011), which could inspire
the design of digital workflows. The fact that a teacher can compute these oper-
ators on a daily basis (as long as he does not have too many learners) illustrates
another key point of this book: orchestration graphs are not restricted
to digital education; they also model standard classroom practices.

Point 13  Workflows

Along the graph, some students’ products in ai become the inputs of aj. In
between, they are transformed in various ways. In the ArgueGraph example,
individual answers are transformed into positions on an opinion map, and then
positions are processed to form pairs with conflicting opinions. Interestingly,
the definition of a workflow includes the term orchestration, “an orchestrated
and repeatable pattern of business activity enabled by the systematic organi-
zation of resources into processes that transform materials, provide services,
or process information.”  2 A workflow describes a sequence of operations on
data structures that are performed by humans or by computers. Workflow tech-
nologies were not invented for the field of education, but for business processes.

2	 https://www.ftb.ca.gov/aboutFTB/Projects/ITSP/BPM_Glossary.pdf

https://www.ftb.ca.gov/aboutFTB/Projects/ITSP/BPM_Glossary.pdf

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 71

A classic example of a workflow is the processing of an insurance claim. After
an accident, the customer fills out a form, which then arrives at the insurance
company. First, the company verifies if this customer has a proper insurance
contract. If not, the claim is rejected, if so, they check the nature of the accident.
An accident without personal injury is sent to department “car,” while an acci-
dent with personal injury is sent to the department “persons.” The “car” depart-
ment then has two procedures, one for cars that are still in use and one for those
that have been stored in a garage. I don’t think I need to further develop the
example. The form, as a data structure, circulates from one corporate unit to
another. Its path is decided by the processing of the data it contains. These data
can then be completed with new data; for example, the payment decision. This
processing is performed either by humans and/or by software components that
I call “operators” in this book. The workflow is therefore a sequence of operators
that corresponds to a kind of algorithm, but at the company level; a component
is not necessarily a function, but can be a human activity, or even a full depart-
ment. An orchestration graph is a workflow that does not model a bureaucratic
process as in the insurance claim example, but an educational process.

A workflow is made up of operators that manipulate data structures.
•	 The workflow handles data structures (tables, files, databases) that con-

tain both the data provided to students (the object of activities) and the
data produced by the students (the product of their activities). These data
structures also store the traces left by students while performing activities.
In addition, they can integrate data coming from outside (e.g., indices pro-
duced in real time by the stock exchange).

•	 The operators transform these data structures from one activity into new
structures required to run the next activities. The range of transformation
is almost infinite—anything that can be computed.

In the following points, I propose a library of operators classified into 5
categories.3
•	 Aggregation operators gather data for subsequent activities, generally

located on a higher plane (Point 14).
•	 Distribution operators split data for subsequent activities, generally located

on a lower plane (Point 15).
•	 Social operators modify the social structure of activities (Point 16). They

rely on social distance criteria presented in Point 17.
•	 Back-office operators enrich data with external information, including

information manually provided by human actors (Point 18).

3	 A computational challenge is to express operators in a language that would be independent
of the data structures they manipulate. If they could be implemented with a high level of
abstraction, they would increase the interoperability among online education platforms,
MOOCs, and others.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

72	 ORCHESTRATION GRAPHS

I present 26 operators, but there could be many more—the set of operators
is a fantastic creative space for instructional designers. What follows is similar
to the library of edge labels that I presented in the previous chapter; I don’t
propose it as a fundamental ontology or an exhaustive inventory, it simply
illustrates the variety of operators that can be used and hence the variety of
orchestration graphs that can be designed. Several operators can be associ-
ated with the same edge; the combination of these 26 operators already covers
a broad space of possible data transformations.

Table 3.1  The library of operators for orchestration graphs.

Aggregation Distribution Social BackOffice

(A) Listing (D) Broadcasting (S) Group formation (B) Grading

(A) Classifying (D) User selection (S) Class split (B) Feedback

(A) Sorting (D) Sampling (S) Role assignment (B) Anti-plagiarism

(A) Synthesizing (D) Splitting (S) Role rotation (B) Rendering

(A) Visualizing (D) Conflicting (S) Group rotation (B) Translating

(D) Adapting (S) Dropout management (B) Summarizing

(S) Anonymization (B) Converting

(B) Updating

Teacher activities, such as grading assignments, are represented as oper-
ators and not as activities, since the graph only describes student activities.
Conversely, peer grading is represented as an activity since the students per-
form it.

Even when computed automatically, an operator may take time to per-
form data transformation, which must be taken into account in the design of
the graph. For instance, team formation algorithms may be computationally
expensive. I anticipate that these operators may at some point be operated as
web services by external platforms.

Point 14  Aggregation operators
Aggregation operators collect products and traces from ai and elaborate
objects for aj, often located on a higher plane than ai. Aggregation is a com-
mon way of reusing data produced by students, especially when there are
many of them. Counting the number of students who answered correctly is
the simplest example of aggregation. Aggregation is one key for scaling up. I
describe 5 aggregation operators.

Operator (A) Listing: When associated with the edge eij, this operator
uses the data collected in ai and produces a list for aj. For instance, in Argu-
eGraph, all individual and group opinions are listed in a4 for the debriefing
discussions led by the teacher.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 73

Obviously though, listing all objects does not scale up very well, as a list of
20,000 products would not be very useful for subsequent activities. Aggre-
gation has to be enhanced with data organization, which will determine the
way the data can be exploited in the next activity. Therefore, the following
aggregation operators include a differentiation component, that is, revealing
differences between data or subsets of data.

Operator (A) Classifying: When associated with the edge eij, this oper-
ator uses the data collected in ai and classifies them for aj. This classification
can be done simply or with sophisticated methods.
•	 In some cases, data natively belong to a category, such as the answers to a

quiz or a numerical value between two ranges.
•	 Students can classify their own data when entering them into the plat-

form. For instance, the learner has to specify that his text response is a
“counter-argument” versus a “warrant,” or if the picture of a church that
he uploaded illustrates a “gothic style” or a “roman style.” This classifi-
cation should initially rely on a set of categories, predefined by the graph
designer, but the learners can be allowed to expand this set with their own
categories; for instance through tagging.

Enter pictures

Catch bugs Analyze map

Class

Team

Individual

Periphery

Figure 3.2  For a biology MOOC, 10,000 students have to catch 5 insects around their house
with their family or friends (π4), freeze them, and take two pictures of them—one from above
and one from the side. The students then upload the 10 pictures on the website and specify the
longitude and latitude of their capture location. The system compares the collected pictures with
an existing database of pictures and classifies the 100,000 pictures automatically. It keeps the
top 20% of pictures for which the classifier produced the highest confidence value. The remaining
20,000 pictures are used to produce a geographical map of frequency of bug species per country.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

74	 ORCHESTRATION GRAPHS

•	 Classification can result from machine-learning techniques. For instance,
the teacher manually classifies 100 examples among the 20,000 examples
generated by the learners into 4 categories. Next, an algorithm classifies
the 19,900 remaining examples based on their similarity with those clas-
sified by the teacher, using supervised machined learning methods, as in
Figure 3.2.

•	 Other algorithms, called unsupervised machine learning, compare data
and form clusters of similar data. Some classification algorithms can be
also applied to texts (e.g., using latent semantic analysis), as well as to pic-
tures (based on computer vision techniques).

•	 If only a human eye can perform a meaningful classification—for example,
classifying an insect as being dangerous or not, — crowdsourcing meth-
ods (see distribution operators—Point 15) enable the MOOC designer to
cope with scale: for instance, the algorithm randomly selects 10 pictures
for each of the 5,000 students who have to classify them. Crowdsourcing
methods may produce unreliable results, but several methods exist for cal-
culating the rate of inter-judge agreement, which gives an indication of the
reliability of the results produced.

Operator (A) Sorting: When associated with the edge eij, this operator
uses the data collected in ai and ranks them or sorts them for aj. Data can be
sorted based on one or several criteria; for example, numerical value, alpha-
betical order, number of characters, size of the group, age of the author (if
available), longitude and latitude of the author (IP address), distance from the
correct solution (e.g., measured by Levenshtein), or “edit distance.”4 Again,
if sorting can only done by a human judge, a crowdsourcing algorithm may
randomly select two pictures among 10,000 and ask a learner which one is the
best, repeating this operation ten times per user with thousands of them, and
hence ranking the 10,000 pictures.

Operator (A) Synthesizing: When associated with the edge eij, this
operator uses the data collected in ai and produces a synthesis for aj. A large
set of data, which has perhaps been previously categorized or sorted, can be
replaced by simpler data such as the frequency per category, the mean and
standard deviation, or approximating a cloud of data by a trend curve (Fig-
ure 3.3) that corresponds (or not) to the theoretical model. Most arithme-
tic operators can be used here; namely, any synthetic way of describing data
distribution.

Operator (A) Visualizing: When associated with the edge eij, this
operator uses the data collected in ai and produces a visualization for aj. The
results of previous operators are presented as lists, histograms (e.g., report-

4	 The edit distance is the number of atomic character transformations necessary to transform
one expression into another.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 75

ing answers from clickers), geographical maps (Figure 3.2), graphs (Figure
3.3), or timelines (Figure 3.4). The range of possible visualizations is infinite.
I won’t develop the art of visualization here, as there is abundant literature
about it.

A modeling language is mainly descriptive, but I have nevertheless dared
to produce some design recommendations.
•	 The features of the visualization influence what information

students have to process in the next activity, what they will com-
ment on, discuss, or discover, as well as what the teacher will be able to
point out in a subsequent debriefing lecture. The visualization has to be
designed with this didactic purpose in mind, that is, how to pedagogically
exploit the graphical representation in the next activity, not just for the
sake of producing fancy visualizations.

•	 Students are especially engaged when their own data are visualized.
These can be the products/traces they produced in previous activities:
“my” answers, “my” comments, “my” products, and so on. It would be
politically correct to suggest making data (semi-) anonymous here, but
this would reduce the engagement effect, since engagement is due to the
fact that students see their own name on the data visualization. Several
solutions exist, however; for example, replacing a student’s name with a
pseudo or designing the interface so that the student can see his own name,
but not the name of his peers.

Class

Team

Individual

Do experiment

errors

Va
lid

ity

bo
un

ds

Enter data

Show law

Figure 3.3  In a physics MOOC, students have to take an egg, weight it, and drop it from an
altitude of between 100 and 200 centimeters. When the egg lands, they measure the distance
between the splashes that are the furthest away from each other. Each student enters the values
of the weight, altitude, and distance after impact. The system produces graphs where every exper-
iment appears as a dot. The curve shows the behavior predicted by the theory. The teacher points
out which data are measurement errors (red dots) and those poorly explained by the scientific
model (on the right of the dotted red line).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

76	 ORCHESTRATION GRAPHS

•	 An aggregation operator enables powerful activities when a differentia-
tion operator is used in the previous activity. This design principle will be
developed in Point 19.

Point 15  Distribution operators
Distribution operators distribute data from ai to the participants of aj, which
is generally located at a lower plan. Distribution means either sending data to
students (push mode) or giving students access to these objects (pull mode).
The peer grading solution in MOOCs is a distribution operator (followed by an
aggregation operator applied on collected grades). Several distribution opera-
tors can be combined; I describe 5 of them.

Operator (D) Broadcasting: When associated with the edge eij, this
operator delivers the same data to all learners performing aj. This is the sim-
plest form of distribution.

However, the pedagogical interest emerges when different data are distrib-
uted to different individuals; the differences between the objects distributed
to individuals will influence the interactions that these individuals will have
later on, when working in teams to integrate these data. This pedagogical trick
is implemented by coupling a distribution operator with an aggregation oper-
ator. I refer to this coupling as the distribution-aggregation rebound, a design
pattern further explained in Point 19.

Class

Team

Individual

Read books
Enter data

Distribute
authors Compare styles

Figure 3.4  For a MOOC in literature, each student chooses a novel published between 1930 and
1980 and counts the number of pronouns and verbs per sentence between pages n and n+5, where
n is randomly chosen by an operator. He chooses the author among a list of 10, enters the book,
year, and pronoun and verb frequency. Aggregated data are reused in the next lecture, revealing
how these authors influenced each other’s style.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 77

Operator (D) User Selection: When associated with the edge eij, this
operator lets users choose which subset of data they will be working on in aj.
Each learner or each team selects his/their objects among those proposed by
the system. The selection can be done either freely (if it does not matter that
some subsets are not selected by any learner or if some are selected multiple
times) or among the objects that remain available after the choices made by
the students who decided fastest (i.e., if a subset cannot be selected more than
n times or if all subsets must be selected at least once). The advantage of let-
ting learners select the object of their activity is a potential motivation gain—
they can pick what they like most. This motivation effect is important for long
activities; it won’t impact much on the performance on one exercise, but could
be critical for projects lasting weeks. But are students really able to choose, for
instance, the exercises they need? There is vast literature on this topic, but in a
nutshell, they converge towards the fact that making relevant choices requires
already having some knowledge of the topic.

Operator (D) Sampling: When associated with the edge eij, this oper-
ator assigns a different subset of data to individuals or teams for aj. A subset
of data is assigned randomly or through an algorithm that guarantees that
every subset is assigned the same number of times. One distribution method
is stratified sampling; for instance, if 1,000 students have to analyze one city
in the world, the sampling operator could, for example, distribute cities in
such a way that each continent is represented by a number of cities propor-
tional to its position in economic rankings.

Operator (D) Splitting: When associated with the edge eij, this operator
assigns a different subset of data to each individual within a team for aj. Typ-
ically, 3 individuals in the team receive a subset of the information necessary
to solve the problem they have been assigned to. The way this information
has been split is not random; it has to be designed in such a way that, during
teamwork, each learner can complement the other team members. This is the
famous “Jigsaw” method; since no one is able to solve the problem alone, they
have to interact intensively (Point 18). The subsets received by individuals
may partly overlap—a little bit of redundancy will facilitate teamwork.

Operator (D) Conflicting: When associated with the edge eij, especially
an edge with the contrast label (Point 10), this operator assigns conflicting
subsets of data to individuals within a team for aj. This operator triggers a
key process in collaborative learning—the resolution of cognitive conflict—
where team members receive conflicting pieces of evidence. For instance,
they receive documents that defend opposite viewpoints, data that support or
reject the same hypotheses, or pictures or papers that present contrasting evi-
dence. Learning occurs from the elicitation of knowledge through argumen-
tation, as well as from the de-centration process, that is, the cognitive effort
necessary to adopt the viewpoint defended by one’s peer. A conflict can also
be created between teams; for instance, different teams get opposing sources
of evidence. In fact, my experience is that argumentation tends to be even

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

78	 ORCHESTRATION GRAPHS

stronger in these situations, because inter-team opposition increases intra-
team cohesion; individuals defend their team decision in a stronger way than
they would defend their personal position.

Operator (D) Adapting: When associated with the edge eij, this opera-
tor chooses the most relevant material for an individual or a team in aj. This
is the oldest idea in computer-based learning; the learning material assigned
to a learner is chosen based on his knowledge, skills, motivation, or learning
style. Adaptation mechanisms are developed in Chapter 6. The available activ-
ities are distributed (i.e., assigned to individuals or teams), creating de facto
subclasses. The criteria used to assign activity ai to student sn should come
from empirical findings; namely, the so-called “aptitude-treatment interac-
tions” law which have shown that the effects of a pedagogical intervention
vary according to the individual features of learners. This paradigm led to
sophisticated research in education; specifically, adaptation to student fea-
tures such as “learning styles.” In the field of artificial intelligence, the effort
was to infer individual misunderstandings through student modeling pro-
cesses (Dillenbourg & Self, 1992). In practice however, the most important
feature that requires adaptation is the individual level of prerequisites. This
should be a priority of MOOC developers.

Point 16  Social operators

Social operators produce a social structure as an output. A social structure
maps the elements across social planes: individuals to teams, with or without
roles, individuals to classes, teams to teams, teams to classes, and so on. Social
operators are the key for scaling up collaborative learning methods.

Operator (S) Group formation: When associated with the edge eij, this
operator uses the data collected in ai to select the learners that will consti-
tute teams for aj. The first operator constitutes groups of students for the next
activities. It can also be used to build subclasses. It requires 4 parameters.

FormGroups (S, Group size, Distance criterion, Min/Max)
•	 S is the class of students to be partitioned into groups. Groups do not usu-

ally overlap.
•	 Group size: The second argument is the number of learners per group,

with or without flexibility. Small groups (2 to 4) are recommended for
complex convergent tasks, while larger groups (6 to 10) are better suited
to divergent tasks (brainstorming), or tasks that can be easily divided into
subtasks. Larger groups require more management, which is fine if man-
agement skills belong to the target learning outcomes of the graph, but
biases performance measures otherwise. Very practically, making larger
groups offers the advantage of reducing the number of assignments to

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 79

be graded. The group size can be expressed by two values, the lower and
upper limits: [4 6] means between 4 and 6, [5 5] means only 5. Given the
high dropout rate of MOOCs, I recommend keeping group size as a flexible
variable; this will enable groups to continue their work despite missing
members.

•	 Distance criterion: To determine the homogeneity or heterogeneity of
a group, the operator needs to know the criterion for measuring the dis-
tance between two individuals; this distance will be minimized for forming
homogeneous teams or maximized when forming heterogeneous teams.
The choice of this criterion is a key pedagogical decision—first, the designer
chooses the nature of teamwork activities to be set up, and from that, he
infers the way teams have to be formed; the differences among team mem-
bers of created teams will shape their interactions (Point 19). As the choice
of this criterion is pedagogically very important, I will explore it further in
the next point.

•	 Min/Max: For any distance criterion, this parameter specifies if the dis-
tance has to be minimized, creating homogenous teams, or maximized,
creating heterogeneous teams. This may require a substantial effort to
compute. It is also possible to form groups in which the distance is below/
above a certain threshold, as is the case for the ZPD edge (Point 9); the
learner s1 must be more advanced than learner s2, but nonetheless in the
zone where s2 will be able to perform with the help of s1.

Group formation is sometimes a natural alternative to a distribution oper-
ator; for instance, instead of distributing different pieces of information to
team members (the “splitting” operator), one can create teams with students
with different background information.

Operator (S) Class split: When associated with the edge eij, this oper-
ator uses the data collected in ai to choose the learners that will constitute
subclasses for aj. This is not very different from group formation, except that,
as explained earlier, a subclass is not a team or a set of students who have to
collaborate on a task, but a set of students who do the same activity at the
same time. For instance, half of the class may participate in a debate with the
teacher, while the other half does lab exercises, or half of the class calculates
the regression in R and the other half with SPSS. The parameters of this oper-
ator are the same as the parameters used by group formation operators.

Operator (S) Role assignment: When associated with the edge eij,
this operator assigns roles to individual team members for aj. The pedagog-
ical value of roles during teamwork has been described in Point 8. When a
designer decides to structure teamwork with roles, all teams generally get the
same set of roles, one role being assigned to each team member. This operator
has the capacity to be more sophisticated. What happens if the social operator
has to form teams with 4 roles, but the total number of students in S is not a

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

80	 ORCHESTRATION GRAPHS

multiple of 4? How should the system handle teams of 2 and 5? If there are
more members than roles, a role can be duplicated, that is, anticipated in the
workflow that two members will play the same role in the same team. If there
are fewer members than roles, a “joker” can be allocated to the team (Dillen-
bourg & Hong, 2008); a team whose Role-X member is missing gets access
to the products of students playing Role-X in any other team. This solution
was implemented for the graph ConceptGrid, inside the online environment
ManyScripts (Dillenbourg & Hong, 2008). This web environment includes an
orchestration tool for teachers to follow teamwork and modify group forma-
tion, if necessary. Another graph is based on peer feedback: A writes a text,
B gives feedback to A, then A has to revise and resubmit it. Next, the revised
document is itself reviewed again by B. The distribution on assessments is
automatic, but can be manually modified in case of dropout, by editing the
table presented in Figure 3.5.

Operator (S) Role rotation: When associated with the edge eij, this
operator reassigns roles to team members in aj that were previously assigned
in ai. This operator complements the role assignment operator by redistrib-
uting roles that have previously been distributed; the criticizer becomes the
defender, the group leader becomes the note taker, and so on. Rotation is
more complex if the number of roles is not the same as the group size. The

Figure 3.5  Orchestration tool for the teacher in the environment ManyScripts (Dillenbourg &
Hong, 2008).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 81

timing of rotation can be fixed (e.g., every week), task-based (e.g., every exer-
cise), or criterion-based (e.g., if a role holder fails). Combined with a loop
structure, this operator can implement, for instance, the “reciprocal tutoring”
graph (Figure 3.6); because roles rotate at each iteration, the loop and role
rotation operators have to be combined. The reciprocal teaching graph is well
known because of its empirical effects (Brown & Palincsar, 1987). The loop
operator is combined with a role rotation. Two students who have a deficit
in reading comprehension read a text together. One child reads a paragraph
aloud, then the second child asks him a few questions, such as, “What’s the
main idea of this paragraph?” or “What do you think will come next?” At the
next paragraph, the roles are rotated (round arrow). This script led children
with a reading deficit to reach the average level of their class within a few
weeks.

Operator (S) Group rotation: When associated with the edge eij, this
operator forms teams for aj with students who played the same role in their
respective teams in ai. This operator is the inverse of roles rotation. Roles
remain assigned to the same individuals, but the individuals change group. In
the geology scenario (Point 8), teams of four different experts are sometimes
interrupted. Learners playing the role “Mayor of San Francisco” in their team
constitute a new team with the mayors from every team. For 10 minutes, they
share their strategy or knowledge, that is, how to play the role of a mayor
in their team and how to convince peers, and then return to their original
team. In a MOOC with 10,000 students and teams with 4 roles, these “expert”
groups would have 2,500 members, which would require the operators to split
them into many groups.

Operator (S) Dropout management: When associated with the edge
eij, this operator attempts to recompose teams for aj from which some stu-
dents dropped out in ai. The careful constitution of teams through social oper-
ators can be jeopardized by the high rate of dropout observed in MOOCs. It

Read Ask sk

Figure 3.6  Reciprocal tutoring (Csar & Brown, 1987).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

82	 ORCHESTRATION GRAPHS

may be a good idea to start the team activity on the third week, since the drop-
out rate is already much lower (many students drop out after the first week,
when they realize the online course is too difficult or does not correspond to
their interests). If the team activity is a few hours long, spread over a week, it
can be postulated that most students who start the activity will complete it. If
the activity spreads over several weeks, the probability is high that some team
members will drop out and has to be anticipated in the workflow. If the loss
of a member increases workload for rest of the group (which is unfair; e.g.,
collect 10 instances of X), the workload can be reduced proportionally to the
new group size. If the missing person was holding a necessary piece of infor-
mation, the joker solution can be activated. This operator reaches the limit
of what can be automated; the teachers who manage the MOOC should then
be given access to an interface that complements automatic group formation
with manual adjustments (Figure 3.5).

Operator (S) Anonymization: When associated with the edge eij, this
operator anonymizes a subset of the data collected in ai in order to use them
in aj. As soon as operators handle user data, privacy concerns appear. This
problem also exists in on-campus education (are individual grades publicly
displayed?), but the scale of MOOCs and the new possibilities of monetizing
private data have brought this concern to the public space. One solution is
to completely anonymize data, but this has drawbacks, such as the difficulty
of coaching users individually and the impossibility of delivering certificates
with the student’s name. An alternative is to selectively anonymize the subset
of the data that raises concerns; for instance, the data that will be displayed
by a visualization operator. Such a “selective anonymization” can actually be
difficult. This operator could be classified in the back office category (Point
18), but I put it among the social operators, because it does indeed play a
social role. In many cases, it will be used in conjunction with another opera-
tor; namely, aggregation operators.

Point 17  Social distance criteria

This point is a parenthesis in the review of the library of operators aimed
at further developing the social operators. The social operators select team
members based on the similarities or differences between their members. The
criteria used by these operators for measuring the differences between indi-
viduals will influence the interactions in the formed teams. I call “social dis-
tance” the measure of differences between individuals. Here are some criteria
for measuring social distance.

Social distance criterion—Level: Two widespread practices are to
form groups with students that have the same level of skills knowledge or,
conversely, groups with different levels. The level of skills or knowledge can

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 83

be measured during previous activities, through a pretest (see Point 4), or
collected through a questionnaire (i.e., as a self-estimate). Forming homoge-
neous groups allows adaptive instruction, with high-level teams getting more
difficult tasks. Conversely, heterogeneous teams may result in richer inter-
actions. Some teachers fear that better students would be wasting their time
with weaker ones. However, studies show that by elaborating explanations,
the better student often improves his knowledge (Webb, 1989, 1991). How-
ever, a difference of level among peers that is too large could for instance gen-
erate a ‘free rider’ effect (see Point 21).

Social distance criterion—Knowledge type: The difference between
learners may not be their level of knowledge, but rather the nature of their
knowledge. Hoppe & Ploetzner (1999) designed a creative scenario during
which they identified, through previous activities, students who mostly solve
physics problems in a quantitative way, applying formula, versus those using
more qualitative reasoning. Then, they paired students with different knowl-
edge types and gave them a physics problem that cannot be solved by using
only quantitative or only qualitative knowledge. This constitutes a kind of Jig-
saw scenario, exploiting natural differences among learners instead of gener-
ating artificial differences with a distribution operator.

Social distance criterion—Background: Many classes involve stu-
dents with different backgrounds; for example, chemists and biologists, or
architects and civil engineers, but also men versus women, young versus old,
single child versus child with siblings, and so on. This class heterogeneity is
often described by teachers as being a difficulty or a pitfall, but it can be turned
into an opportunity; for instance, by taking advantage of the multiplicity of
viewpoints and by trying to foster interdisciplinary skills.

Social distance criterion—Opinions: As illustrated by the Argue-
Graph scenario, opinions can be collected online and then used as criterion to
form consensual or conflicting groups.

Social distance criterion—Geography: Teams can be formed based
on the similarity or difference of the locations where students live or where
they come from. Homogeneous teams: If a chemistry activity is about ski wax,
it should be assigned to countries were skiing matters. Heterogeneous teams:
For many societal issues, comparing how problems are handled in Denmark
and Tanzania opens up great learning opportunities.

Social distance criterion—Time zone: If the graph includes synchro-
nous interactions; for example, a chat tool or using a concept map editor,
homogenizing the time zone within teams is practical. Conversely, if a task can
be split into subtasks to be sequentially processed, teams can be formed across
time zones in such a way that there is always someone working on the project.

Social distance criterion—Friendship: If data about friendship is
available; for example, because the MOOC environment includes a social net-
work, this can be taken as an element to minimize or to maximize in team
formation.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

84	 ORCHESTRATION GRAPHS

Let’s conclude with a few words about the pair formation algorithm. We
have seen that in some cases the social distance will be minimized, forming
homogeneous groups, and in other cases, it will be maximized, forming heter-
ogeneous groups. Finding two individuals with the maximal distance is easy.
The difficulty is illustrated in the graph on the left of Figure 3.7: if s1 is associ-
ated with s4, their distance is maximal, but this implies that s2 would then be
associated with s3 despite their low distance. The graph on the right illustrates
the solution for maximizing distance: the operator calculates the partition of
S in teams of n students that maximizes the average distance between team
members. Calculating all possible partitions of S into teams of n students is
computationally expensive when S has 10,000 students.

Point 18  Back-office operators
Various actors can add information to data structures, between two activities.
Feedback is the obvious case. These operators constitute the back office of a
MOOC. Some information cannot be provided by human agents, but by web
services. Here are some examples of these operators.

Operator (B) Grading: When associated with the edge eij, this operator
uses the data collected in ai and produces a grade for aj. This operator com-
pletes a data structure, at any π, with a grade—either a label or a numerical
value. If a teacher does the grading, the operator may be simply a field where
the value can be input, or a table where the teacher enters a value for each cri-
terion specified in the grading rubric. In other cases, the grading is done auto-
matically; this applies not only to quizzes or numerical answers, but also to
programming exercises, graded automatically by a parser, and even for essays.
Automatic essay grading is a very controversial issue, but it can be used in
combination with human grading.

S4

S3

S2

S1

S4

S3

S2

S1

Figure 3.7  Examples of pair formation algorithms.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 85

Operator (B) Feedback: When associated with the edge eij, this opera-
tor completes a data structure, at any π, with feedback or comments. The feed-
back can be piece of text, a numerical value, some picture annotations, or any
elements added to a piece of code. The feedback can be generated manually by
the teacher, which requires a specific interface, or by an automatic grader, as
often used in MOOCs that concern programming languages.

Operator (B) Anti-plagiarism: When associated with the edge eij, this
operator analyzes the data collected in ai in order to measure the probabil-
ity of plagiarism. Plagiarism can be detected between two activities, and the
result can then be processed by edge controls (Point 7).

Operator (B) Translating: When associated with the edge eij, this oper-
ator translates the data collected in ai in one language into another language
for aj. An operator could use an external service for translating the assign-
ments written by students in another language into the main language of a
course.

Operator (B) Updating: When associated with the edge eij, this opera-
tor updates data with external sources between ai and aj; for example, stock
exchange values or weather data. Some documents or assignments may
include variables, with a dynamic link to web sources of information (RSS
Feeds, APIs) in such a way that they are automatically updated.

Operator (B) Converting: When associated with the edge eij, this oper-
ator converts the data collected in ai into equivalent data for aj. Automatic
conversion may be relevant if 500 students upload an architecture project
defined in centimeters and 200 do the same with projects defined in inches; if
some geology students describe an oil reservoir in depth (3,000 meters) while
others use altitude (–3,000 meters); or if students upload business plans
expressed in 56 different currencies.

Operator (B) Summarizing: When associated with the edge eij, this
operator uses the texts collected in ai and produces a summary for aj. As con-
troversial as automatic translation, automatic summary could be used for
enriching an assignment with a summary. Less controversial are statistical
summaries (e.g., the number of words).

Operator (B) Rendering: When associated with the edge eij, this oper-
ator uses the graphic objects collected in ai and renders them as a list in aj,
turning any object defined mathematically into a 3D object, with textures,
shadows, and so on.

These two last examples apply only to some objects (respectively texts and
3D objects), and illustrate the fact that the list of operators could easily be
expanded.

Even if some of these operators are mere technical actions, they can bring
added value to learning activities. Some of them require external tools, either
user interfaces for humans who provide the data (e.g., a feedback tool for the
teacher) or software interfaces for other applications (web services). I expect
to see the development of many services around MOOCs and online education,

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

86	 ORCHESTRATION GRAPHS

that is, companies that do not provide online courses, per se, but various ser-
vices to the companies who provide the courses or to the students who take
them. This is already the case for online proctoring services; some companies
offer services such as verifying the identity of learners when they pass an exam
online and minimizing their cheating opportunities.

Point 19  Patterns of operators

Is an orchestration graph only relevant for the learning objectives for
which it has been designed? Let’s consider ArgueGraph (Figure 3.1). It has
been implemented in an environment that allows a teacher to modify the
questions that students will argue about. However, this does not imply that
any topic can be taught with this graph. It is relevant if the learning goals tar-
get declarative knowledge, but it is not appropriate for procedural knowledge
and problem-solving skills. It is suited for domains where there is no clear
right or wrong response, that is, where pros and cons of different solutions
have to be balanced. This includes many domains, but does not make Argue-
Graph applicable to any domain. In other words, a graph is not applicable to
any content, but some graphs can be reused across several domains, keeping
the global structure while modifying some details. This point addresses the
generalizability of graphs.

Despite the fact that ArgueGraph is not universal, it is based on a ped-
agogical idea about how to trigger cognitive conflicts, which is reusable in
other graphs. For instance, a Simquest5 graph developed by Gijlers and de
Jong (2005) for learning from simulations follows the same idea; students
express hypotheses about the scientific phenomena to be simulated, and
the system forms pairs of students who associated conflicting hypotheses to
the same experiment. In other words SimQuest and ArgueGraph appeared
independently from each other as two instances of a general idea, natural
conflict, based upon already mentioned theories of socio-cognitive conflict
(Mugny & Doise, 1978). This pattern is based on a single operator, team for-
mation; the operator forms pairs of students who naturally bring their con-
flicting hypotheses or opinions to the activity. In a MOOC, the set of students
is naturally rich in divergences, as the students live in different countries, dif-
ferent climates, and in different political and economical systems. When the
natural class diversity is not sufficient, the graph may purposely be increased
to “engineer” the conflict; different data, information, or viewpoints are dis-
tributed to different team members in order to induce the expected conflict.
This pattern, induced conflict, combines two operators, a team formation
operator and a distribution operator.

5	 This is the name of the guided-discovery platform in which the graph runs.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 87

The conflict-raising mechanism illustrates what I refer to as a design pat-
tern: a design pattern is a pedagogical mechanism expressed as an
abstract subgraph. It is a subgraph because it involves one or a few oper-
ators within the graph, not the whole graph. It is abstract when the specific
content elements are extracted away and only the core pedagogical idea is
kept.

Another well-known pattern is the Jigsaw pattern, illustrated by the
geology graph presented in Point 8. The pedagogical idea is to strengthen
interdependencies between team members. The pattern functions by distrib-
uting information to individuals and asking them to integrate their individual
information in order to perform a task that none of them could perform with-
out the information provided by the other teammates. Each team member has
to assimilate his data or information in order to integrate it with contributions
from the rest of the team. This assimilation activity can be an individual activ-
ity, for instance, reading a text (as in ConceptGrid example below) or analyz-
ing the data. Assimilation can also be supported by having expert groups; that
is, activities that bring together students who play the same role across differ-
ent teams (Figure 1.23). The integration activity can also be a problem-solving
task. In conceptual domains, it can be to build a concept map.

In an orchestration graph, these two design patterns, conflict resolution
and Jigsaw, take the form of a distribution-aggregation rebound, illus-
trated in Figure 3.8; it connects 3 activities with a distribution operator fol-
lowed by an aggregation operator. The pedagogical idea behind this rebound
is the following: if a distribution operator is applied between π1 and π2, the
differences between the objects distributed to individuals will influence the
interactions that these individuals have to engage with later on, when working
in teams to integrate the data. I have depicted this rebound with two exam-
ples of graphs. They illustrate the fact that the notion of an operator is not a
technical or operational detail of graphs, but that operators actually translate
pedagogical ideas.

The ConceptGrid graph (Dillenbourg & Hong, 2008) is an instance of Jig-
saw patterns that illustrates the distribution-aggregation idea. Its goals con-
cern declarative knowledge; namely, domains where students have to acquire
a certain number of concepts and relate them to each other. Each team has to
build a concept grid—a sort of concept map. Each team is composed of several
roles (the number of roles can be determined by the teacher) and each role
necessitates reading several papers (the number of papers can be determined
by the teacher) that correspond to the selected role. Typically, a student will
play the role “Piaget” by reading papers from Piaget. Each student selects a
role that has not yet been selected by another team member, and the system
simply distributes readings assigned to each role. Then, when each student
has learned about a subset of concepts, the team has to build a grid in such
a way that students can define (text entry) the relationship between two grid
neighbor concepts. The way in which concepts are distributed among team

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

88	 ORCHESTRATION GRAPHS

members will determine who explains which concepts to whom in the grid
construction activity.

The concept grid illustrates a sequence π2–π1–π2, but the distribution-ag-
gregation rebound can also be applied to π3–π1–π3. Distributing different
objects for an individual activity leads students to elaborate different prod-
ucts. The teacher may then collect and exploit the differences between the
students’ products during a debriefing lecture. The pedagogical idea behind
is that by carefully designing the way data are distributed, the teacher deter-
mines the range of objects he may use in the next activity. This allows, for
instance, for implementing the ‘contrasting cases’method, which is efficient
for guiding the students’ inductive reasoning (Schwartz & Bransford, 1998). I
have illustrated this approach with a fictitious graph for teaching human-com-
puter interaction, inspired by a scenario I implemented on a small scale many
years ago. The teacher proposes 4 versions of a website in which users order
train tickets. Each of the 10,000 students has to order 5 fake tickets with two
of the four versions of the website and then fill in a usability questionnaire.
The system distributes interfaces to students in such a way that (1) all inter-
faces are tested by the same number of students, and (2) 50% of the students
test A before B and 50% the other way around. The aggregation operator pro-
duces a comparison of the task completion time and the number of errors on
each interface. It creates contrasted graphs, such as Figure 3.9, where we can

Class

Team

Selection
Read

Build grid

Aggregation (by teams)

Figure 3.8  Distribution-aggregation rebound π2-π1-π2.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 89

see that interface B generates fewer mistakes at the beginning than A, but that
the error rate decreases faster with A.

The reciprocal tutoring graph presented in Point 16 illustrates the mutual
regulation pattern, which is relevant for problem-solving tasks that require
heuristic knowledge. In this graph, learner s1 reads a paragraph aloud, after
which, learner s2 asks him comprehension questions. These two roles are
switched at each paragraph. The goal is the acquisition of comprehension
monitoring skills. For instance, when solving equations, students combine
procedural knowledge (how to manipulate algebraic expressions) and heu-
ristic knowledge (which operator to apply when). In many problem-solving
tasks, activities may similarly be discriminated against at task level, for basic
manipulations, and for the regulation of task-level activities, called metacog-
nition. The mutual regulation patterns work as follows: for one problem,
the student is asked to regulate (control, monitor) the activities of his peer,
which is easier than to self-regulate, since in self-regulation, the cognitive load
induced by task-level actions and the cognitive load induced by regulation is
cumulated. For the next problem, the operator/regulator roles are switched.

Test

Compare Intro

Distribution

Aggregation

Class

Team

Ind.

Errors Speed

Students A B C D
1 1 1 0 0
2 0 1 1 0
3 0 0 1 1
4 1 0 1 0
5 1 0 0 1
6 0 1 0 1
7 1 1 0 0
8 0 1 1 0
9 0 0 1 1

10 1 0 1 0
11 1 0 0 1
12 0 1 0 1

6 6 6 6

Interface

Figure 3.9  Distribution-aggregation rebound π3-π1-π3.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

90	 ORCHESTRATION GRAPHS

Experiments revealed that if a student regulates his peer, he becomes better
able at self-regulation (Blaye, 1988).

In this mutual regulation pattern, the team activity is split into the task
level and the regulation level in order to make regulation explicit. In the Jig-
saw pattern, the team activity is split into different subsets of concepts in
order to increase the need for mutual explanations. In the conflict resolution
pattern, the team activity is split into opposite viewpoints in order to trigger
the argumentation required to bypass this conflict. Across these three pat-
terns, there is an even deeper idea in common, which I have named SWISH.
This acronym stands for Split Where Interaction Should Happen (Dillenbourg
& Hong, 2008): the differences created among team members deter-
mine how they will interact in a collaborative task in order to reach
a shared solution despite their differences. Let’s consider a course on
economics. Two learners receive data concerning the level of unemployment
and the level of taxes across countries. The first learner gets data from 10 coun-
tries where there is a negative correlation between tax and unemployment.
The second learner gets data from 10 countries where there is no correlation
between these variables. This difference between the data set assigned to each
learner will lead the pair to discuss the liberal hypothesis according to which
taxes reduce employment. The nature of the difference induced by the graph
operator (by the data) determines the nature of interactions among peers.

The idea of increasing divergence among learners may seem contradic-
tory to the fact that collaborative learning is often defined as the process of
constructing and maintaining a shared understanding of the task (Roschelle
& Teasley, 1995). Why then would the task distribution created by SWISH
be a good thing for team learning? Actually, learning does not come from
the fact that students understand each other, but rather from the effort they
employ in order to develop this shared understanding despite their differ-
ences (Schwartz, 1995). Distributing data is the way to “design” these differ-
ences and hence to determine the “effort towards a shared understanding”.
The term “effort” refers to the intensity of interactions, namely explanations,
argumentation, and mutual regulation. For tuning the collaborative effort, a

2
Manipulate Regulate

a1 a2

Solve

2
te

Figure 3.10  Mutual regulation.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 91

graph creates differences (“split”) among the students and, subsequently, the
interactions necessary to maintain collaboration produce the desired learn-
ing outcomes. Increasing collaborative effort may, of course, also damage col-
laboration (Dillenbourg, 2002). As is often the case in educational design, a
trade-off is required; on the one hand, natural conversation tends to minimize
collaborative effort (Clark & Wilkes-Gibbs, 1986), on the other, collaboration
breaks down if understanding one another becomes too painful. Educational
design searches for the sweet spot between easiness and workload, the “opti-
mal collaborative effort” (Dillenbourg & Traum, 2006).

As it is common to several patterns (conflict, Jigsaw, mutual regulation),
SWISH can be described as a more abstract pattern. Let’s imagine that an
operator computes the difference between members of a team. This differ-
ence can be a difference of viewpoint, opinion, knowledge, or based on most
of the criteria used in Point 17 to compute social distance. Let’s call ∆i the dif-
ference among team members at the end of activity ai (Figure 3.11). It could
be a value that ranges between 0, in the implausible case where learners have
perfectly aligned viewpoints, and 1 in the equally implausible case where the
two learners do not have a single point of commonality. SWISH describes
the variations of ∆I; in team activity a1, there is some natural divergence
(∆1) among team members—they rarely have exactly the same knowledge
or the same understanding. An activity a2 is then introduced that purposely
increases the divergence inside teams (∆2); for example, reading papers that
defend conflicting hypotheses. If the next activity a3 requires teams to build
a shared solution (i.e., if ∆3 has to be small), the effort necessary to mini-
mize ∆3 is therefore more substantial than it would have been, if a2 had not
increased their divergence. In other words, the SWISH pattern increases
“the effort towards a shared understanding” (Schwartz, 1995), this increase

D
eg

re
e

of
 d

iv
er

ge
nc

e

∆1

∆2

∆3

a1 a2 a3 a
0

∆3∆

1

Figure 3.11  The SWISH principle, with the degree of divergence in a team shown vertically.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

92	 ORCHESTRATION GRAPHS

being summarized as ∆3–∆2 > ∆3–∆1. The mere fact of increasing ∆2 does not
increase the learning effort, per se, if a3 does not constrain teams members to
build a shared solution, that is, to reduce ∆2 to ∆3. Of course, if ∆2 is too high,
the interactions will simply break down. In Jigsaw graphs, ∆2 is increased by
providing peers with different information. In conflict graphs, ∆2 is boosted
by providing students with conflicting evidence. ArgueGraph forms teams in
order to maximize ∆2.

SWISH is not only about the effort intensity, but also about the nature of
interactions; the difference created in a2 will determine what students have
to argue about in a3, as illustrated below. Figure 3.12 describes another graph
that applies the SWISH principle. Teams of 3 learners conduct experiments
through a simulation distributed over 3 phones. The graph addresses some
pitfalls of enquiry-based learning (de Jong & Van Joolingen, 1998):
•	 Lack of clear hypothesis: individuals have to express hypotheses (a2),

which forms groups with conflicting hypotheses (Gijlers & de Jong, 2005).
•	 Inconsistent experiment design: in a5, each team member sets the param-

eter value on his phone, which forces discussing these values explicitly.

a1

a5

Negotiate parameters Discuss results

Speed-Mass

Intro

Angle Friction

a2

Hypothesis

a3

a4

Make
hypothesis

Table Graph Histogram

a7

Synthesis

a6

Run
Exp.

Figure 3.12  The Wisim Graph. (a1) The teacher conducts an introductory lecture providing
background knowledge on the phenomenon to be simulated. (a2) Each student is invited to
express a hypothesis. (a3) All hypotheses are summarized by the teacher (a4) Students with oppo-
site hypotheses form a team and decide to test a hypothesis . (a5) Team members negotiate the
values of the parameters which are to be entered, each team member entering one parameter
value on his phone (a6) Team members discuss the results, each of them receiving a different
representation of the same simulation results. The group repeats Phases 4 to 6 several times. (a7)
This debriefing session aims to synthesize the results of the simulation, by for instance, compar-
ing all collected values on a graph and integrating them into a theoretical framework.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 THE OPERATORS LIBRARY	 93

•	 Incorrect data interpretation: In a7, each team member gets a different
representation of results, which they have to integrate. Alternatively,
they could get conflicting results, which is often the case in scientific
experiments.

Is a design pattern a learning theory? No, because a learning theory pre-
dicts the learning outcomes and explains the learning process. A design pat-
tern does not make prediction. In architecture, the “upper entrance” is a design
pattern for houses located lower than the road or on steep slopes; it is com-
mon to many architectural designs, but it does not predict the quality of life
of inhabitants. The graph design patterns do not predict learning outcomes,
although they are accompanied with some hypotheses (such as SWISH) of the
mechanisms by which they may trigger rich social interactions.

The patterns of operators I have presented reflect my personal approach
to “scripting” collaborative learning (Dillenbourg & Hong, 2008). Many other
design patterns exist that do not reflect this approach. Several authors have
proposed multistep approaches for inquiry-based learning, that is, learning
from conducting real or simulated experiments/studies. For Mulholland et
al. (2012), the orchestration of inquiry learning is a graph with 8 steps called
respectively, “Find my topic,” “Describe my question or hypothesis,” “Plan
my method,” “Collect my data,” “Analyze my data,” “Decide my conclu-
sions,” “Share my findings,” and “Reflect on my progress.” Muukkonen et al.
(2002) propose different steps: “Creating the context,” “Setting up research
questions,” “Constructing working theories,” “Critical evaluation,” “Search-
ing and deepening knowledge,” “Generating subordinate questions,” and
“Constructing new working theories.” Even if these scenarios have not been
described as patterns of operators, it is relatively easy to perceive the workflow
idea behind these scenarios.

Another multistep scenario is project-based learning, in which the whole
project is often decomposed into phases and milestones. Engeli (2000) devel-
oped a graph entitled “Phase X” with an interesting set of operators (see Fig-
ure 3.13). In educational projects, some teams find a great project that runs

Class

Team

Individual

Intro

Expand

Borrow

Share

Figure 3.13  The Phase X graph can be used in many project-based MOOCs.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

94	 ORCHESTRATION GRAPHS

dynamically from the beginning to the end. Unfortunately, other teams are
less lucky. They start with what sounds like a good idea, but realize only too
late that it was not such a great one. They then have to continue with the
same idea until the end of the project. To avoid this pitfall, the workflow in
PhaseX offers students the possibility of jumping to a more promising project.
Every week, at every stage of the project, teams produce an object, which they
upload on the course website, where all objects appear (aggregation operator).
For the next phase, every team can borrow any object uploaded by any team
at the previous phase and continue to work with it. This creates a class with
a continuous mix of ideas, which one could call plagiarism, but was actually
viewed as an essential skill in the culture of that class—future architects. This
graph may apply to many contents, but only if the objects produced at each
phase can be browsed rapidly and reused easily. I have tried with more com-
plex objects without much success.

Conclusions
At the end of this chapter, orchestration can be described as manipulating
data structures. Each operator implements an orchestration act. The techni-
cal flavor of the term “operator” is probably acceptable when talking about
massive online platforms; scale justifies an automating process. However, I
claimed in the introduction that orchestration graphs also apply to physical
classrooms. Would this reduce a teacher to a database manager? Aren’t his
emotions, enthusiasm, and personality more important than the operators
described so far? Of course they are! My claim is different: the way an elemen-
tary school teacher orchestrates a lesson in a physical classroom can be mod-
eled with graphs and operators. A teacher actually applies the operators many
times during a lesson. He is certainly not aware of it, and should probably not
be aware of it, but his actions can be modeled, that is, externally described,
as a graph of operators—when he forms groups, when he collects completed
sheets, when he distributes different tree leafs to different teams, when he
asks those who have finished exercises to read their book, or when he uses
Valérie’s example a counter-example to the definition proposed by Odile.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Chapter 4

Stochastic processes

A sequence of edges and operators does not automatically make a good les-
son. This chapter addresses the following question: do we expect that by going
through such a set of activities, students will actually learn what they are sup-
posed to learn? This question can be rephrased as: what is the probability that
a graph produces the expected learning outcomes? Since we are not talking
about one activity, but about a sequence of activities, this global probability is
decomposed into a sequence of probabilities concerning the state of the learner
after each activity. The learning path of a learner along the graph is modeled
as a sequence of states that varies from “perfectly fine” to “completely lost,” or
even “drop out.” The evolution of a variable over time has been studied across
many domains: it can be the price of oil, the indices produced by the stock
market, the temperature of the atmosphere, the electricity consumption in a
city, or the frequency of heart beats. In our case, the key monitored variable is
the state of the learner. These elements constitute time series, that is, they are
ordered in time, for each learner. Some time series are deterministic; if you
know the nth value, you can determine the nth+1 value; in mechanics, if you
know the position, speed, direction, and acceleration of a car at time t, you can
determine its position at time t+1. Some time series are non-deterministic;
there is a part of indeterminacy in their evolution, a part of randomness. This
is the case in education; humans are only partly predictable. Such a partly
random process is referred to as a stochastic process, and its modeling relies
on specific probabilistic methods, such as Markov chains.

From this point forward, the educational questions will be expressed in
terms of probabilities, using a few mathematical notations. If you are not
familiar with them, please bear with me; the few formulas that follow aim
to bridge educational questions with computer science methods, which is the
goal of this book.

Point 20  Learner states
The learning process of a student along the scenario is discretized as a
sequence of learner states. Simply stated, the learner’s state is a snapshot of
what he knows, understands, misunderstands, and so on. In learning technol-
ogies, the terms “learner model,” “student model,” or “user model” have been

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

96	 ORCHESTRATION GRAPHS

used to refer to any information that the system or the teacher stores about
the learner;1 for example, how he carried out the previous activities, what he
did not understand, is he motivated or anxious or ready to drop out, does he
better understand graphical or textual representations, or did he post useful
messages in the forum. This definition of the learner model includes two lay-
ers of information.
•	 The first layer contains the traces (Point 4) produced by the learner during

activities, that is, his actual behavior as it has been objectively observed,
such as what he said or where he clicked.

•	 The second layer contains interpretations of these traces in terms of global
states such as “He is facing difficulties” or “He is very motivated.” This
diagnosis is inferred from the traces; it is an interpretation of the learner
behavior, with a certain amount of uncertainty as explained in Point 30.

In other words, a learner model contains information that varies in terms
of depth of interpretation—from straight observations to hypothetical diag-
nosis, and subsequently in terms of degree of uncertainty. I dichotomize this
continuum by referring respectively to these two layers as the learner’s behav-
ior, bi(s), and the learner’s state, xi(s).
•	 Bi(S) is the set of behavioral elements produced by students and recorded

by the system during ai: the products (e.g., uploaded documents, answers
to quizzes, forum postings), as well as the traces (such as navigation clicks,
gaze data).

•	 Xi(S) is often limited to cognitive elements, but there is no reason to exclude
non-cognitive states, such as the emotional state, social relationships, and
so on. In this point, I will only examine the state of an individual learner
(π1), but later on will examine how this applies to π2 and π3.

As uppercase are used for sets, Bi(s) refers to the set of possible behaviors
in ai, that is, the set of possible values for bi(s). Similarly, the set of possi-
ble states for xi(s) is denoted Xi(S). The sets of possible values (i.e., the lan-
guage used for describing behaviors and states) is the same for any learner
in S, hence Bi(s)=Bi(S) and Xi(s)=Xi(S). This set may vary across activities;
for example, the behaviors produced when writing a text are not the same
as when providing feedback on the text produced by a peer: Bi(S)≠Bj(S) and
Xi(S)≠Xj(S). However, stochastic methods are easier to elaborate when the
same set of state values are use for several activities (i.e., when Xi(S)= Xj(S)),
which implies choosing a set of state labels that are activity-independent such
as “successful” or “slow.”

1	 I am not talking here about the model that a learner has about himself or that peers
have about each other, but these would also be interesting points to investigate.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 97

The behavioral trace left by learner s during activity ai is denoted bi(s).

The set of possible behavioral traces left by learner s during activity ai is
denoted Bi(s).

The set of possible behaviors at activity ai is the same for all students
Bi(s)= Bi(S).

The state of learner s at the end of activity ai is denoted xi(s).

The set of possible states at the end of activity ai is denoted Xi(s):
xi(s) ∈ Xi(s).

The set of possible states at end of activity ai is the same for all students
Xi(s)= Xi(S).

The value xi(s) can be numerical, such as the level of understanding (0.34),
or a label selected among a finite set, such as {lost, motivated, fluent}. This
value can be an n-tuple such as “At the end of activity 3, Lena is highly moti-
vated, demonstrated several misunderstandings, but is a leader in forum
discussions.” This can be represented by a sequence of attribute-value pairs
such as:

X3(Lena)= ((motivation high) (understanding low) (forum leader))

The set of possible states is theoretically infinite. Empirical studies show
that the effects of a specific learning activity may depend on many individual
features: motivation, intelligence, prerequisites, cognitive style, and learning
style. As a scientist, it is therefore tempting to elaborate sophisticated learner
models. Instead, I recommend keeping the model simple, and easy to under-
stand and process. To define the appropriate level of model complexity, John
Self (1990) proposed a useful slogan: don’t diagnose what you can’t treat.
For instance, if the next decision to be taken is to choose between two types of
exercises, easy versus difficult ones, the diagnosis only needs to discriminate
between two states, that is, students who need easy exercises and those who
would benefit more from difficult ones. Therefore, in the following examples, I
will often use the simple case where the state is defined by a single value, and
this value belongs to a set of few possible states, such as:

xi (s) ∈ Xi(S)= {fine, active, lost, drop}

State “fine”: the learner is performing well
State “active”: the learner is working, but does not seem to succeed well
State “lost”: the learner does not understand at all or did not complete the
activities
State “drop”: the learned has dropped out (e.g., no log-in since N days)

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

98	 ORCHESTRATION GRAPHS

The initial state of the learner at time zero (i.e., before any activity) is
denoted by x0(s). It contains some general or background information about
the students, that is, information that is not specific to an activity, such as the
learner’s name, gender, previous training, and age. It may also contain the
state of the learner before any activity, at t0, as measured by a pretest or a
prerequisite test (Point 4).

The sequence of learner states articulates orchestration graphs with sto-
chastic models (Figure 4.1). The states are measured at the end of each activ-
ity. Therefore, there is a one-to-one mapping between the graph of activities
and the graph of states; as explained initially, a graph describes the opera-
tional aspects, the sequence of activities with its workflow, and the probabilis-
tic network, modeled as transitions between states.

It could be desirable to model the changes of the states within an activity,
especially if it lasts a certain amount of time. For instance, if the learner is lost
in the middle of a project, it is better to find this out before the end of the pro-
ject. To this end, the activity should be decomposed into subactivities, since
the proposed modeling language considers the activity as its atom. The need
for modeling intermediate states was cited in Point 4 as one reason to decom-
pose an activity into subactivities.

Describing a pedagogical scenario as a stochastic model will enable predic-
tions about the future states of learners. Experienced teachers actually to do
this intuitively: “This will be too difficult for Dan.” Predicting states enables
predictive adaptations; activities can not only be adapted on the basis of the
current state of the learner, but also by predicting his future state (Chapter 6).

Several features of stochastic models have to be taken into consideration.
First, the stochastic models do not only capture the evolution of the state

of one learner, but also the evolution of the state of all learners engaged in the
same graph. This class constitutes a valuable source of information; of course,
all learners are different, but the state of a learner is not completely independ-
ent of the state of another learner. For instance, if an explanation is unclear, it

a1

a2

a3

X0(s) X1(s) X3(s)

X2(s)

X0(s) X1(s) X3(s) X2(s)

Figure 4.1  Two representations of a sequence of states—as an orchestration graph (top) or as a
stochastic model (bottom).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 99

won’t just affect a single learner but probably the majority of them. This will
be developed in Point 32, with the notion of a modeling cube.

Second, some stochastic models rely on the so-called Markov assumption:
that state xi(s) can be predicted by using only the information contained in the
previous state, xi–1(s), independently from any previous state. Of course, this
is not the case in a learning process; the state of a learner is influenced by most
of the activities he did before. Learning is cumulative by nature. For instance,
let’s consider the following case:

	 x1 (Lena) = “lost”	 x1 (Louis) = “fine”

	 x2 (Lena) = “lost”	 x2 (Louis) = “fine”

	 x3 (Lena) = “lost”	 x3 (Louis) = “lost”

Even if Lena and Louis are in the same state at the end of a3, they have a
different history that is worth taking into account. One solution is to waive the
Markov constraint by applying n-order or even variable-order Markov mod-
els, that is, methods that may take into consideration the last N states. The
other solution, chosen here by simplicity, is to respect the Markov property
and consider learner states to be cumulative: Xi(s) contains all information
necessary to predict the next state, that is, any information acquired about the
learner across all previous activities. Therefore, I consider that Xi(s) contains
both the current state and the state history since t0, the beginning of the sce-
nario. The same evolution of Lena and Louis will hence be recorded by adding
the last state to the beginning of the list of states:

	 x1 (Lena) = (lost)	 x1 (Louis) = (fine)

	 x2 (Lena) = (lost, lost)	 x2 (Louis) = (fine, fine)

	 x3 (Lena) = (lost, lost, lost)	 x3 (Louis) = (lost, fine, fine)

Third, if the sequence of Bi(s) constitutes a Markov chain, the sequence of
Xi(s) corresponds to the so-called hidden states in Markov models. The term
“hidden” means that it cannot directly be observed, but only inferred from
student behaviors. This makes the prediction process two-fold. For instance,
there are two reasons for predicting that Lena could be in the “fine” state:
either because she gave the correct answer bi(Lena) or because she was “fine”
in the previous activities xi–1(Lena). The method for combining these two
sources of information is developed in Chapter 5.

Fourth, the stochastic models I will refer to require a discrete time; the
evolution of the learner is modeled as a sequence of states, where events are
ordered and labeled with integers. This is rather artificial since, naturally,
time runs continuously during a pedagogical scenario, not just when we eval-
uate learner states. To translate a continuous time into a discrete sequence
of states, we need to make time discrete (Figure 4.2). This is actually the case
in orchestration graphs, since the activities are indexed sequentially (a1, a2,

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

100	 ORCHESTRATION GRAPHS

a3, …) and the states are labeled accordingly (X1(s), X2(s), …). I could therefore
count any activity as a time unit, but this raises two problems. First, time is a
critical predictor of learning gains; the time spent on a learning task is often
positively correlated with learning outcomes.2 Second, we have seen that the
effect of ai on ai+1 will probably be lower if there is a lag of 10 days, than if there
is a lag of 10 minutes. How do we satisfy both the discretization requirements
of stochastic models and the time sensitivity of human learning? There are
two solutions illustrated in Figure 4.2.
•	 One solution is quantization; for instance, measuring Xt(s) every second,

even if ai lasts for 120 minutes (Figure 4.2, left). This is often the case in
stochastic models; for example, temperature is measured every second,
blood pressure every hour, and sound frequency every millisecond. In
many cases, the period or “the beat” is actually determined by the fre-
quency of sensors that capture the value of the state.

•	 The second solution is to count every activity as a unit (Figure 4.2, right),
that is, to consider each unit as having a duration of 1, but to include time
information as a parameter of this activity. Each activity ai has a duration
di and the edge eij is associated with the lag between activities, denoted by
lij (see Point 1).

Let’s consider the state of the learner while watching MOOC videos, each
video being considered as an activity. In the approach illustrated on the right
side of Figure 4.1, the behavior of the learner will, for instance, includes var-
iables such as the play speed, the number of pauses, and the number of plays
forward. In the approach illustrated on the left side of Figure 4.2, the number
of pauses and other actions will be counted per slice of 5 seconds. The two

2	 Time-on-task often results in an experimental bias; the difference in learning
gains between subjects who used method A versus method B is explained by the
difference of time spent on the two methods instead of by the intrinsic differences
between the cognitive processes triggered by these methods.

a1

a2

a4

a4

a1

a3

a2
a4

Delay Duration

Figure 4.2  Left: Quantizing time. Right: Activity units with time as a parameter.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 101

methods for discretizing time may reveal different phenomena. The choice of
a method depends upon the purpose of analytics—namely, the research ques-
tion. In the remainder of this book, I will follow only one method to avoid
duplicating further developments: the activity is the time unit, 1 activity=1
period whatever the activity duration is, but the activity stores time informa-
tion as a parameter.

Point 21  The states library

The examples of states that I have used so far come from common sense
(“fine,” “lost,” etc.). There is nothing wrong with common sense, which encap-
sulates centuries of teaching experience, and some of the states proposed
hereafter are “common sense” ones. However, this point proposes specific
states inspired by educational research. For instance, “lost” sounds negative,
but educational situations exist where errors3 actually contribute to learning.
The quality of any modeling depends upon the selection of states that are rel-
evant for the ongoing learning process.

I review some states that have a specific educational interest, either because
they create opportunities for learning, or because they reduce the chances for
learning. Let me stress that the designer of a graph may choose whatever state
ontology he considers relevant; this library only illustrates a diversity of states
that other scholars have found relevant.

So far, I only mention individual states (π1). The states at π2 can be modeled
in two ways. First, it is possible to build a model of the team as a whole. For
instance, if a team is made of 3 students sa, sb, and sc, the team model, denoted
Xi (sa,sb,sc), would be “successful” if the results of the teamwork was good, at
a team product. Conversely, it could be interesting to model each individual
state in the team. For instance, the state of the first learner sa, denoted xi (sa),
could be described as being “free rider,” because he did not do a fair share of
the worklook. Therefore, an activity at π2 generates several models, one for
the team as a whole and one for each individual. The same distinction applies
to π3 where it could be interesting to model the state of any individual attend-
ing a lecture or the state of class as a whole. What would class model Xi (S)
be, beyond the average of individual states? An experienced teacher has some
appraisal of the global level of attention, maybe of understanding, of his class.
If he uses a class response system, such as clickers in a classroom or voting
systems in an online course, he may get a more accurate representation of the
class state (e.g., what percentage answered correctly). We have been doing
research in this direction, based on awareness devices (Alavi et al., 2009) and

3	 Different learners, depending on their personality and the context, may feel discouraged or
challenged by different rates of failures.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

102	 ORCHESTRATION GRAPHS

on computer vision analysis of classroom video monitoring (Raca & Dillen-
bourg, 2013). One interesting aspect of MOOCs is that analytics potentially
gives the teacher a more accurate representation of his class than in a stand-
ard lecture theatre.

Therefore, the state library is structured along 2 dimensions. The columns
refer to the plane of the activity, that is, whether ai is located at π1, π2, or π3.
The rows refer to the level of modeling, that is, whether Xi describes an indi-
vidual, a team, or the whole class. In the list of states proposed below, a state
labeled (π2,π3) is located in the column π2 (plane of activity) and in row 3
(plane of modeling). A state can be multidimensional, that is, described by
several of the elements listed in the library.

Table 4.1  The library of states in orchestration graphs.

Plane of Activity
π1 π2 π3

P
la

ne
 o

f M
od

el
in

g In
di

vi
du

al
 M

od
el

(π

1)

Xi (s) Xi (s1) Xi (s1)
Active / Passive Social loafing With me
On leave / Drop /
Latecomer

Free rider / Sucker Central

Disoriented Individualistic Isolated
Linear rigidity Leader Bridge
Impasse On/Off role
Trapped
Over/Under
generalization
Deep/surface
Gaming

G
ro

up
 M

od
el

(π

2)

Xi (s1, s2, s3, …) Xi (s1, s2, s3, …)
Undersized/Oversized Cluster
Cognitive/Emotional
conflict
Misunderstanding
Group think
Distributed

C
la

ss
 M

od
el

(π

3)

Xi (S)
Good/Bad spirit
Slow
Split

As for the two libraries previously presented in this book, edge labels and
edge operators, this library is not presented as an exhaustive list or funda-
mental ontology. It illustrates the diversity of elements to be considered in
stochastic models associated with orchestration graphs. Since these models

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 103

manipulate probabilities in a semanticless process, the meaning of the results
produced by these algorithms depend on the semantics encompassed in the
data provided as input, that is, in the semantics behind the descriptors of the
learner states.

Most of the states below can be treated as continuous variables; a learner
can be more or less disoriented or teams members may have partial misun-
derstandings. I will nonetheless treat them as discrete variables, since this fits
the stochastic models used in this book. It also fits intuitive forms of pedagog-
ical reasoning, where simple labels are easier to manipulate than differential
equations.

The states are described by principles such as “The learner is in Xi(s)=K if
Bi(s) includes these elements.” Actually, these principles should be expressed
in a probabilistic way “If Bi(s) includes these elements, a reasonable hypoth-
esis can be made that Xi(s)=K.” Diagnosis is an inference, where a state is
inferred from the behavior, and any inferences come with a certain amount of
uncertainty (Point 30).

States (π1,π1) Active/Passive: These states can be inferred when bi(s)
indicates different levels of global activity. These states are not inferred from
a specific type of mistake, but from a global amount of activity. Being “active”
sounds closer to bi(s) than to xi(s), but it implies some inference. For instance,
despite many years of teaching, I still make frequent mistakes in detecting
active students. Some of them are very talented in giving the impression of
being active. In a MOOC, a related dilemma has been raised about partici-
pation rates: what is an active MOOC participant? Is a student considered to
be active if he watches some or all videos, if he does some or all quizzes, if he
uploads some or all assignments, or if he reads forums messages or contrib-
utes to the forum? Should all these behavioral indicators be combined? Many
actors in the management of MOOC have invented their own metrics, and it
would good to converge on some standards.

States (π1,π1) On leave/Drop/Latecomer: These states can be inferred
when bi(s) indicates no activity for a certain duration. Like the previous states,
they do not require much inference. The “on leave” state is important from the
orchestration viewpoint; if a learner has not performed any activity for a cer-
tain defined period (e.g., being sick or on leave), the teacher has to anticipate
how this learner will catch up when he comes back. Similarly, a MOOC may
include some flexibility in the assignment deadlines in order to allow partici-
pants to catch up. In fact, completely rigid or completely open systems are eas-
ier to implement than semi-rigid ones. Managing missing students is a com-
mon event in school life that may sound trivial, but which actually requires
orchestration operators, as illustrated in Chapter 6. The state “drop” also
sounds trivial, but, since MOOCs do not include an “I drop out” button, the
issue is predicting if, for instance, a MOOC participant is just a bit late or on
the verge of dropping out. Finally, the state “latecomer” is also easy to infer,
but hard to handle: how does the teacher orchestrate a scenario that lasts for

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

104	 ORCHESTRATION GRAPHS

14 weeks, if, for instance, some students start the class two weeks after the
main cohort? This occurs so often with MOOC participants, that MOOC plat-
forms are evolving towards more flexibility.

State (π1,π1) Disoriented: This state can be inferred if bi(s) reveals nav-
igation difficulties, for instance if bi(s) includes many selections of the “back”
button in the navigation bar or the “cancel” option in a sequence of pop-up
menus. These difficulties occur when learning activities rely on environments
that require navigation in a multidimensional space, such as Wikipedia or a
rich database. In the 1980s, when hypertexts entered education, empirical
studies showed that such a nonlinear structure generated navigation difficul-
ties (Rouet, 1992). Many students get “lost in hyperspace.” Those who nav-
igated efficiently were the students who previously had quite a good mental
map of the contents—a global representation of the field to be explored. The
subsequent design recommendation is to provide novices with such a map,
displayed on the screen, to be used as a compass for navigation. This state is
not specific to texts, as it may also occur in any multidimensional space, such
as using a simulation environment with many parameters or a complex data
repository. Actually, even in 3D learning environments, there is a risk that stu-
dents waste a significant part of their time or energy in navigating rather than
in learning. This explains why I am not convinced that embedding learning
activities in something like Second Life or MineCraft brings anything to the
learner other than the extraneous cognitive load, that is, a cognitive load that
does not contribute to learning (Pass et al., 2003).

State (π1,π1) Linear rigidity: This state can be inferred if the sequence
of problem-solving steps in bi(s) is significantly more linear than the expected
heuristic process. Linear rigidity could, for instance, be detected by the
absence of “undo” or “edit” actions in bi(s). This state is important when teach-
ing problem-solving skills. In a seminal paper, Schoenfeld (1988) showed that
university students who encounter difficulties in mathematical problem solv-
ing do actually follow a linear model of problem solving; starting from the
initial state, they apply one operator, then another, up to the moment where
they get stuck, that is, when no other step seems applicable. Conversely, good
problem solvers follow a heuristic path; they try some operators, backtrack
when there is a deadlock, and try another one. Schoenfeld noticed that this
inefficient model of problem solving as a linear process is indeed reinforced
by the behavior of those teachers who are usually considered “good teachers”;
they smoothly present a proof or a demonstration in a linear fashion, which
they know by heart, writing one line below another on a clean blackboard,
without any errors. This state is more or less the opposite of the previous state
“disoriented” but applies to a different type of activity, problem solving in this
case and information search in the previous state.

State (π1,π1) Impasse: This state can be inferred if bi(s) includes an
error to which the learner has been deliberately guided by the teacher or
the designer. For instance, the graph illustrated in Figure 4.3 includes two

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 105

impasses. In a1, students learn the laws for predicting the distance of a ballis-
tic shot, based only on gravity. In a2, they have to predict the shoot distance
with an accuracy of x meters on a distance of 30 meters, which they manage to
do with the basic equation. In a3, the shooting distance is set to 30 kilometers.
The students will fail this activity because they need more parameters: x3(s)
= “impasse.” This designed deadlock, called “impasse” by some colleagues
(Van Lehn, 1988) prepares the students for the next lecture (a4) about friction
forces. The same operation is then repeated with a second impasse in X3(s)
in order to introduce the Coriolis force in a7. This graph illustrates a design
pattern as old as education itself, “learning from mistakes.” Students do learn
from some of their mistakes, but only in the right conditions; namely, if they
are aware of the mistake they have made, and if they find the resources that
will allow them to repair their misunderstanding in their environment. It is,
for instance, important to keep the activity that leads to an impasse very short,
otherwise the resulting state could be negative: x3(s) = “unmotivated.”

State (π1,π1) Trapped: This state can be inferred if bi(s) reveals a mis-
conception to which the learner has been deliberately guided by the teacher or
the designer. It is a specific case of the previously described state, “impasse,”
in which the error comes from a so-called “misconception.” A misconception
is a belief that learners acquire from their daily life, which is consistent with
their personal experience, but still scientifically incorrect. “The sun rotates
around my planet” is a good example of a misconception. Another example is
the belief that “wool is warm,” which matches many years of sensory experi-
ence, while “wool insulates body heat from the air” is the scientific concept.
Educational research has shown (Vosniadou, 1994) that teaching a correct
concept is not enough to eliminate the student’s misconceptions. Misconcep-
tions survive in parallel to the correct academic knowledge; they continue to
be used in everyday life context, while the school-taught conception is used

a1

a2

“impasse”

a3

a4

a5 a6

a7

a8

a1

Gravity Friction Coriolis Synthesis

X3(s) X6(s)

Class

Team

Individual

Figure 4.3  This orchestration graph uses the “impasse” state to motivate the introduction of
new parameters in the ballistic equations.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

106	 ORCHESTRATION GRAPHS

in the school context. To dismantle a misconception, it is necessary to “trap
it,” that is, to bring the learner to use it in a situation where it will produce an
incorrect prediction. For instance, the teacher places two ice cubes on a table,
one covered by a woolen blanket and one without anything on it. Then, he asks
students “Which cube will melt faster?” The students who answer, “The cube
with a blanket” are “trapped,” which is good for learning, because it will allow
the teacher to introduce the correct concept. In other words, being “trapped,”
despite its negative connotation, is actually a positive state. This illustrates
another simple design pattern or orchestration graphs: (1) trap the miscon-
ception of the learner and (2) introduce the scientific concept.

States (π1,π1) Overgeneralization/Undergeneralization: These
states can be inferred when Bi(s) reveals that while learning a concept, the
learner classifies as positive some instances that are negative—overgeneraliza-
tion—or conversely, if the learner classifies as negative some instances that are
positive—undergeneralization. As an example of undergeneralization, pupils
tend to be confronted with rhombuses presented in their canonical forms
(the longer diagonal being vertical) and do not recognize those presented,
for instance, as a parallelogram (2 sides being horizontal). As an example of
overgeneralization, a learner may believe that all French words that end with
“-ment” (“longuement,” “patiemment,” “fréquemment,”) are adverbs. These
states are not negative, per se. If the teacher or the system detects them, he or
it will be able to select the next positive or negative example to be presented,
respectively for under- versus overgeneralization, as illustrated by Figure 4.4.

State (π1,π1) Deep/Surface: This state can be inferred if bi(s) reveals that
learners who appear to be carrying out the activity correctly, actually achieve
it without truly engaging with the material, or without trying to give meaning
to it. The difference between these two states is often subtle. An experienced
teacher may detect it, but it is more difficult for an algorithm. For instance,
if the learner has to discover a scientific law with a scientific simulation, a
learner in the “surface” state tries to succeed by successive approximations or

a2

Class

Team

Individual

Negative Instances Classify
examples

a1

Present
examples

a3a

a3b

Over-Generalization

Positive Instances

Under-Generalization

X2(s)

Figure 4.4  Teaching a concept by induction/discrimination.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 107

uses random guesses. Instead, a deep learner will formulate hypotheses, test
them, and refine them progressively. If a surface learner has to generate sen-
tences in a grammatical exercise, he may reuse sentences he knows by heart,
rather than constructing sentences based on the grammatical structures he
is supposed to learn. In a mathematical activity, if a learner who produced
the right answer receives feedback that explains why his answer is correct,
the learner who spends time carefully reading the feedback is probably in the
“deep” state. There is rich literature on the difference between learning styles,
and “deep versus surface” is one of them (Beattie et al., 1997). A “learning
style” is usually defined as a trait, that is, a stable feature of the learner, rather
than a time-bound state. By using this as a state, I express the opposite; the
same learner may behave in a surface or deep way within different contents,
different contexts, or different phases of learning. The notion of deep/sur-
face is still a controversial issue at the theoretical level, but, for some learning
environments, it may be useful to identify surface approaches and send them
specific feedback or modify the activity.

State (π1,π1) Gaming: This state can be inferred if bi(s) indicates that
learners attempt to use the rules of the system in order to manipulate the
system. All students have to manage time constraints in order to get the best
score from a reasonable time investment, but gaming is one step further; it is
about fulfilling the task without learning. Gaming is an extreme case of surface
learning. For instance, if participation is counted as the number of postings in
the forum, “gaming” characterizes the state of a student who posts meaning-
less messages to match the criterion “number of postings.” If the system uses
transactivity (Suthers et al., 2010) as criterion, that is, the extent to which a
learner’s reasoning and verbal interactions build upon the reasoning and ver-
bal interactions made by other learners, a learner in the “gaming” state will
often cut and paste from previous postings in order to fool the system. Detect-
ing gaming is as difficult as detecting plagiarism, but sophisticated methods
exist, and better ones are being developed. Whatever rules are integrated in
a learning environment, humans are wonderfully talented in gaming the sys-
tem. Conversely, creative designers may anticipate this and build activities so
that gaming the system would nonetheless trigger rich cognitive processes.

State (π1,π2) Free rider: These states can be inferred if there is a dise-
quilibrium in the distribution of actions among bi(s1), bi(s2), …, bi(sn), n being
the size of teams at π2. As teachers know, one team member often does not
participate or contribute fairly to the team workload, letting the other team
members do most of the work. A free rider is a team member who reduces his
participation, assuming that the task will be mostly done by the others (Salo-
mon and Gloverson, 1995). Conversely, the sucker effect occurs when a highly
engaged team worker reduces his engagement in order to avoid doing most of
the work himself. A simple way to detect them is to calculate the balance of
participation within the team. This balance can for instance be the percentage
of task actions performed by each individual inside a simulation environment

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

108	 ORCHESTRATION GRAPHS

or a concept map tool. It is also possible to count the percentage of utterances
produced by each team member in a chat. These measures are simplistic and
easy to game (previous state) by producing actions or utterances that do not
contribute to the task or discussion. We nonetheless found that providing
learners with feedback on their degree of participation helped the group to
self-regulate (Jermann & Dillenbourg, 2008; Bachour et al., 2010).

State (π1,π2) Individualistic: Compared to the previous state, the oppo-
site problem is when one student no longer cares about involving his peers, as
he finds it more effective to do everything alone.

State (π1,π2) Leader: This state can be inferred if the actions in bi(s1)
influence more of the actions in bi(s2), …, bi(sn) than vice-versa, n being the
size of teams at π2. The “leader” state is quite easy to detect by observing a
team working around a table for a while, but it is rather difficult to detect in
online interactions. A leader may produce few utterances, but these few utter-
ances significantly influence the behavior of the rest of the team. This influ-
ence can be estimated in forums by the depth of the conversational threads.
It is important to remember that diagnosis is a probabilistic reasoning (Point
30); the “leader” state can be detected as a hypothesis, that is, with a proba-
bility factor. The probability will be higher if the interface used for the activ-
ity ai, that is, the tool that will record bi(s1), has been designed purposely for
measuring influence. Let us consider, for instance, an activity in which team
members make propositions that have to be approved by the rest of the team,
by clicking on a validate button. In this activity, xi(s1)=“leader” if the proposi-
tions made by s1 and stored in bi(s1) are more often adopted by the team than
the propositions by bi(s2), …, bi(sn).

State (π1,π2) On role/Off role: These states can be inferred if bi(s)
includes actions that do or do not correspond to the role assigned to s by the
social operator and/or does not include the actions that correspond to this
role. As explained in Point 8 and Point 16, some scenarios structure teamwork
by defining roles that individuals have to play in their team. This applies to
role-play activities (e.g., s1 pretends to be an unhappy customer, while s2 pre-
tends to be the help desk person) as well as to collaboration scripts such as
Jigsaws. If the learner is “off role,” the scripted activity is not working prop-
erly, and hence the activity has to be adapted (see Chapter 6). Some graphs
include a short activity for training learners to play their role before the main
activity where they have to play it.

State (π3,π3) With me: This state can be inferred if bi(s) includes behav-
ior that indicates a high level of attention to the class activity, in particular to
the teacher who is lecturing. A teacher acquires a sense—far from perfect—
of who is following him. This estimation is inferred from the learners’ body
language: who follows him visually, who establishes eye contact, who nods,
who write notes, how timely they smile after a joke, and so on. When students
watch video lectures, we can measure with eye trackers how closely their gaze
follows the teacher’s voice (if the teacher refers to X, does the student look at

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 109

X) and the teacher’s deictic gestures on the slides. Even if the learner’s atten-
tion is only a shallow indicator of learning, we actually found that “with-me-
ness” was correlated to learning outcomes (Sharma et al., 2014).

States (π1,π3) Central/Isolated/Bridge and (π1,π3) Cluster: These
states can be inferred by applying social network analysis to the traces bi(s1),
bi(s2), …, bi(sn), n being the size of the class S. Social network analysis (SNA)
methods detect the social structure of a set of people in interactions (Borgatti
et al., 2005). In a MOOC, it could be interesting to analyze who answers to
whom in the forum, who annotates pictures posted by whom, and so forth. A
learner is central if many links are directed to him (again, centrality is a con-
tinuous variable that is expressed here as discrete). He is “isolated” if he has
no or very few links. SNA reverses the social operators described in Chapter
3; the latter attempts to engineer social structures that the former measures.
These methods are not restricted to online education; when I was an elemen-
tary school teacher, I applied social network analysis to my class of 31 pupils
by asking questions such as “Who would you like to sit beside next week?”
This analysis revealed the existence of unconnected subgroups, called social
circles or clusters (in the π2 × π3 cell of the state library). Some of these clus-
ters are called “cliques” if they are extremely tight, that is, if there is a link
from each individual to each other member of the cluster. A learner is in the
“bridge” state (in the π1 × π3 cell of the state library) when he is the single link
or one of a few links between two clusters.

The following states do not describe the individuals within a team, but the
team as a unit.

State (π2,π2) Oversized/Undersized: These states can be inferred
when bi (s1, s2, s3, …) reveals that the size of the team (s1, s2, s3, …) is lower or
higher than the size determined by the group formation operator (Point 16).
Like the “drop” state, this state is easy to detect, but important for orchestra-
tion; the size of the class may not be a multiple of the target group size—some
teams members may leave the class, others may join late. For some group
activities, there is no problem if a member is missing or if there is an extrane-
ous member; if ai is a brainstorming task, for instance, and the social operator
created teams of 8, ai will still work with 6 or 9 students. In smaller groups
though, a missing member may increase the workload for the other members.
When the teamwork is scripted, for instance, with specific roles, the scenario
may simply not work anymore. Point 16 presented an operator to cope with
this issue. It is therefore important to detect this state in order to trigger this
operator.

State (π2,π2) Cognitive conflict/Emotional conflict: These states
can be inferred when bi (s1, s2, s3, …) reveals that there are clear divergences
between the team members—whether these divergences concern cognitive/
epistemic elements (difference of ideas, viewpoints, theories, …) or concern
interpersonal items and become emotional. As explained in Chapter 2, the
emergence of cognitive conflict among team members may be a state desired

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

110	 ORCHESTRATION GRAPHS

by the designer, since it often leads to verbalization of tacit knowledge and pos-
sibly de-centration of individual viewpoints. Detecting this state is therefore
important for applying the SWISH pattern presented in Point 19. However,
the conflict only contributes to learning gains if it remains at the cognitive
level, but is not a personal conflict. A cognitive conflict is easier to infer if the
interface has been purposely designed to support this inference: for instance,
if s1 votes for a solution and s2 votes for the opposite one, if s1 changes the
value of the simulation parameters set by s2, if s1 deletes an object created by
s2, and so on. The emotional conflict can be inferred from the use of emoti-
cons, or when dialogue utterances include references to a peer’s personal
characteristics (skills, intelligence, age, race, or gender), including insults, or
when the same message is posted 20 times in a chat.

State (π2,π2) Misunderstanding: This state can be inferred when bi
(s1, s2, s3, …) reveals misunderstandings between team members. This is a
softer case of conflict; peers may not have clearly opposite opinions, but none-
theless misunderstand each other. For instance, many people agree with the
statement: “The rich should pay more taxes than the poor,” as long as there
is some ambiguity around what is meant by “rich.” In the previous chapter,
I stressed that—up to a certain threshold— misunderstanding is important
for collaborative learning, as it requires verbal elaboration. A graph designer
may induce misunderstanding; for instance, by providing peers with ambigu-
ous data or, in a 3D environment, with different viewpoints. Misunderstand-
ing can be inferred from dialogue among peers by the frequency of so-called
“repairs,” that is, utterances by which peers try to re-establish broken com-
mon grounds (Clark, 1996). Repairs include rephrasing (e.g., “What I meant
is ‘richer than me’”), requests for clarification (e.g., “What do you mean by
rich?”), with or without deictic gestures (e.g., “This one?”). In face-to-face sit-
uations, misunderstanding can be emphasized by facial expressions such as
eye frowns, while in online chats they often lead to messages such as “?????”.
However, misunderstandings are only useful if peers become aware of their
misunderstandings. When collaborating online, one property of the interface
is to allow participants to see what the other does. In a simulation, for instance,
if Dinesh says “Increase it,” while referring to the temperature parameter, and
Sara answers “OK,” but increases the pressure, Dinesh will detect the misun-
derstanding, if he sees Sara’s action on the shared simulation interface.

State (π2,π2) Group think: This state can be inferred when bi (s1, s2,
s3, …) reveals that team members agree upon a solution without having suffi-
ciently considered the other solutions. This state is the opposite of conflict; it
corresponds to a special case of surface learning at π2—sometimes the social
pressure to reach consensus (Whyte, 1952) or the teacher’s pressure, leads
the team to select the first solution that results in a consensus (even if it is not
the optimal solution), without exploring alternatives. This state is negative,
because the team neglects solutions that could have been better. When this
state is detected, it should trigger specific reactions from the teacher or the

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 111

system, such as pointing out ideas that have been mentioned by some mem-
bers, but that the team neglected in order to reach faster consensus. This state
can be inferred if the activity interfaces keep traces of all the solutions that
have been explored by the team.

State (π2,π2) Distributed: This state can be inferred when bi (s1, s2,
s3, …) reveals a clear division of labor among team members. Even when there
is no predefined role for an activity, roles often spontaneously appears during
teamwork. Some emergent division of labor is frequently observed (Miyake,
1986); for instance, some peers tend to focus on low-level aspects. When two
learners use the same computer, this is often the learner who has his hands
on the keyboard and mouse. Naturally, the second learner focuses more on
regulation aspects, such as the strategy in problem solving or the text struc-
ture in collaborative writing. Blaye (1988) showed that this mutual regulation
alternates with time (A regulates B then B regulates A) and is progressively
internalized as a self-regulation skill. In larger teams, various task distribu-
tions may emerge, depending on the nature of the task and on the interface.
The way functions are displayed on the screen may, for instance, induce a task
distribution. This state can be inferred by building a matrix storing how many
times each team member (row) performs each action/subtask (column). The
matrix of a distributed team will have one or a few dominant values per row,
as on the left side of Figure 4.14. As for many states, this could be a continuous
variable; the degree of distribution varies from none to total (i.e., no overlap
between the tasks performed by A and those performed by B), which is some-
thing that could be measured by the method used for computing the entropy
of a transition matrix (Point 23).

Te
m

pe
ra

tu
re

Pr
es

su
re

Vo
lu

m
e

Te
m

pe
ra

tu
re

Pr
es

su
re

Vo
lu

m
e

Lena 3 14 2 Lena 7 6 6

Louis 13 2 4 Louis 6 8 4

Manu 3 1 12 Manu 4 4 8

Olga 9 1 3 Olga 5 4 4

Figure 4.14  The matrix indicates who does what in the simulation; the team on the left is in the
state “distributed,” i.e., with a clear division of labor.

Finally, the state can describe the class S, as a whole, that is, at π3. This
global state can be an average or an aggregation of individual states. The state

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

112	 ORCHESTRATION GRAPHS

“with me” that has been described for an individual-in-a-class (cell π1,π3 of the
state library) is also relevant for the class—a teacher would feel that the class
is “with me” if most of the students in that class are “with me.” The exact ratio
that corresponds to “most of the students” is unknown; it probably varies with
teachers. This “average state” can be extended to other individual states such
as “active” versus “passive,” as well as “deep” versus “surface.”

State (π3,π3) Split/Homogeneous: A “split” state can be inferred when
bi (S) reveals a bimodal distribution; a “homogenous” state is the opposite
one. Some teachers perceive a dichotomy among their students: “Those who
get it and those who don’t.” In an introductory programming class, the notion
of a variable often introduces a “split” in the audience. In addition to intuition,
the teacher who runs the graph in Figure 4.5 can use clickers to capture the
state of this class. If the state is “split,” he will stop the lecture and propose
exercises; otherwise, he’ll continue the lecture. This state requires specific
forms of adaptation as described in Point 37.

Point 22  States transitions

Orchestration graphs are deterministic; unless there is an accident, activity a2
will follow4 a1 with a probability of 1. The probabilistic nature of the graphs
concerns the state of the learners, xi(s). An activity is expected to bring the
learner from one state to another; a learning activity changes the state of
knowledge, a motivation activity is expected to increase the state of motiva-
tion, a prerequisite activity modifies the state of knowledge, and so on. The
term “expected to” means there is some probability that this will occur, but no
certainty. The transition from a state Xi(s) to the next state Xi+1(s) is what I
model by a stochastic model.

4	 If the graph includes branching operators, choosing between a2 and a3 is algorith-
mic; it is not random.

a2

Class

Team

Individual

Theory

Clickers

a1

Theory

a4a

X2(S)

a4b

a3

Exercises

Theory

Figure 4.5  Teacher’s decision if the class state is “split.”

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 113

Let’s consider that 100 students are in a “lost” state at the end of ai
(xi(s)=”lost”). Among them, 39 remain in the same state after aj, 24 switch to
“active,” 10 to “fine,” and 27 to “drop.” Let’s also consider that these statistics
are available for each xi(s). This set of data can be represented as a transition
graph (Figure 4.6), which is also used for describing Markov models. Please
note that the states have to be mutually exclusive—a learner belongs to only
one state at a given time. Therefore, the probabilities of edges leaving from the
same state sum to 1. The state “drop” is an absorbent, that is, there is no arrow
that brings the learner back from “lost” to any other state. Figure 4.6 is a sta-
tistical summary of how students evolve at the end of after a1 to the end of a2

.5

A matrix can represent the same information as the graph in Figure 4.6.
The transition matrix between the set of states Xi(S) and the set of states Xj(S),
is called Mij(S). It is a p × q matrix in which p is the number of possible values
in Xi(S) and q is the number of possible values in Xj(S). If the transition is
from activity ai to aj and j>i, the values of Xi(S) define the rows of Mij(S), and
the values of Xj(S) define the columns of Mij(S). The cell (k,l) is the probability

5	 The point here is to capture transition probabilities, not to choose an activity based
on these probabilities. Such a decision, which can be implemented as a Markov
decision graph, is discussed in Chapter 6.

a1

a2

a3

X0(s) X1(s)
X3(s)

X2(s)

Drop

Active Lost

.05 Fine

.17
.27

.40

.39 .39

.10

.24

.14

.30

.35 .20

1

Figure 4.6  Transition probabilities between learner different values for X1(s) and X2(s).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

114	 ORCHESTRATION GRAPHS

of being in the lth state of Xj(S) after having been in the kth state of Xj(S) , for
0 < k <p and 0 < l < q. Since the states are mutually exclusive, the sum of
probabilities per row is 1.

Table 4.2  A matrix of transitions from state X1(s), vertically, to X2(s), horizontally: 39% of stu-
dents who were in a “lost” state remained in the same state, while 24% moved to “active,” and so
on.

Mij(S) X2(s)

X1(s) Lost Active Fine Drop Total

Lost 39% 24% 10% 27% 100%

Active 14% 39% 30% 17% 100%

Fine 20% 35% 40% 5% 100%

Drop 0% 0% 0% 100% 100%

In pedagogical scenarios, the transition matrix between Xi(s) and Xi+1(s)
is rarely the same as the matrix between Xi+1(s) and Xi+2(s). This is different
from stochastic models of stationary processes, in wich the same probability
distribution does not change over time (the same matrix applies to all state
transitions).

Where do the matrix data come from? One could hope to find the prob-
ability values in scientific literature, but empirical research only sparingly
covers the data a graph designer would need. Therefore, the most promising
approach (central to learning analytics) is that these probabilities are acquired
empirically. This empirical construction of the transition matrix makes espe-
cial sense for MOOCs, since they collect data from large sets of participants.
These two approaches, theoretical and empirical, are of course not exclusive—
Bayesian methods allow integrating a probability a priori (the theoretical
probability), with a probability as posteriori (empirically collected).

Point 23  Matrix entropy
Initially, I defined the weight (ωij) of an edge (eij) as a probability value that
captures “How much the student performance in ai will determine his perfor-
mance in aj.” This temporary definition holds if the states after ai and ai are
both numerical values. It would then be possible to calculate a simple correla-
tion. However, I propose modeling the learner’s state as a discrete set of values
and representing the relationship between two states by a transition matrix.
To compute ωij, the probabilities stored in Mij have to be aggregated into a
single parameter, which would represents the weight of the edge. I address
this question in two points, proposing two values—the entropy of a transition

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 115

matrix is presented below, and the utopy6 of a transition matrix is explained
in the next point.

To calculate these values, I have to make the assumption that the same set
of states is used both in ai and in aj, which implies that Mij is a square matrix.
Actually, the condition is not simply that two connected activities have the
same number of states, but also that they have the same set of states, that is,
that Xi(S)=Xj(S). In this case, the diagonal of the matrix means “staying in the
same state.”

The first measure I propose for summarizing the state transition matrix
is entropy. For readers who are not familiar with this topic, the term entropy
comes from information theory;7 Claude Shannon proposed measuring the
uncertainty of a so-called “random variable”. Of course, the state of the learner
is not random, but it varies over time in a way that is far from being determin-
istic. It is precisely this part of randomness that entropy tries to measure. A
typical example is tossing a fair coin; whether it falls on one side or the other
is completely random, and the entropy is maximal. Conversely, if someone is
cheating with an unfair coin that always falls on the same side, the entropy will
be null. In our context, the fair coin situation translates as follows: if a learner
who is in a “success” state in ai has a 50% chance of being in the same state in
aj and a 50% chance of moving to a “failed” state, the uncertainty of the tran-
sition matrix Mij is maximal. Conversely, the unfair coins translates as follows:
if a learner who is in a “success” state in ai has a 100% chance of being in the
same state in aj, the uncertainty of the transition matrix Mij is null. If he has
a 100% chance of being in a “failed” state, the entropy will also be null, which
indicates that entropy is only one aspect of the transition. If we don’t use a
coin, but a dice with 6 sides, the possible outcomes of throwing the dice will be
a vector with 6 values, corresponding to the probability of each side. A fair dice
would be associated with the vector [1/6 1/6 1/6 1/6 1/6 1/6] while an unfair
dice, more predictable, could for instance be associated with [1/2 1/10 1/10
1/10 1/10 1/10]. In other words, if the vector of probabilities has a uniform dis-
tribution, entropy is maximal. The entropy hence measures the distance from
the uniform distribution. To make a long story short,8 the entropy, denoted
by H, is computed with Shannon’s formula:

H X P x P xi
i

i() = − () ()∑ log2

where xi is one of the possible values of the random variable X.

6	 I know that the word “utopy” does not exist in English, but I like to invent the words
I need.

7	 The term has a related, but different, meaning in physics.
8	 Plenty of online material exists that explains the meaning of this formula and why

2 is a convenient base for the logarithm.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

116	 ORCHESTRATION GRAPHS

This formula can be translated into the learner modeling context. The
random variable X is Xi(s), that is, the set of possible states of the learner s
in individual diagnosis. The values of this random variable (i.e., the xi in the
Shannon equation) are the different possible states A = {“fine”, “lost”, …}. The
entropy regarding the state of a learner s is therefore:

H X s P X s a P X s ai i i
a A

()() = − () =()⋅ () =()
∈
∑ log2

I will now explain in 4 steps how I propose to estimate the uncertainty of
a transition matrix. Mathematicians would certainly propose better ways to
compute this matrix entropy, but, in the meantime, I have developed an intu-
itive approach.

(Step 1) Compute the entropy of each row of Mij

The formula above computes the entropy for the transition between one state
at the end of ai and the next possible states at the end of aj. This corresponds
to one row in the transition matrix, that is, to a vector of probability values.
To consider all states in ai, it is necessary to compute the entropy of the whole
transition matrix, that is, for each Xi(S) in Mij, H (Xj(S)) has to be calculated
and these values aggregated into a global measure H(Mij).

Let’s consider the transition matrix M1 below, which is very close to an
identity matrix; for any state in ai, it can be predicted almost with certainty
that the student will remain in the same state in aj. For M2, the prediction is
also safe; for any state in ai, it can be predicted almost with certainty that the
student will end up in a “fine” state in aj. At the opposite end of the scale, the
predictability is extremely low in M3 where, whatever the state was in ai, the
state in aj could be anything. As explained earlier, this predictability is esti-
mated by computing the entropy of each row, as one vector. In M1 and M2, the

M1 Lost Active Fine H M2 Lost Active Fine H

Lost 0.98 0.01 0.01 0.16 Lost 0.01 0.01 0.98 0.16

Active 0.01 0.98 0.01 0.16 Active 0.01 0.01 0.98 0.16

Fine 0.01 0.01 0.98 0.16 Fine 0.01 0.01 0.98 0.16

M3 Lost Active Fine H M4 Lost Active Fine H

Lost 0.34 0.33 0.33 1.58 Lost 0.5 0.3 0.2 1.49

Active 0.34 0.33 0.33 1.58 Active 0.1 0.4 0.5 1.36

Fine 0.34 0.33 0.33 1.58 Fine 0.1 0.1 0.8 0.92

Figure 4.7  Entropy values (H) for various transition matrices (numbers are fictitious; they have
not been computed empirically).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 117

entropy of each row (column H in Figure 4.7) is close to 0, which corresponds
to what I called above “safe prediction.” Conversely, in M3, every state of Xj(s)
is almost equally probable, and hence entropy is maximal for each row. The
matrix M4 falls between these two extreme cases.

(Step 1)   H M m maj
b q ab

ij
ab
ij() = − ()=Σ 1 2 logto

where Maj is the ath row of Mij, 1 ≤ a ≤ p and Mij is p X q

(Step 2) Normalize the entropy of each row of Mij

Let’s now consider M5 (Figure 4.15). The uncertainty in M5 is similar to M3
(all states Xj(s) being equally probable), but H is higher because the number of
states is higher, and because entropy is computed as a sum of values for each
state. Since the number of states may vary between graphs, the comparison of
entropy between different transition matrices may be biased. It would hence
be difficult to get the ‘global picture’, an estimate of entropy variation along
the graph. Therefore it I propose to normalize the entropy, i.e., to make it
independent from the number of states. This is achieved by dividing it by the
maximal entropy, log2(p), where p is the number of states. The normalized
entropy per row (H0) hence varies between 0 and 1.

M5 Lost Active Fine Great H H0

Lost 0.25 0.25 0.25 0.25 2.00 1.00

Active 0.25 0.25 0.25 0.25 2.00 1.00

Fine 0.25 0.25 0.25 0.25 2.00 1.00

Great 0.25 0.25 0.25 0.25 2.00 1.00

H(M5) 1.00

Figure 4.15  Comparing M5 to M3 reveals that entropy varies with the number of states (num-
bers are fictitious; they have not been computed empirically), hence the introduction of H0, nor-
malized entropy.

(Step 2)   H
H

0 M
M

q
aj

aj

() = ()
()log2

where Maj is the ath row of Mij, 1 ≤ a ≤ p and Mij is p X q

è   H0 M
m m

q
aj ab

ij
ab
ij

b
q

() =
− ()

()
=∑ log

log
21

2

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

118	 ORCHESTRATION GRAPHS

By normalizing this value, we loose information regarding to the number of
states, which is important in information theory. In our case however, the mag-
nitude of state variations is more or less constant: it ranges from ‘completely
lost’ or ‘perfectly fine’. The discretisation of this continuum into several states
is a design decision, based on the diagnosis possibilities (Point 30). The loss of
information regarding to the number of states hence seems acceptable.

(Step 3) Compute the average entropy for all rows in Mij

The matrix entropy could simply be the mean value of the row entropy values.
However this average does also constitute a loss of information. Let’s con-
sider matrix M6. The entropy is low for learners in state ‘good’, most of them
remain in the same state, while there is maximum entropy for those who were
in state bad. The average of the two entropy values is 0.43. If it occurred that
actually 90% of students were in state ‘good’ (column ‘prior distribution’) and
only 10% in state ‘bad’, the actual uncertainty for a random student is actu-
ally lower than as computed so far: the low entropy of the row ‘good’ should
influence proportionally more the matrix entropy than the high entropy of the
row ‘bad’. We therefore compute H ′(M6) as the weigthed average of each
row entropy, by multiplying HO by the prior probability. The matrix entropy
is hence 0.11 instead of 0.43, which is a better account of the reality.

Prior
distribution M6 Bad Good H H0 H′

10% Bad 0.5 0.5 1 1 0.1

90% Good 0.9 0.1 0.14 0.14 0.12

0.43 0.22

Figure 4.16  Integrating prior distribution for weigthing the row entropy.

(Step 3)   ′ () = ()=∑H HM P mij
a

aj
a
p 01

Mij is p X q where Pa is the prior probability of row a

(Step 4) The weight of Mij is the opposite of its entropy
Now, the goal was to estimate the strength of an edge, that is, how strongly the
student state at the end of aj is dependent upon his state at the end of ai. This
dependency has been called the weight of an edge in Point 5. The weight of eij,
is denoted ωij. The notion of strength or weight is actually the opposite9 to the
notion of entropy; the weight should be zero when entropy is maximal and 1

9	 Alternatively, the weight could be inversely proportional to the uncertainty. Howe-
ver, ωij = 1/H ′(Mij) would not be a value between 0 and 1 anymore.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 119

if entropy is null. Therefore, I define the weight of the edge eij, as 1 minus the
average normalized entropy of its transition matrix Mij. This notion will be
further refined in the next step.

(Step 4)   ωωij
ijM= − ′()1 H

è   ωωij
ab
ij

ab
ij

b
q

a
p m m

p q
= +

()
⋅ ()
== ∑∑

1
211

2

log

log

Point 24  Matrix utopy
As I mentioned, a transition matrix that describes a situation where all stu-
dents succeed has the same entropy as a matrix where all students fail. In Fig-
ure 4.17, the two matrices have the same weight (0.45), but M7 describes an
activity in which 75% of learners end up in a positive state, while M8 describes
the opposite situation—75% of learners end up in the “lost” state. The fact that
M7 and M8 lead to the same H ′(Mij) value is acceptable from a pure probabil-
istic viewpoint, but here their purpose is to model education processes, where
the goal is that students reach the learning objectives. Therefore, it is neces-
sary to introduce a second variable, which I refer to as the utopy of a matrix.

M7 Lost Active Fine H H0 M8 Lost Active Fine H H0

Lost 0.01 0.24 0.75 0.87 0.55 Lost 0.75 0.24 0.01 0.87 0.55

Active 0.01 0.24 0.75 0.87 0.55 Active 0.75 0.24 0.01 0.87 0.55

Fine 0.01 0.24 0.75 0.87 0.55 Fine 0.75 0.24 0.01 0.87 0.55

ω(M5) 0.45 ω(M6) 0.45

Figure 4.17  These two matrices have the same entropy, but different utopy levels (numbers are
fictitious; they have not been computed empirically).

Utopy is a variable that will estimate the degree of utopia behind a transi-
tion matrix. The term is perhaps too strong—I could have called it call “opti-
mism” or the “progress index,” but even if we are talking about mathematical
indices, there are always values behind educational data. Please allow me an
emotional detour.

The endemic confusion between selection and training is a tumor in
educational systems. Let us imagine a teacher in the first year at elemen-
tary school, when children learn to read. If 100% of the children, whatever
their entry level is, end their school year with great reading skills, every-
one would agree that this teacher is excellent. This situation constitutes an
example of utopia, but the reality is less beautiful; a teacher rarely man-
ages to compensate for all individual differences. Now, let’s consider a 1st

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

120	 ORCHESTRATION GRAPHS

year teacher at university level. If he has a success rate of 100%, he would
not be praised, as would the elementary school teacher. Instead, he would
be suspected of having lowered the level of expectations. The problem I
want to point out is the confusion between selection and training. Selec-
tion is actually acceptable in a first year university class; it’s better to fail
at entrance than 3 years later. But selection should not replace teaching
excellence. Teachers should bring university students as high as possible
and, only then, filter out those who have no chance of succeeding the fol-
lowing year. The index “matrix utopia” turns this philosophy into numbers.

I will now explain in 4 steps how to calculate the utopy of a transition
matrix.

(Step 1) Count learners who improve and those whose state
degrades
To calculate the utopy of a matrix, let’s assume that the set of states is ordered
from the least to the most desirable, the first row and column being the least
desirable state. This is often the case in education, where various states indi-
cate increasing levels of mastery. The improvers are located in the triangle
submatrix M+, above the diagonal and colored green in M9. Conversely, the
cells located below the diagonal and colored red in M9 concern students who
lowered their state and constitute M–. The difference between M- and M+ tells
us something about the progress of the whole class. To calculate this index, we
have to add each element in M+ and M–.

(Step 2) Take into account how much they improve or degrade
A learner who moves from state-3 to state-5 improves more than a learner
who moves from state-3 to state-4. Therefore the sum of M+ and M– cell val-
ues is weighted with the distance from the cell to the diagonal; each cell mkl is
multiplied by (k-l) which is the distance from the diagonal. Using the distance
to the diagonal implies that the scale of states is linear, i.e. that the difference
of the states between two neighbor rows (or columns) is always the same. In
this case, a cell located at a distance of two from the diagonal is twice better or
twice worse than a cell located next to the diagonal and using this distance as
‘penalty’ makes sense. If the scale is non linear, one could use the square of the
distance or any other way to produce non-linear penalties.

(Step 3) Calculate the difference
The notion of utopy refers to the fact that an activity leads to more improve-
ment than degradation of the learners’ state. Hence, utopy is the difference
between the weighted sum calculated respectively for M+ and M–.

(Step 4) Normalize the difference
The difference calculated in the previous step is not independent from the
size of the matrix. In order to normalize the result from –1 to +1, we have to

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 121

make it relative to the matrix size (p × p). The maximal distance from a cell
to the diagonal is p–1 for the first row, p–2 for the second row, and so on. We
hence divide the weighted difference between M+ and M- by the sum of p–1,
p–2, p–3, … until p–p=0. This recursive sum can be replaced in the formula
by p.(p–1)/2.

γ M
m m

l k m k l m
l k

m

k

m

kl kl
l

k
() =

−() −() − −()
= +=

−

=
∑∑2

1 11

1

1

−−

=

==

∑∑

∑∑=
−() −()

1

2

11

2
1

k

m

l

m

k

m

klm m
l k m

A matrix that would be totally stable (M10 in Figure 4.18) leads a utopy
index of 0. At the opposite end of the scale, the dream situation captured
in M11 has a utopy index of 1, since all learners end up in the highest state.
Finally, the dramatic M12 has a utopy of –1 since all learners end up in the
worst state. M13 and M14 respectively are optimistic and pessimistic matrices
between these two extremes.

M9 0.2 0.2 0.2 0.2 0.2 M12 1 0 0 0 0
0.2 0.2 0.2 0.2 0.2 1 0 0 0 0
0.2 0.2 0.2 0.2 0.2 1 0 0 0 0
0.2 0.2 0.2 0.2 0.2 1 0 0 0 0
0.2 0.2 0.2 0.2 0.2 1 0 0 0 0

U(M) 0 U(M) –1

M10 1 0 0 0 0 M13 0.2 0.2 0.2 0.2 0.2
0 1 0 0 0 0.1 0.1 0.2 0.3 0.3
0 0 1 0 0 0 0 0.2 0.3 0.5
0 0 0 1 0 0 0.1 0.2 0.2 0.4
0 0 0 0 1 0 0 0 0.2 0.8

U(M) 0 U(M) 0.47

M11 0 0 0 0 1 M14 0.5 0.1 0.2 0.1 0.1
0 0 0 0 1 0.2 0.2 0.2 0.2 0.2
0 0 0 0 1 0.7 0.2 0.1 0 0
0 0 0 0 1 0.2 0.2 0.2 0.2 0.2
0 0 0 0 1 0.8 0.2 0 0 0

U(M) 1 U(M) –0.42

Figure 4.18  Calculating the utopy of a transition matrix (numbers are fictitious; they have not
been computed empirically).

M14 illustrates a situation where a1 actually inhibits learning in a2, for
instance. This may sound strange, but it can occur. For instance, Schwartz &

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

122	 ORCHESTRATION GRAPHS

Bransford (1998) showed that initially providing learners with a definition of
the concept to be learned prevents them from applying deep induction in later
examples.

Some states presented in the state library (Point 21), such as “trapped,”
“impasse,” or “misunderstanding,” constitute conditions for learning, despite
their negative label. They have to be placed in the Mij in such way that if many
learners move to that state, the matrix utopy index will be positive.

This utopy index relies on the assumption that matrices are square. One
could probably live with this assumption if the activities along the graph were
similar. Another solution (if various sets of states existed across activities), is
to reduce the number of states to a few levels common to all activities by merg-
ing states, resampling them with quartiles or with z-scores, etc.

Another assumption in the way I compute utopy is that the set of states
constitutes a metric scale, since an improvement of two steps in the scale of
states is two times more desirable than the improvement of a single step. This
assumption is implicit in the way we multiply each cell value by its distance
from the diagonal. If the scale cannot be considered as metric (but is still ordi-
nal), this distance factor can be removed, and the index will still give a balance
between students who improved and those who lowered their state.

The last point is to integrate entropy and utopy into a single value to serve
as ωij. When the matrix utopy is negative, it’s better to have higher matrix
entropy; it is better to be unsure of failing than to be sure of failing. Inversely,
if the matrix utopy is positive, with less entropy, the better it is. Therefore, I
simply propose to estimate the weight of an edge as the product of its
non-entropy index and its utopy index.

ωij = (1–H ′(Mij)) U(Mij)

Since H ′(Mij) varies between 0 and +1 and since U(Mij) varies between –1
and +1, the value of ωij will be between –1 and +1:
•	 If ωij = +1, ai is very critical for aj;
•	 If ωij = 0, ai is more or less useless for aj and can be skipped if needed; and
•	 If ωij = –1, ai is very detrimental to aj and should be removed or replaced

when improving this pedagogical scenario.

These values, entropy and utopy, are proposed here as a bridge from
orchestration graphs to stochastic models. If our community considered them
useful, I am convinced that colleagues with strong mathematical backgrounds
would refine these values. Their purpose is to provide a quantitative summary
of a transition matrix.

Alternatively, the summary can be produced by simple visualizations of the
raw transition probabilities. Let’s consider the transition matrices M13 and
M14, presented in the previous pages. We will replace each cell in the matrix

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 123

by a small square at the same row and column in the visualization. The proba-
bility in the cell determines the color of the small square: white if the cell value
is zero, black if it is 1, with grey levels in between. The positive utopy of M13
can be intuitively perceived through the right side unbalance of the picture,
while M14 negative utopy is visible through the left side unbalance.

The meaning of this simple visualization depends, of course, upon the
nature and the ordering of states; the unbalance around the diagonal only
refers to utopy if the states have been ordered from the least desirable to the
most desirable. Any other matching between the states and the cells would
require a specific interpretation. The point is to provide a global visualization
of the graph, as in Figure 4.9, where it is immediately visible that the third
activity created a problem.

Point 25  Edge elasticity
The effect of one activity on the next activity is not time-proof; effects tend
to fade out with time. Hence, we have to model how ωij decays when lij, that
is, the time lag between ai and aj (Point 1) increases. Let’s consider an edge
with a motivation label. The motivation asset raised in an activity often has
a short life span, especially for extrinsic motivation tricks. The same is true
for an advance organizer label: the pre-activated structure will not remain

Class

Team

Individual

Figure 4.8  A visualization of transition matrices M13 (left) and M14 (right).

Figure 4.9  A visualization of transitions in an orchestration graph.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

124	 ORCHESTRATION GRAPHS

activated indefinitely. It is slightly different for prerequisite labels; it is
expected that the skills acquired in an activity will not vanish immediately,
but after a few weeks, it will probably be necessary to refresh these skills. In
experimental pedagogy, this decay is considered an indicator of the qual-
ity of a pedagogical scenario. Researchers often include a delayed post-test,
for instance, 4 weeks after the lesson, to verify how much acquired skills
have resisted the ravages of time. If participants obtain high scores at the
immediate post-test, but low scores at the delayed post-test (i.e., they learn,
but then they forget), the pedagogical scenario cannot really be considered
effective.

How far can an edge be stretched without losing its conditional power, that
is, its strength? The elasticity of an edge is modeled as a time decay function
that quantifies how the weight of the edge between two activities varies as the
lag between them increases. Even if the effect of the method does not fade out,
the uncertainty about its effect will probably increase, and hence the weight
will decrease.

Let’s consider that a scenario has been conducted several times and illus-
trated in Figure 4.10. In 2013,10 the lag was 60 minutes (lij2013=60) and the
weight was 0.74 (ωij

2013). The MOOC will be repeated every year until 2016,

10	 I use an annual course frequency in order to give a concrete example.

ai

aj

ƒ

ω
ij

Lij (in minutes)

0

1

x1(S)

X2(S)

60 90 120 150 180

-1

ƒ’

ƒ”

2013

2016

2014

2015
2012

Figure 4.10  Edge elasticity is modeled as a strength decay function.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 125

with variations of lij. This set of data (lijyear, ωij
year) can be approximated by the

decay function ƒ. What is the shape of this decay function? Is it linear? Which
slope does it have? I am afraid that the answer will be specific to the nature
of the edges, that is, the edge label. Figure 4.10 presents another function, ƒ’,
which reveals a first phase shaped by the so-called recency effect (Stainer &
Rain, 1989), followed by what could be called a phase of digestion in lay terms.
If ωij is negative, the decay function illustrated by ƒ” in Figure 4.10 will tend
towards zero, and hence ωij would increase as the lag increases. One example
could be in sport education, when students have to physically recover from ai
before starting aj; ωij would be negative if lij is short, but it would increase if
the lag increased and enabled recovery.

Defining decay function in this way is somehow theoretical. In practice,
many sessions of the same MOOC would be necessary before having enough
points (lij, ωij) to estimate ƒ. In addition, the size of S in every MOOC would
have to be large enough to make sure that differences of weight are not due
to demographic variations. Even if the sample size is large enough, the data
would be influenced by many other external factors. Education is a complex
field. In the absence of sufficient data for estimating a function, one could use
a binary function similar to the food expiration date: “Do not use aj more than
n days after ai.”

In summary, the edge weight decay function can be modeled as follows.
Since the scenario can be run at different time intervals, I don’t refer to years,
but to the session number: 1, 2, …

ωij
1
 is the weight of eij computed from a first run of the scenario

lij1 is the lag ai and aj during a first run of the scenario

lij2 is the lag ai and aj for the second run of the scenario

ωij
2

 is the weight of eij to be predicted from a second run of the
scenario

ωij
2= ƒ (ωij

1, lij1, lij2) and ƒ is the decay function illustrated in
Figure 4.10

This edge elasticity illustrates the concept I have of orchestration graphs as
a kind of organic species. A pedagogical scenario is not carved in stone. It has
to be adapted on a regular basis to match the evolution of the learner states
and the evolution of the context (see Chapter 6). The weight and elasticity of
edges influence the flexibility of an orchestration graph, that is, how easily the
timing or the ordering of activities can be modified without breaking down the
expected effects.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

126	 ORCHESTRATION GRAPHS

Point 26  Operators and matrices
So far, transitions matrices relate two activities located at π1, while graphs
stretch over multiple planes. Let’s first consider what Xi(s1,2) is at π2, that is,
modeling a team of learners. If two activities ai and aj are both located at π2,
then the state Xi(s1,2) can be related to the state Xj(s1,2) within the same matrix
as for individual states, Mij. Examples of states for π2 and π3 have been pro-
posed in the state library (Point 21).

The transition matrix would become more complex if ai was located at π1
and aj at π2. Can we calculate the probability of p(xj(s1,s2)=”failed”) knowing
that xi(s1)=”failed” and xi(s2)=”success”? This would produce a matrix as M15
in Table 4.3; it illustrates the case where the probability of a team succeeding
aj would be higher if each learner individually succeeded ai than if they both
individually failed ai. However, sometimes a pair of students who failed indi-
vidually, but who engaged in rich verbal interactions may nonetheless suc-
ceed, a mystery that researchers have investigated for many years. In other
words, the social mechanisms that predict Xj(s1,s2) from Xj(s1) and Xj(s2) are
more complex than the product of two probabilities. As we know that collab-
orative learning effects are very task specific (Dillenbourg, 2002), a transition
matrix probably has to be elaborated empirically for any edge of a graph.

If the pair (s1,s2) has been formed in a specific way; for instance, with a high
and a low achiever or with a learner who got a certain subset of data with a
learner who got a different subset, then for each pair we can determine who is
s1 and who is s2, as in M15. In this case, row 2 (pass-fail) and row 3 (fail-pass)
of M15 are different. M15 is not square, but can be split into 2 square matrices,
one for s1 and one for s2. Now, if there is no difference in roles while selecting
teams members, learners will be randomly assigned to s1 and to s2. Hence row
2 (pass-fail) and row 3 (fail-pass) of M15 are equivalent and merged in M16.
In this case, the matrix can still be made square by duplicating the second row.

Table 4.3  Transition Matrix when moving from π1 to π2.

M15 Xj(s1,s2) M16 Xj(sa,sb)

Xi(s1) Xi(s2) Pass Fail Xi(sa) Xi(sb) Pass Fail

Pass Pass 0.8 0.2 Pass Pass 0.8 0.2

Pass Fail 0.6 0.4 Pass Fail 0.6 0.4

Fail Pass 0.7 0.3 Fail Fail 0.3 0.7

Fail Fail 0.3 0.7 sa=s1 and sb=s2 or sa=s2 and sb=s1

To calculate such a transition matrix, the system must know the composi-
tion of teams. This information is actually available, since an operator associ-
ated to the edge eij has been used for forming the group. For instance, the team
formation operator (Point 15) selected s1 and s2 based on criteria for minimiz-

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 127

ing or maximizing distances among them. In this case, the information con-
tained in the operator helps build the matrix. Conversely, the team formation
operator could be expressed as searching for the partition of S into pairs
s1,2 that maximizes the probability that Xj(s1,2)= “Pass.” As mentioned,
xj(s1,2) can hardly be predicted by an universal team formation algorithm.
However, if a transition matrix has been built from the previous sessions of the
same graph, Mij-Past, the team formation could apply the following algorithm:
1.	 Select two students from S, s1 and s2
2.	 Find s1’ & s2 ’ ∈ SPast, a former class such as xi(s1’) ≈ xi(s1) and as xi(s2’) ≈ xi(s2)

(find two former students who were in a similar state as two current ones)
3.	 Retrieve xj(s1’, s2’) from Mij-Past (retrieve the state as a team once these for-

mer students have been paired)
4.	 Store xj(s1’, s2’) as the predicted value in Mij-predicted, a matrix that stores all

predicted team states
5.	 Select two other students from S and repeat from step 2, for all students in S;
6.	 Compute U(Mij-predicted);
7.	 Repeat from step 1 with all possible partitions of S into pairs
8.	 Choose the partition that obtains the highest U(Mij-predicted)

Computing the matrix utopy of all possible partitions of S into pairs implies
very intense computation. This algorithm should be optimized.

M15 and M16 illustrated a transition from an activity ai at π1 to an activity
aj at π2. What about the other way around, from π2 to π1? In many cases, the
team state Xi(s1,2) is not sufficient to predict the next individual states Xj(s1)
and Xj(s2); for instance, if s1 and s2 were successful as a team in ai , it does not
imply that they will encounter individual successes in aj. The individual differ-
ences that existed before teamwork, in ai-1, will probably not have completely
disappeared after team activities. A more accurate estimation may require
integrating information from Xi–1(s1), the individual state of the learner two
activities before. Actually, to satisfy the Markov assumption, we decided that
the current state includes all previous states, which implies that Xi–1(s1) is
available inside Xi(s1,2). If this is not the case, the transition could be modeled
between these 3 activities as in M17 (Table 4.4). In M17, the third row contains
the probability that a student (s1) succeeds aj if his team succeeded ai, and if
he individually failed ai–1.

Table 4.4  A transition matrix when moving from π2 to π1.

M17 Xj(s1)
Xi(s1) Xi(s1,2) Pass Fail
Pass Pass 0.9 0.1
Pass Fail 0.7 0.3
Fail Pass 0.4 0.6
Fail Fail 0.2 0.8

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

128	 ORCHESTRATION GRAPHS

The transition matrices M15 to M17 connect activities located at different
planes. I call these cross-plane transition matrices. Both cross-plane matrices
and social operators connect data across planes, the former in an analytics
mode, and the latter in an operational mode. This relationship between cross-
plane matrices and social operators illustrates the deep intertwining between
two viewpoints on orchestration graphs that I have developed throughout this
book, namely the graph as a workflow and the graph as a probability network.

Other operators can also affect the state transition matrix. For instance, a
decision operator could split a matrix. Let’s imagine that the operator uses the
following rule:

IF xi(s)= “good” THEN select aj for s OTHERWISE select ak for s.

This gives two transition matrices, Mij and Mik, which illustrate the value
of adaptive instruction; by choosing aj for learners who succeed ai and choos-
ing ak for learners who failed ai, the utopy of the matrix increases as it can be
hypothesized that the two split matrices would have a higher utopy index than
a matrix where all students do the same activity.

Table 4.5  A transition matrix in adaptive instruction; should the next activity be aj or ak?

Mik Xk(s) Mij Xj(s)

Xi(s) Pass Fail Xi(s) Pass Fail

Fail 0.8 0.2 Pass 0.9 0.1

Point 27  Theory plug-ins
A theory plug-in is a fragment of theory that could—in a perfect world—pro-
vide the designer with the initial cell values for the transition matrices of the
graph to be designed. These plug-ins could come from any learning theory; for
example, behaviorism, constructivism, situated cognition, or mastery learn-
ing. A learning theory comes with 3 interwoven fibers:
•	 A learning theory predicts that a learner who performs an activity or a

sequence of activities will acquire some skills. If the skill to be acquired is
denoted by ci (Point 6), we can express the probability that ci is acquired
after participating in ai: p(ci | ai) ≥ α. The value of α should be reason-
ably high—close to 1—if ci=”landing a paraglider,” since this skill has
to be mastered by the practitioner, and probably lower for ci=”speaking
French,” as it is possible for a practitioner to live without it.

•	 A learning theory explains why some activities trigger cognitive pro-
cesses (e.g., induction, compilation) that produce new knowledge. This

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 129

explanation is part of our scientific knowledge. It is also important because
it determines the space of generalization, and the variations around the
activity that would probably generate similar learning results because they
would probably trigger similar cognitive processes.

•	 A learning theory often comes with a legacy of educational practices and
with a philosophical flavor—a certain vision of humankind. There is noth-
ing wrong in associating values with an educational theory, but the draw-
back is that value-loaded theories become schools of thought. This book
tries to avoid this pitfall.

From the beginning of the book, I have argued for “integrated learning.” I
stressed the interest of building graphs of activities that do not belong to a sin-
gle theory. This is why I refer to theory plug-ins instead of theories. I borrow
the metaphor proposed by Wenger (2010); he used the terms “plug and play”
to refer to theory fragments that can be combined, as multiples lenses through
which scientists analyze the world.

A cognitive process does not occur in a vacuum, but transforms the compe-
tency at ai into competency at ai+1. Therefore, I should write p(ci+1 | ai+1 ∧ ci)
≥ α. Some learning theories are indeed defined by the sequencing of activities
more than by the activities themselves. For behaviorism, ai+1 should introduce
a single piece of novelty with respect to ai. For mastery learning, ci+1 should
not be started if the learner does not master its prerequisites ci.

Unfortunately, these probability values are rarely available in literature for
3 reasons:
•	 The probability values computed in empirical research are generally meas-

ured in a relative way; method A is found to be significantly more effective
than method B with p < 0.05. Transition matrices contain absolute terms;
if the learner was in state xi(s) before using method A, the probability that
he ends up in state xs(s) would be, for instance, 0.34.

•	 There is no established referential that describes either pedagogical meth-
ods or cognitive states in an operational way. This referential would be
necessary for extracting findings from the available literature that closely
match the designed activities. This book is a small step in that direction,
but it will take more of this effort to build such a referential and turn edu-
cational research into a truly cumulative science.

•	 Empirical results are very sensitive to the context in which they have been
collected; every detail matters. There is a low probability that the results
observed in one or several experiments will generalize across all contexts
where the same scenario is to be used. This explains why pedagogical
reforms often fail to scale properly.

Do these restrictions in fact make this 27th point meaningless? The val-
ues found in literature will not be accurate (especially given the extreme

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

130	 ORCHESTRATION GRAPHS

simplication that follows), but could at least provide some probability esti-
mates as initial values for the transition matrix. They would also support a
Bayesian approach. These values would be inaccurate, but they would reduce
the matrix entropy compared to a matrix with no prediction at all. Then, the
values would need to be refined with time, as empirical data are collected for
specific graphs. The examples of plug-ins presented below aim to demon-
strate how general principles behind learning theories could be turned into
predictions.

Association: If the learner frequently associates items x with y, such as
“nitrate” and “NO3

–“ during ai, this increases the probability that when pre-
sented with x during aj, the learner will be able to cite y.

Reinforcement: This is a special case of association. If learner behavior
bi(s) is triggered by stimulus x and then followed systematically and immedi-
ately by a positive feedback during ai, the probability increases that if stimulus
x is presented during aj, the learner will produce behavior bi(s).

Compilation: If the learner applies procedural skill c many times during
ai, and if ai and aj are very similar to each other, the learner will probably
apply c faster and with a lower cognitive load during aj.

Chunking: If the learner applies c1 and c2 sequentially during ai, the com-
bined skill c1+2 will generate a lower cognitive load during aj than the sum of
the cognitive load triggered by c1 and c2.

Reflection: If, during ai, the learner hesitates between possible answers
that differ with respect to element x, an immediate feedback during ai will
inhibit the elicitation of x during aj.

Argumentation: If two learners argue about x during ai and if y is an ele-
ment used in the argument yèx, the probability increases that these learners
may apply yèx in aj.

Explanation: If, during ai, a learner elaborates a new explanation with a
chain of elements [xèyèz], and ai and aj are very similar to each other, then
the probability increases that the learner will be able to use xèy or yèz while
performing aj.

Induction: If, during ai, a learner compares positive {e+} and negative
{e-} instances of a concept K and if {f} is the set of features that are common to
{e+} and simultaneously absent from {e-}, then the probability increases that
the learner will include {f} in the definition of K after aj.

Mutual regulation: If a student is able to regulate the problem-solv-
ing process of his teammate during ai, and if ai and aj require similar prob-
lem-solving strategies, the probability increases that he will be able to regulate
his own problem-solving process during aj.

Internalization: If, during ai, a student s1 participates in meaningful
dialogue with a more advanced student s2 within the zone of proximal devel-
opment of s1, the probability increases that s1 will replay this dialogue during
individual reasoning for aj, that is, as a monologue.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 STOCHASTIC PROCESSES	 131

Conclusions
While the previous chapters described orchestration graphs in a rather static
way, this chapter has led us to model the dynamics, that is, the transitions
between activities, or the way a learner state evolves over time. Modeling com-
plex processes as sequences of discrete states has become a pervasive approach
in modern sciences and fits quite well with the way educational processes have
been modeled with orchestration graphs. It may sound like overkill to intro-
duce concepts such as entropy, but they fit intuitively well with the uncertainty
that a teacher can experience while facing a classroom.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Chapter 5

Learning analytics

Learning analytics refers to the process of collecting and analyzing the traces
left by learners during their activities. Recent learning analytics rely on data
mining and machine-learning methods, which can produce reliable results
when provided with massive sets of data. Since MOOCs produce massive
data—the participants’ traces—they have triggered a new boost in learning
analytics research. The goal of this chapter is to articulate analytics in regards
to orchestration graphs.

The role of analytics is two-fold. First, it aims to improve the effectiveness
of pedagogical scenarios in order to determine the most relevant adaptation of
learning activities to the needs of the students or to propose modifications for
the next occurrence of the pedagogical scenario. Second, the role of analytics
is to produce new knowledge about education, as a research method. The first
goal is engineering; the second is science. How analytics fulfill these roles is
described in the next chapter.

Learning analytics is often conducted as a post hoc activity, that is, for the
analysis of what happened in a pedagogical scenario, after it has been com-
pleted. One of the core ideas in this book is that learning analytics should
instead be anticipated from the design phase. If the analytics process is
designed after the completion of the course, it’s difficult to extract meaning-
ful lessons. I am not simply talking about anticipating which interactions will
be stored in which formats in the log files. Anticipation includes the formal
description of the whole sequence of activities, their social plane, their input/
output, the relationship between them (the label of edges), the way data are
transferred (edge operators), the way students are modeled (the set of states),
and so on. This idea is one of the reasons for formalizing educational sce-
narios, in addition to scaling up. It is captured by the previously mentioned
slogan “design for analytics.”

Learning analytics is not restricted to MOOCs; it applies to any educa-
tional activity, including classroom activities (as is the case for all elements
proposed in this book). A teacher who is reflecting about the data he has col-
lected through his senses is carrying out learning analytics, even if he is not
using any technology. Furthermore, learning analytics have been applied to
data captured in a classroom. For instance, Raca et al. (2013) placed cam-
eras in a classroom and used computer-vision to estimate the average level
of attention. Alavi et al. (2009) gave “lanterns” (see Point 41) to students in

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

134	 ORCHESTRATION GRAPHS

a classroom. These devices indicate to teaching assistants which learners are
working on which exercises, for how long, and whether they need help. At
the end, lanterns collect statistics such as the average working time and the
time that students spend waiting for the teaching assistant. The range of low
cost sensors that can be used in a classroom grows every day: light EEGs and
mobile eye trackers that are almost as lightweight as glasses, skin conductivity
bracelets that approximate stress measures, heart frequency devices, pressure
sensors inside chairs to capture the learners’ body postures or movements…
This multiplication of data collection tools opens a new space for researchers,
even though the ethical issues are as huge as the educational affordances are
high. Actually, collecting everything that can be collected and then crunching
massive data sets is not the best research strategy. Analytics requires careful
thinking, as emphasized by the phrase “design for analytics.”

Point 28  Cognitive diagnosis
The cognitive state of a learner is not directly accessible. It is not possible
to open a student’s brain and count its “knowledge.” The state has to be
inferred from the learner’s behaviors. Cognitive diagnosis is the process of
inferring the learner state from his behavior during the same activity. The
adjective “cognitive” was introduced at the beginning of this field of research,
probably for differentiating this inference process from the medical diagno-
sis. Actually, both forms of diagnosis are instances of abductive reasoning:
inferring causes (respectively health problems versus misunderstandings or
knowledge gaps) from their consequences (respectively symptoms versus
behavior). Several causes may lead to the same consequences; several dis-
eases may produce similar symptoms and several cognitive states may lead
to the same learner’s answer. The art of docimology—the science of educa-
tional measurement—is to design activities (test items) in such a way that
each cognitive state to be detected will produce a distinct behavior. This is
addressed in Point 30.

The set Bi(s) does not only include learners’ products (e.g., solutions,
answers) but also the smaller traces of their activities that I call behavioral
dust. Here are some examples of collected dust:
•	 The learner’s response time, which can be easily recorded, is sometimes

more predictive of the learner’s state than the answer itself. Conversely,
silence or non-response over a long time is also interesting information;
for instance, for anticipating dropout.

•	 The learner’s mouse path before selecting a response could indicate, for
example, how self-confident the learner is in choosing this answer or which
other answers he considered. This parameter is probably correlated with
response time.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 135

•	 The learner’s gaze patterns can be recorded by eye-tracking devices. Soon,
the camera embedded in any laptop will be accurate enough for eye track-
ing. We have found that gaze patterns accurately predict knowledge levels
(Liu et al., 2009) for an individual learner, and that they predicted pro-
gramming expertise in a programming task (Jermann & Nüssli, 2011).

Dust is produced at each social plane of the graph, as illustrated in Table
5.1.

Table 5.1  Type of behavioral traces across planes.

Behavior/Planes π1 π2 π3

Products Individual responses Joint solution to a
problem

Number of daily
forum postings

Dust Mouse path, response
time, gaze paths

Eye contact between
learners, rate of

acknowledgement

Gaze directions, leg
movements, whis-
perings in a lecture

theater

The diagnosis methods may not be the same for processing products and
dust, but both feed into the diagnostic process. Therefore, in the following
points, I will not discriminate between them any further. I wanted to stress
the affordances of behavioral dust, revealed by the field “social signal process-
ing” (Vinciarelli et al., 2009); the input for diagnosis is much richer than a set
of correct or incorrect answers. In addition, this massive set of data enables
the probabilistic approach that emerged in the previous chapter—elaborating
transition matrices requires frequent and systematic data collection points.
They probably wouldn’t work if they only considered a few products generated
now and then during the scenario.

Point 29  Behavioral abstractions
In computer-based education, the set of possible behaviors for Bi(s) is defined
by the interface, that is, by the ways in which users interact with the computer:
mouse clicks, text entries, gestures or speech, pictures uploaded, and so on.
This set of inputs is finite and small in multiple-choices questions and infinite
in open questions such as writing an essay or sketching a new logo. In some
cases, the diagnostic input is not a single behavior, but a sequence of behav-
iors. This is the case for behavioral dust such as mouse paths or gaze paths
(previous point), but also for sequences of game actions or quiz responses.
The input of the diagnostic processes is then a vector such as [A D B A A B D]
where A, B, and D are responses. Interpreting a sequence of answers, rather
than a single one, is especially relevant in problem-solving activities. When

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

136	 ORCHESTRATION GRAPHS

several paths to a solution are possible, providing feedback on the solution
path (i.e., the problem-solving strategy), may be more relevant than providing
feedback on each problem-solving step.

The diagnostic process consists in mapping the set of behaviors to the set of
cognitive states. In principle, the set of cognitive states is infinite, but, as men-
tioned earlier, in practice it is much smaller; if the next decision is to choose
between two types of exercises, easy or difficult ones, the diagnosis only needs
to discriminate between two states for learners—those who need easy ones
and those who may benefit from difficult ones. How does the mapping occur?
When behavioral information is a complex data set, diagnosis is sometimes
conducted in several steps or layers; some features are extracted from the raw
behavioral data in order to provide abstractions. I denote them B’i(s). These
features may themselves be abstracted into higher-level features, B”i(s); for
instance as successive steps of inference. Examples of features are given for
each plane in Table 5.2. The term “feature” is used in machine learning, but
this word could be ambiguous outside this community. Therefore I prefer the
term “behavioral abstraction”: extracting from raw data patterns of elements
that are more likely to be predictive of the final outcome.

For instance, eye trackers provide the raw position of gaze every 200 mil-
liseconds as raw data. The number of back-and-forth transitions between two
pictures that learners have to compare is an instance of behavioral abstraction
that speaks more than the raw milliseconds. In our study of online collabora-
tive problem solving (π2), we used a higher-order feature; gaze recurrence is
the percentage of time that one peer looks at the same object at the same time
than his teammate. This behavioral abstraction was predictive of misunder-
standing (an interesting π2 state) and even team performance (Jermann et al.,
2011). Of course, two people do not look at exactly the same pixel and not at
the same millisecond (the time distance between two gazes is up to 2 seconds).
The feature “gaze recurrence” is hence a complex computation from the raw
behavioral data. It is important that our community develops a library of fea-
tures that have potential for predicting states. In contrast to the libraries that
I have previously presented (edges, operators, and states), this library is quite
underdeveloped.

In other words, diagnosis may require multiple steps of data processing,
as implemented, for instance, in multilayer neural networks. The art of learn-
ing analytics (and machine learning) is to find out which features allow an
algorithm to map the input to the output. However, in the next steps, I will
consider the diagnostic process as a one-step process, with behavioral data as
the input and a hypothetical cognitive state as the output.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 137

Table 5.2  Library of abstractions from raw behavioral data.

Plane Examples of behavioral abstractions

π1 •	 Rate of back/cancel actions in a navigation task.
•	 Redundancy: Did the learner ask a question for which he already had an answer?
•	 “With-me-ness”: Did the learner look at the object mentioned by the lecturer in the

video?
•	 Attention map: Which areas does the learner look at most often?

π2 •	 Balance of participation: Did all team members do a fair share of the workload?
•	 Task-distribution: Do team members perform specific subsets of the tasks? (Even

if there is a 50/50 balance, it may be that John only does specific tasks and Lena
others.)

•	 Rate of acknowledgement: What percentage of utterances from a learner received
acknowledgement—from a simple nod to an acknowledging action (A says “This is
a mistake” and B deletes “This”), or to a full reformulation of the initial utterances?
We found this simple rate to be a good predictor of the quality of collaboration (Dil-
lenbourg & Traum, 2006).

•	 Transactivity: Did team members build utterances upon the utterances produced
by their peers?

•	 Cross-recurrence: Did team members look at the same object at (more or less) the
same time?

•	 Rate of redundancy: Did the learner ask a question for which another team member
already had the answer?

π3 •	 Conversation depth: The average depth of conversation threads in forums.
•	 Connectivity: What is the minimal number of students that need to be removed

from the social network to disconnect the other nodes from each other (Diestel,
2005)?

•	 Homophily: Do students form ties with similar versus dissimilar students (McPher-
son et al., 2012)? Ties can be forums postings; similarity is measured through stu-
dents’ profiles.

•	 Reciprocity: If student A often replies to another student B in the forum, is the
opposite true?

•	 Propinquity: The tendency for actors to have more ties with those who are geo-
graphically close (Kadushin, 2012).

•	 Density: The proportion of direct interactions between two students relative to the
total number of possible interactions between all students (Xu et al., 2010).

Point 30  Diagnosis entropy
Since the real cognitive state of a learner is unknown, the diagnostic process
elaborates a hypothesis about Xi(s) based on Bi(s). Hypotheses have various
levels of uncertainty. If a medical doctor sees a child whose face is covered with
red dots, the hypothesis of measles is reasonable. While a massive mosquito
attack is less probable, it is still not impossible. To determine the certainty of
a diagnostic hypothesis, I use the entropy measures that were introduced in
the previous chapter.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

138	 ORCHESTRATION GRAPHS

Let’s consider an introductory course on statistics. We decide that Xi(s)
has 2 possible values: (m) misunderstanding or (g) good understanding. Let’s
imagine that activity 5 is a quiz with 4 possible answers, illustrated in Figure
5.1.

In order to reduce the variance of the set [1 2 2 3 3 3 4
5 8], 3 numbers can be removed. Which ones?
a)	 Remove all occurrences of number 3
b)	 Remove the numbers that appear several times
c)	 Remove 1, 5, and 8
d)	 Remove 4, 5, and 8

Figure 5.1  Example of a question.

A reasonable hypothesis is that answer c) indicates a state of good under-
standing. However, this hypothesis is not robust, as there is a 25% chance
that the learner selected c) randomly. The probability that the learner has
understood the concept of variance given that he replied c) should be lower
than 1. In addition, let’s imagine that the teacher knows from experience that
only 20% of students understand the concept of variance after this activity
(P(X5(s)=good)=0.2). In this case, the probability that the learner is in the
‘good’ state should be much lower, whatever answer he gave. The Bayes the-
orem allows us to integrate this prior information and the current behavioral
information.

Let’s assume that the probability that a student who understands well
the concept of variance chooses answer C is 1: P (B5(s)= answer-c | X5(s)=-
good). We need to compute the inverse, i.e. the probability that a student who
has choosen answer C does indeed understand the concept: P (X5(s)=good |
B5(s)= answer-c). The Bayes formula will give (for the sake of brievety, we
replace ‘good’ by ‘g’ and ‘answer-c’ by ‘c’)

P X s g B s c

P B s c X s g P X s g
5 5

5 5 5

() = () =() =
() = () =()⋅ () =

|

| (()
() = () =()⋅ () =()+ () =P B s c X s g P X s g P B s c X s5 5 5 5 5 | | (() ≠()⋅ () ≠()g P X s g5

In our case, if we integrate the probabilities mentioned above, we would
have

P X s g B s c5 5
1 0 2

1 0 2 0 25 0 8
0 5() = () =() = ⋅

⋅ + ⋅
=| .

. . .
.

In this reasoning, we made the reasonable hypothesis that a learner who
understood the concept will always correctly. However, there are factors that
could explain why he selected the wrong answer, despite having a good under-

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 139

standing: badly formularted question, distraction, tiredness, a touch interface
with buttons that are too small, and so on. So, the probability that he a learner
who understood the concept could select the correct answer should be slight
lower: P (B5(s)= answer-c | X5(s)=good) = 0.90 .

P x s g b s c5 5
0 9 0 2

0 9 0 2 0 25 0 8
0() = () =() = ⋅

⋅ + ⋅
=| . .

. . . .
.

447

Now the prior probability of being in state m (misunderstanding) is 0.8.

P X s m B s c5 5
0 25 0 8

0 25 0 8 0 9 0 2
0() = () =() = ⋅

⋅ + ⋅
=| . .

. . . .
..53

This example is interesting because it is counter-intuitive: in the case where
the topic is known to be very difficult (20% ‘good’ states), there are less that
50% chances that a student who selected the correct answer among 4 possible
ones, actually is in the state ‘good’.

The diagnosis based on answer c is hence a vector of two probability val-
ues, one for the state “good” and one for the state “mis”, that we represent as:
X5(s)∼[.45 .53]. Let’s imagine that 4 possible learner states have equal prob-
abilities; namely, that the vector is Xi(s)∼[0.25 0.25 0.25 0.25]. Uncertainty
is then maximal since we have no clue about the actual state of the learner.
Uncertainty is lower if the probability distribution is skewed; for instance with
Xi(s)∼[0.5 0.10 0.10 0.75]. We can therefore use the same measure of entropy
of Xi (S) here as for any row of the transition matrix, as explained in Point 23.

The art of writing questions is to minimize this diagnostic entropy. Let’s
replace the statistics quiz (Figure 5.1) by a question “Remove 3 numbers from
the following list in order to minimize its variance” and let the student answer
by editing the list of numbers. As there are 504 possible answers, the effect of
chance will be minimal.

Examples of entropy variations are given in Figure 5.3. The values in
the vector Xi(s) will vary with time and behavioral observations. Naturally,
entropy increases with time; if a teacher writes on the blackboard for 3 min-
utes, his uncertainty increases, as he cannot visually estimate student atten-
tion for those 3 minutes. This is why one often says that a good teacher has
3 eyes, two at the front and one at the back. Conversely, a good question will
reduce entropy. Asking students “Is everything clear so far?” marginally
reduces entropy, as students tend to nod randomly. “Invent an example that
illustrates the same rule” leads to lower entropy. In general terms, the differ-
ence between a good question and a bad question can indeed be expressed by
the extent to which the diagnosis entropy is reduced by the learner’s answer to
the question; this reduction being hereafter referred to as the diagnosis power
of an activity.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

140	 ORCHESTRATION GRAPHS

The diagnosis power of an activity ai is the measure by which it reduces
entropy: H(Xi(s)) – H(Xi–1(s))

Let’s consider a fictitious example, with 4 possible states: Xi(S)={“lost,”
“active,” “fine,” “brilliant”}. For the sake of simplicity, let’s consider that there is
no prior information on the probability that the learner is in any of these states.
The normalized entropy1 at ai is maximal: H0(X1(s)= [.25 .25 . 25 .25]) = 1.

1	 As for the transition matrix entropy, the value of the diagnosis entropy depends
upon the number of states in the diagnosis vector. In order to normalize it, this
value can be normalized by dividing it by the maximal entropy, log2(p), where p is
the number of states. The diagnosis entropy hence varies from 0 to 1.

H0

b2(s) = watch video with many pauses

b2(s) = post a message “There is a mistake on the slide
which does actually contain a real mistake”

b2(s) = select correct answer in a quiz

X2(s)= [.05 .15 .25. 55]

X2(s)= [.01 .02 .02 .95]

a1 a3

a2

0.94

0.80

0.18

1.00

X2(s)=[.15 .40 .30 .15]

0.00

Figure 5.3  Figure 30.2: Variations of entropy (number are fictitious, they have not been deter-
mined empirically):
•	 If the learner watches a video with many pauses, this may indicate that he is actively trying to

understand (x2(s)=”active”) or that he is taking notes (x2(s)=”fine”). This could lead to X2(s)=
[.15 .40 .30 .15], which corresponds to a minor decrease in entropy: H0(X2(s)) =0.94.

•	 If the student selects the correct answer in a quiz, the vector could be [0.05 0.15. 0.25 0.55],
that is, the probability of the state “fine” or “brilliant” is not 1, since the right answer could be
selected by chance.

•	 A message in the forum explaining a mistake in the slides would lead to a strong probability
that the student has a deep understanding.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 141

Figure 5.3 shows how H0(X2(s)) would be reduced by three behaviors produced
during a2. The slope of the red arrows represents the diagnosis power of the
activities.

If one computes the entropy vector for each of the q possible answer, con-
sidering each of p possible states, one obtains a diagnostic matrix. The entropy
of this matrix (Figure 5.2) can be computed in the same way as for a transition
matrix (Point 23). The computed value gives an indication of the intrisince
quality of the question and proposed answers.

State 1 State 2 .. State p

Answer 1

Answer 2

…

Answer q

Figure 5.2  Diagnosis matrix for multiple-choice questions.

The diagnostic power of activities is a key design point; diagnosis is not an
issue to consider only at runtime, but also during the design phase. The craft
of quiz design is to anticipate “distractors,” that is, answers that correspond
to the most common misunderstandings. In other words, the design of activi-
ties has to satisfy two functions: maximizing learning effects and maximizing
diagnostic power.

Figure 5.3 shows cases of entropy reduction, but sometimes entropy
increases as well. It actually varies up and down with time along the graph
activities. If, at some point, it is too high, the system should react by perform-
ing a new diagnostic act; for instance, triggering a new question. The thresh-
old for deciding on an extra diagnostic act, that is, the maximal tolerable level
of uncertainty, is discussed in Chapter 6.

Point 31  The diagnosis axis
In the previous chapter, the prediction of a state xi(s) was based on the pre-
vious state xi–1(s). As mentioned then, this prediction (based only on time)
would neglect the main source of information—what the learner did during
that activity, bi(s). Predictions would be more accurate if they could integrate
both sources of information—the previous state Xi–1(s) and the current behav-
ior Bi(s). As a basic example, let’s consider a transition matrix that predicts
that if xi–1(S)=”fine” then xi(S)=”fine” with a probability of 0.96. Now, let’s
consider the case of a particular student, Daniel, such as xi–1 (Daniel)=”fine.” If
it occurs that bi(Daniel)= 1/10 (he answered one question correctly out of 10),
so Daniel probably does not belong to the 96% of students who experienced a

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

142	 ORCHESTRATION GRAPHS

smooth transition between ai and aj. In this example, the behavioral evidence
is stronger than the time-based prediction.

However, the complementarity between time-based and behavioral-based
inferences can work the other way around. Since behavioral inference is also
uncertain, as explained in the previous point, the diagnosis uncertainty can
sometimes be reduced by integrating time-based prediction. This comple-
mentarity appears in the following examples:
•	 If a learner provided the correct answer in a quiz and was previously in a

“good understanding” state, the probability that this correct answer was
due to chance is lower than if he were previously in a “poor understand-
ing” state.

•	 If a learner rapidly explores different sections of a document, his state
could be interpreted as being ”active” or “disoriented.” The first inter-
pretation has a higher probability if the learner was previously in a “good
understanding” state, since disorientation is more likely to appear for
learners who don’t have a good mental map to orient themselves in a com-
plex space.

•	 If a learner is not contributing much to teamwork, as measured by the low
number of messages in the shared workspace, there is a probability that he
is in the “free rider” state (Xi(s)). However, as he was previously diagnosed
as being in the “leader” state Xi–1(s), the social loafing diagnosis loses its
credibility. Sometimes a leader says few words, but important ones.

•	 If a learner makes many pauses while playing a MOOC video, it is uncer-
tain whether he is struggling to understand it or whether he is simply paus-
ing the video to take notes. If this learner rarely paused in previous videos,
then the first hypothesis gains probability (why would he start taking notes
only now?). Our recent results tend to show that video navigation patterns
are difficult to interpret in absolute terms, but that a sudden change in
pattern reveals a difficulty.

As mentioned in the previous chapter, hidden Markov models (HMMs)
cope with these two sources of inference. Standard Markov chains capture
the dynamics of a system that changes from one state to another; for instance,
the variations of the stock market every day. These states are observable. In
our case, the states are not directly observable, but are inferred from learner
behavior. This inferred state is called a “hidden state.” The relationship
between hidden states (in our case, the cognitive state) and the observations
(in our case, the behavioral traces) is often represented as in Figure 5.4.

In Figure 5.4, time is represented horizontally, from left to right, which
is consistent with the graph representation used so far. To remain consist-
ent with this representation, I prefer to keep the vertical axis for the social
dimension, and I will apply a 3D rotation to this standard HMM representa-
tion. On Figure 5.5, the behavior is represented in the background while the

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 143

hidden state is in the foreground. This is purely conventional; I only mention
it because readers familiar with HMMs be mislead.

Whether a dimension is represented horizontally or vertically is not impor-
tant, but what does matter in this figure is that the prediction of a cognitive
state does not only depend on the behavioral evidence, but also on the previ-
ous states of the learner. This joint probability can be written as:

p (Xi(s) | Xi–1(s) , Bi(s))

Point 32  The modeling cube
So far, orchestration graphs have been represented with two dimensions; time
captured by a sequence of activities (a1, …, an) and the social plane (π1–π6).
In the previous point, I introduced a third dimension, the diagnosis axis, and
proposed to combine these as time (horizontally) and diagnosis (depth). Fig-
ure 5.6 reintroduces the social dimension (vertical axis).

X0(s) X1(s) X3(s) X2(s)

B1(s) B2(s) B3(s)

X0(s) X1(s) X3(s) X2(s)

B1(s) B2(s) B3(s)

X0(sb) X1(sb) X3(sb) X2(sb)

X0(sa) X1(sa) X3(sa) X2(sa)

B1(sa) B2(sa) B3(sa)

Figure 5.4  A standard representation of an HMM.

Figure 5.5  A rotated representation of an HMM.

Figure 5.6  Reintroducing the vertical dimension (social axis) orthogonal to the horizontal
dimension (time axis) and the depth dimension (diagnosis axis).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

144	 ORCHESTRATION GRAPHS

The social axis allows us to predict the state of a learner from the state of
one other or many other learners. Here are some examples of situations where
this axis introduces meaningful information:
•	 A teacher asks questions to five students, (selected more or less randomly

from the class), and from their poor answers, he infers that the state of the
whole class is probably unsatisfactory. This is not an optimal inference, but
it’s better than having no information at all.

•	 Even without knowing how Dinesh has behaved in the current activity, it
can be guessed that he was successful, because every one else in the class
succeeded, or because everyone with a similar profile succeeded.

•	 Even without knowing how Dinesh behaved in the activity, if everyone
fails, there is a low probability than he will have succeeded.

•	 Even without knowing how a team collaborated on an activity, if all other
teams failed to adopt the predefined roles, there is a low chance that this
team will stick to the roles.

Building inferences along the social axis is especially relevant in the MOOC
context; thousands of students engaged in the same graph give this axis its
predictive power. However, a situation in which all students fail or all succeed
rarely occurs. In most cases, inferring the state of a learner from the state of
other learners requires taking into consideration the diversity of the class. The
relative position of John in the current activity will be computed based on his
relative position in a previous activity, which requires reasoning on both the
vertical and the horizontal axes of the cube.

The meaning of the vertical axis is therefore somehow different to the way
it has been used so far, that is, as an operational structure for orchestration.
In stochastic models, the vertical axis uses social structures (e.g., two mem-
bers of the same team) to compute probabilities. I hope the reader will for-
give this breach of consistency in the book. Moreover, with a third dimension,
orchestration graphs lose the simplicity I have been striving for, but this third
dimension allows me to integrate three sources of information when modeling
the learner’s state:

Horizontally: John’s state is predicted by knowing John’s previous state: 	
p (xi(s) | xi–1(s))

Vertically: John’s state is predicted by knowing the average class (S) state:	
p (xi(s) | xi(S))

Vertically: John’s state is predicted by knowing the state of a similar learner:
p (xi(sa) | xi(sb))

Depth: John’s state is predicted from his behavior in the current activity: 	
p (xi(s) | bi(s))

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 145

A simple situation where multiple dimensions bring an advantage is, of
course, when some sources are missing:
•	 If the goal is to make a prediction, that is, to model Xi(s) before ai has

started for any learner, and only the horizontal axis is available.
•	 If the graph implements a new MOOC and neither the transition matrix

nor data from other students is available, the diagnosis axis will be the only
source of inference.

•	 If the state Xi(Mike) is unknown, because Mike has skipped the activity ai.
In aj, Mike is watching the video, but since he did not answer the quiz at
the end, we can’t infer Xj(Mike) from Bj(Mike). However, if all the other
students answered the quiz correctly in aj, it is plausible that Mike is in a
similar state. This situation may sound awkward, but orchestrating a ped-
agogical scenario includes the management of absences, late arrivals, una-
vailable data, and so on.

In summary, diagnosis can be enhanced by taking into account 3 sources of
information: the individual history, the interpretation of behaviors, and social
diversity. They contribute towards computing the probability that the learner
is in a given state given his previous state, his behavior, and the states of the
other learners. These 3 sources of information “converge” on the current state
of the learner as represented in Figure 5.7.

p (xi(s) | xi–1(s) , xi(S), bi(s))

It is somehow misleading to call this space a cube and to represent it as a
cube. It is a 3 dimensional space, but the dimensions are not truly orthogonal,

bi-1(sa)

xi(sb)

bi(sb)

xi-1(sa)

xi(sa)

bi(sa)

xi-1(sa)

bi-1(sa)

History

Social
inference

Figure 5.7  The modeling cube: Predicting the state of the learner combines information from 3
orthogonal axes—the diagnosis axis interprets behavioral traces, the time axis extrapolates from
previous states of the same learner, and the social axis forms predictions based on the states of
other learners.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

146	 ORCHESTRATION GRAPHS

since they are not totally independent from each other. Moreover, it won’t
probably be the case that position of the vertex is the same on each axis . So,
it is not a cube mathematically speaking, but as you will have noticed by now
that I am not a mathematician, please allow me to call it a conceptual cube.
Instead, I will represent the space as in Figure 5.8, in which the position of
xi(s) can vary on each axis. The position of xi(s) in this 3D space is determined
by its position on each axis:
•	 On the horizontal axis (the history of the learner’s state), the distance

from the origin is the normalized entropy of the transition matrix Mi–1,i, as
explained in Point 23.

•	 On the depth axis (diagnosis), the distance from the origin is the normalized
diagnosis entropy, as explained in Point 30. The origin is the previous state,
since to satisfy the Markov assumption, the previous state includes all previ-
ous states. This means that the origin shifts when moving to a new activity.

•	 On the vertical axis (social), xi(s) is predicted from the state of the class
xi(S). The distance from the origin is the entropy of the distribution of
states in the class. Let’s consider the inference “If all learners have failed,
John will probably fail.” If Xi(S) has four possible states and “failed” is the
first state, the class state xi(S)=“all students failed” can be represented by a
vector [1 0 0 0], which has a null entropy. A class in which 25% of students
end up in each of the four states would correspond to the vector [0.25 0.25
0.25 0.25], which has maximal entropy, normalized to 1. It is a bit awkward
to use entropy as measure of class heterogeneity, the rationale being to use
the same scale on each axis.

Bi-1(sb)

xi(sb)

Bi(sa)

xi-1(sb)

xi(sa)

Bi(sa)

xi-1(sa)

Bi-1(sa)

Time

So
ci

al

Figure 5.8  Figure 32.3: The x,y,z position of Xi(sa) is computed by measuring its normalized
entropy according to each axis, that is, each source of the prediction.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 147

At this point, I need to once again bring back some emotional values to this
technical discussion.

One may question the ethical character of these predictions. If John is
currently at a10 and failed the 9 previous ones, some optimistic teachers—I
love them—will nonetheless believe, or at least hope, that John may suc-
ceed a10. Determinism constitutes another tumor in schools, propagated by
“reputation”: a student with a reputation of being weak has low chances of
succeeding because neither his teachers nor himself believe he will succeed.
The “halo effect” (Foster & Ysseldyke, 1976) shows that this situation even
crosses the limits of a discipline. However, the low variability of states is
here considered as a statistical question, not as an ethical one.

Point 33  Multidimensional predictions
The previous point explains that the cognitive state of a learner can be pre-
dicted by 3 sources of prediction: his previous state, his behavior, and the state
of the other students. How to integrate these different sources of information
into a single prediction? So far, I looked at a simple case where only one source
is available. If several sources of information are available, are some sources
more important than others? I do not ask this question in a general probabil-
istic context, but in the specific educational context of orchestration. A first
principle is that, by default, behavioral evidence is stronger than a pre-
diction based on a transition matrix (horizontal axis), since this matrix
has been calculated based on many learners, while behavioral information is
specific to one learner. For instance, even if a grammatical activity has almost
always been successful, it may still be that it does not work at all for Christine
because the sentences used as examples during ai referred to a dog, and her
dog has recently died. Humans are not fully predictable, fortunately. Now, this
default rule—behavioral primacy—may sometimes not apply. In some cases,
behavioral evidence can be less useful than the transition matrix. For instance,
as I mentioned earlier, the interpretation of video navigation patterns is highly
hypothetical. If the video in a2 explains a new concept, and the learner had
failed to learn the previous concept (a1), which was a strict prerequisite (ω1,2
=0.9), there is a high probability that he will fail a2, whatever his video naviga-
tion pattern turns out to be. In this example, the horizontal axis provides a bet-
ter prediction than the depth axis. Finally, if ω1,2 is close to zero, the horizontal
prediction may be less useful than the vertical prediction, for instance, the fact
that other students have been successful at this activity. In summary, I propose
the following principle for integrating 3 sources of prediction:

Learner modeling integrates inferences from the 3 axes in a way that is
inversely proportional to their uncertainty.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

148	 ORCHESTRATION GRAPHS

A challenge at this point is to turn this common sense principle into an
equation. The evidence illustrated by each axis should have a weight inversely
proportional to the normalized entropy. However, as I mentioned, the axes
are not completely independent, and dependencies between variables have
to be taken into account. I could not further elaborate this equation without
empirical data. I hope that some statisticians will find it interesting to reframe
the modeling cube within the context of Bayesian networks.

The cube model enables another way of integrating multiple sources of
information, based on the geometry of the cube. So far, predictions rely on
first order inferences: the general schema is “What is V1 to V2?” In our case,
this question was instantiated by what is xi(s) to xj(s), what is bj(s) to xj(s),
and what is xj(s) to xj(S)? The cube geometry enables second order inferences
such as “V1 is to V2 what V3 is to V4.” These inferences exploit the parallel-
ism of edges, that is, the fact that the relationship between two variables can
be compared to the relationship between two other connected variables. This
relationship between relationships is represented by H-shaped patterns on
the following figures.

Figure 5.9 illustrates a situation with two students Nina (sa) and Mike (sb).
If we know Mike’s current state (xi(sb)), and if Mike and Nina have a similar
behavior (bi(sa) ≈ bi(sa)), one may infer that Nina’s state (xi(sa)) is probably
similar to Mike’s (xi(sb)).

In more general terms, the difference between the states of the two learn-
ers (red vertical arrow Δxi) is a function (red horizontal arrow) of the dif-
ference between their behaviors (red vertical arrow Δbi). Since this function
may not be known, the trick is to find “a Mike” that has the least behavioral

bi-1(sb)

xi(sb)

bi(sa)

xi-1(sb)

xi(sa)

bi(sa)

xi-1(sa)

bi-1(sa)

Time

So
ci

al

Δ
x i

Δ
b

i

Figure 5.9  Inference based on the parallelism of twins—two learners with similar behavior
must have a similar state.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 149

difference with Nina at activity. I refer to twins as being two students who
have very similar behaviors (or, later on, a very similar state). The notion of
twin, and hence the inferences described in this point, necessitates using some
similarity metrics. Metrics for quantitative data can be domain independent.
For qualitative data (e.g., a small set of possible states), I am afraid we’ll have
to develop similarity measures that are specific to the activities included in the
orchestration graph. This can be summarized by:

Diagnosis is parallel:
The difference between the states of two learners is related to the differ-

ence between their behaviors.

Figure 5.10 shows another form of second order inference, happening on
the same face of the cube, but orthogonal to the former. The function (lower
red horizontal arrow) that that has been applied to infer Mike’s state xi(sb)
from Mike’s behavior bi(sb) can be re-applied (red vertical arrow) on Nina’s
behavior to infer her current state (upper red horizontal arrow).

This reasoning in Figure 5.10 makes especial sense for the quantita-
tive processing of behavioral dust, since a general mathematical function or
machine-learning algorithm may apply to different traces. For instance, the
function that predicted Mike’s degree of understanding from his response
time or from his gaze patterns can be reused for Lena. This is the same for
the previous second order inference example. These second order inferences
would be useless if the diagnosis was a simple mapping function, such as in
multiple-choice questions.

bi-1(s)

xi(sb)

bi(sa)

xi-1(sb)

xi(sa)

bi(sa)

xi-1(sa)

bi-1(sa)

Time

So
ci

al

xi(sa)

Figure 5.10  Inference based on the parallelism of diagnosis—a behavior is associated with a
state if a similar behavior was associated with a similar state.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

150	 ORCHESTRATION GRAPHS

Continuing the same kind of reasoning, it can be reasonably postulated
that students evolve in reasonably parallel ways, that is, their differences vary
slightly, but not radically, from one activity to another. As illustrated in Figure
5.11, if Mike (sb) and Nina (sb) were in a similar state at a previous activity, we
can infer the current state of Nina from the current state of Mike.

In more general terms, the difference between the states of two persons
(Δxi) is a function of the difference in their states at a previous activity (Δxi– 1).
Since this function may be unknown, the trick is to find twins (i.e., sa and sb)
that have the smallest state difference at the previous activity (xi(sa)≈xi(sb))
and to use xj(sa) as the most probable value for xj (sb). This can be summa-
rized as follows:

The learners’ volution is parallel:

The difference between the state of two learners is related to their differ-
ence in previous states.

The same type of second order inference can be made with respect to the
whole class, S, instead of with respect to a twin; one can infer that the position
of Mike within the class distribution at aj (e.g., 2 σ above the mean of stu-
dents’ scores in the class) is probably similar to his position among the class
at ai, the previous activity. In this case, we don’t compare xi–1(sx) at xi–1(sy)
but at xi–1(S). Being “2 sigma below” constitutes an example of social ranking
that is no more pleasant that the individual determinism I criticized earlier.
A phenomenon can be statistically true, even if ethically questionable. Using

xi(sb)

bi(sa)

xi(sa)

bi(sa)
bi-1(sa)

Time

So
ci

al

xi-1(sb)

xi-1(sa)

Δ
x i

-1
 Δ

x
i

Figure 5.11  Inference based on the parallelism of individual evolution.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 151

standard deviation applies if the state is stored as a metric value. For ordinal
values, that is, an ordered set of categories, this determinism will be translated
as staying in the same category.

Evolution is parallel: The position of a learner in his class remains
relatively stable over time

Figure 5.12 illustrates another type of second order inference: the diagnos-
tic process is stable over time. If, in a previous activity, a diagnosis function
predicted the learner’s state from his behavior, we can reuse the same function
to infer his current state. For instance, let’s consider the two ways of interpret-
ing an incorrect numerical value, as reflecting two possible misconceptions of
the domain; if an interpretation is chosen at time i, the same interpretation
should be selected at time j.

Conversely (Figure 5.13), the evolution of a learner’s state is parallel to the
evolution of his behavior; if we know how much his behavior has changed over
time, we can apply the same transformation to his previous state in order to
compute his current state.

In general terms, the difference between two successive states of a learner
is a function of the difference between his two successive behaviors. Since this
function may not be known, we could use the case where the learner had the
same behavior before: “Find bi(s) that has the smallest difference with bj(s)
(i<j), and use xi(s) as the most probable value for xj(s).” This rule is not useful
for behaviors that can’t be compared across activities (such as the answers
to different multiple-choice questionnaires), but some variables can be

bi-1(sb)

xi(sb)

bi(sa)

xi(sa)

bi(sa) bi-1(sa)

Time

So
ci

al

xi-1(sb)

xi-1(sa)

Figure 5.12  Inference based on the stability of diagnosis over time.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

152	 ORCHESTRATION GRAPHS

compared. For instance, if high gaze-movement frequency was interpreted as
an indicator of engagement in an activity, a similar frequency in a later activity
could lead to the same interpretation.

Finally, I could go further in complexity and use the 3 dimensions. Figure
5.14 can be read as follows: if the difference of behavior between sa and sn
is the same now as it was before (this equivalence being represented by the
H-shape on the back facet of the cube), then their difference in state should
be the same now as the difference in state before (represented by the H on the

bi-1(sb)

xi(sb)

bi(sa)

xi(sa)

bi(sa) bi-1(sa)

Time

So
ci

al

xi-1(sb)

xi-1(sa)

bi-1(sb) xi(sb)

bi(sa)

xi(sa)

bi(sa) bi-1(sa)

Time

So
ci

al

Figure 5.13  Inference based on the stability of diagnosis over time.

Figure 5.14  Third-level inferences.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 LEARNING ANALYTICS	 153

front facet). Such an inference would be more meaningful for behavioral dust
variables (such as navigation patterns or gaze patterns) than for quiz answers.

It could be argued that these 3 dimensions actually hide the many dimen-
sions that can be portrayed in a generalized linear model. My point is that
these 3 dimensions are ontologically different; they correspond to different
forms of reasoning and should hence be treated distinctively.

Conclusions
This chapter enriched the orchestration graphs with some general mecha-
nisms by which the cognitive state of the learner can be inferred or predicted.
If the graph defines the pipes of analytics, these principles define the mechan-
ics of the pump that circulates data, that is, the analytics engine. The proposed
principles have to be refined and/or expanded, both from mathematical and
from computational viewpoints. Now, analytics is not a goal, per se, but only
a tool for improving the efficiency of the pedagogical scenario and for inves-
tigating human learning processes. Therefore, the last chapter is devoted to
methods for adapting an orchestration graph, modifying it and learning from
it.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Chapter 6

Orchestration

As mentioned in the previous chapter, analytics are not conducted for the
sake of analytics, but because collecting information is necessary for making
decisions with respect to a pedagogical scenario. These decisions range from
a temporary adaptation of the activities to deeper changes in the scenario.
I refer to changes in the graph with the term “evolution”; an orchestration
graph evolves in order to maximize its fitness to the classroom ecosystem or
the online education ecosystem.

This chapter adopts an engineering perspective; the role of analytics is to
increase the current or future effectiveness of an orchestration graph. How-
ever, beyond engineering, analytics also enables research. Data are analyzed
to extract generalizable knowledge; for instance, by measuring the effect of a
design parameter on learning gains. The goal of research is not to optimize a
particular system, but to enrich learning sciences. Even if this has been my
day-to-day job for many years, I will only briefly mention research in this
chapter, as it would deserve another entire book.

Point 34  Scope and space

The evolution of a graph includes four different types of modifications pre-
sented in Table 6.1.
•	 The scope of a modification defines its social and temporal amplitude. The

two columns discriminate local versus global modification. An example of
“local” modification is to select the difficulty of the next exercise for one
learner in the current session. Consequently, a local modification concerns
one or a few students, but not future sessions. An example of “global” mod-
ification is to replace an unclear question with a clearer one. Such a modi-
fication will not only concern students currently engaged in the graph, but
also participants in future sessions.

•	 The two rows of Table 6.1 indicate whether the modification mechanism
has been defined or planned, that is, included into the design of the graph,
or whether it is performed manually, improvised, or created on the fly. In
the row “defined,” the range of possible modifications is limited to those
that have been anticipated by the designer; for instance, it is possible to

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

156	 ORCHESTRATION GRAPHS

change the number of exercises, but not the number of examples. The row
“open” includes any possible modification of the graph.

Table 6.1  Four mechanisms of modification.

Space of
modification

Scope of modification

Local Global

Defined Adaptation Optimization

Open Repair Redesign

The rationale for discriminating between these four types of modifications
is that some confusion has emerged in the past between adaptive instruc-
tion and orchestration. The same general idea underlies each of processes
described in Table 6.1—to modify the graph based on how effective it has
been up to that moment. However, this general idea is operationalized in very
different ways across the four categories of modifications, which I will now
describe one by one.

Adaptations: This process is central to “adaptive instruction.” This can
be a somewhat misleading term, as it actually means a differential adapta-
tion, that is, adaptation to individual differences. Of course, nothing prevents
adapting the learning activities to the level of the whole class. However, the
core idea is that all learners are different, and that the strength of digital edu-
cation is the possibility of adapting instruction to individual needs. This prin-
ciple, called “individualization,” has been central to learning technologies,
from the first drill and practice software in the 1960s to the MOOCs of today.
Adaptation can be performed by the system, by the teacher, by the learner, or
by any combination of these actors depending upon the distribution operator
(Point 15). Individualization includes predicting the future state of the learner
in order to preventively adapt activities. In digital learning environments,
adaptations have been planned; the system has rules that detect specific
learner states; for example, “xi(s)= “low-level understanding,” and that decide
what needs to be modified; for instance, increasing or decreasing the level
of difficulty. The adaptation mechanisms can be modeled as a set of if-then
rules: if X happens, change Y. The set of events that trigger an adaptation
(e.g., the specific learner states) and the set of possible modifications (what is
changed and by whom) have been specified in the design stage: the space for
adaptations is predefined. When the teacher or the learner decides on the
adaptations, this space can be a list of menu items. When an algorithm decides
on the adaptations, the space can be a set of predefined parameter values. In a
classroom, the teacher may have prepared two sheets of exercises and distrib-
utes the easy or the difficult ones to students based on their state. Two types of
adaptations are common in education graphs:

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 157

•	 Branching: selecting ai+1 among a set of predefined candidates, and in
some cases, selecting a different ai+1 for different subsets of S.

•	 Parameterization: selecting a new value for one or more parameters of the
next ai, which will determine what students will actually do in ai.

The space of predefined adaptations can be large, but it is finite. In adap-
tation, the learner path in the graph is modified; it is set to one of the paths
integrated in the graph. The graph itself and the activity definitions do not
change. This discriminates adaptations from the other categories of modifica-
tions defined in Table 6.1.

Repairs: The repair process copes with situations that have not been
taken into consideration in the design phase. A scenario rarely unfolds as it
was planned. Education is far from being an exact science. Unexpected events
occur inside the didactic space of the scenario: the explanation was too diffi-
cult for all students: the student has to collect various samples in a field trip,
but most of them brought the same sample back; two students started fighting
with each other; and so on. In addition, many unexpected external events can
perturb the learning process. Education does not happen in a vacuum. For
instance, half of the students arrive after the phase where instructions were
given, because of a train breakdown; the automatic grader (in a MOOC) has
a bug; there is so much noise outside the classroom that the teacher does not
hear the students’ questions; students are not paying attention because they
have an exam in another class right after the lesson, or because their soccer
team won the night before. My favorite example of an external event is when
a crane stops and starts to operate in front of the classroom windows, irresist-
ibly drawing the attention of all the boys in the class. In other words, the set
of events that require modification can be infinite. If one of these unexpected
events occurs, the set of possible modifications can also be infinite; like those
who use a screwdriver as a hammer, a creative teacher may invent any number
of ways to fix the problem. For the previous example where half of the class

(1)

(2)

(3)

(4)

Figure 6.1  Examples of evolution acts. This is a math class attended by students from chem-
istry and from biology. (1) Repair: The teacher realizes students are not mastering the skill and
decides to add 5 exercises for all students. (2) Adaptation: After a short lecture, the students can
choose between exercises that concern math applications to biology or exercises about chemistry.
(3) Repair: As these new exercises are not very successful, the teacher decides to skip the team
activity and to replace it with a new step-by-step explanation, which leads him to shorten the time
devoted to the final individual activity (4).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

158	 ORCHESTRATION GRAPHS

arrives late, he could make groups with 2 students who got the instruction
and 2 latecomers. For the noise problem, he will ask students to save their
questions and do the exercises in the meantime, that is, permute two activ-
ities. These “repairs” cope with unexpected events; teachers have to invent
solutions on the fly.

The repair actions are central to the concept of orchestration. Orchestra-
tion is much more than just adaptation; it includes routine adaptation, but also
pays attention to these improvised repairs without which no educational sys-
tem would work. These changes made on the fly by the teacher somehow con-
tradict the orchestra metaphor, since the conductor does not change the score
during the performance. Jazz improvisation would be more appropriate; jazz
players do not play completely freely—they also follow some kind of graph, but
have the freedom to explore the space around that skeleton. In other words,
the word “orchestration” can be somehow misleading when taken in a strict
sense, depending upon the dictionary being referred to. Therefore, it is impor-
tant to clarify that classroom management includes repairs, improvisation,
mess management, or even chaos management. The key idea in orchestration
could be captured by an oxymoron—design for what cannot be antici-
pated. As far as possible, the technology should enable the teacher to modify
any design decision at any time. This is why I often refer to orchestration as
“empowering the teacher,” which means leaving him the possibility—as often
as possible—to bypass any choice made during the design. This flexibility is
mainly a technical issue. For instance, some readers may remember that it
was easier to permute two slides during a lecture when we were using plastic
transparencies than it is now with PowerPoint. The flexibility of a graph is
hence a central concept of orchestration (Tchounikine & Dillenbourg, 2007);
it depends on the way the operators and the workflow has been designed, as
well as on the weight of the edges.

Optimization and Redesign: Let’s now move to the second column of
Table 6.1. It contains persistent improvements in the graph between two ses-
sions, that is, modifications that should make the graph more effective in the
next sessions. Improvements can be produced in two ways:
•	 Redesign: the teacher/designer uses analytics to find out what should be

changed and then, as in repairs, manually performs these changes on the
graph. The borderline between repair and redesign is shallow: a repair is a
plaster that is not supposed to stay for long.

•	 Optimization: Learning traces are automatically processed by machine-
learning algorithms in order to optimize the efficiency of the scenario. The
application of machine learning to educational environments has led to the
concept of self-improving systems developed in this chapter.

Actually, this chapter turns common practices in digital education up side
down; while adaptation is often automated, I stress the possibility for manual

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 159

repairs; conversely, while redesign is usually manual, I stress the importance
of machine learning for improving a graph over time. In the following points,
I describe the adaptation and repair processes at a certain level of abstraction;
namely, in terms of constraints satisfaction. The design of an orchestration
graph has to satisfy multiple constraints, presented in the next point. When
the scenario is being conducted, some of these constraints may be violated.
Orchestration consists in changing the graph in a way that restores satisfaction
of the constraints, and this at the lowest cost. Alternatively, the teacher may
also decide to relax some of the constraints and keep the graph as it stands.

Point 35  The constraints library

Before analyzing how a pedagogical scenario can be modified, one has to
understand the constraints that shape its design and pave its daily use. I have
mentioned the need for storing some elements of the design rationale in the
graph data structures several times. Therefore, one slot of the activity descrip-
tion is devoted to design rationale. In other fields, such as architecture and
engineering, design has been described as the search for a solution that satis-
fies multiple constraints. This can constitute an optimization issue, since con-
straints are often in conflict with each other, at least partially. For instance,
the design of a cross-country shoe has to be flexible on the longitudinal axis,
but nonetheless rigid on the lateral axis; warm, but nonetheless light; robust,
but cheap. This constraint-satisfaction perspective is also relevant for instruc-
tional design; the pedagogical scenario has to go deep into content but not for
too long, in order to be interesting for the best student, but still be feasible for
weaker students; to provide both compiled procedural skills and higher-level
thinking skills; and so on.

Now, let’s look at a specific graph has that been designed in order to satisfy
certain constraints. While the graph is running, some constraints may sud-
denly be violated: “To stay within 50 minutes,” “To keep all students ‘with
me’,” may be true at time t, but not at time t+1. These violated constraints will
require a repair action. In turn, some repair actions may actually violate other
constraints. The graph evolution process will hence be described in terms of
detecting violated constraints and repairing them. In this analysis, it is rele-
vant to discriminate constraints that are intrinsic from those that are extrinsic
to the learning processes (Dillenbourg & Tchounikine, 2007; Dillenbourg &
Jermann, 2010). Intrinsic constraints come from the processes by which peo-
ple learn. Extrinsic constraints come from the context in which education is
conducted. As in previous chapters, I have structured the set of constraints as a
library. The list of intrinsic constraints is limited to the four constraints in the
library, but each of them can be decomposed into many constraints. The list
of extrinsic constraints can certainly be expanded with many more examples.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

160	 ORCHESTRATION GRAPHS

Table 6.2  A library of constraints to be satisfied by orchestration graphs at design stage, but
also while running.

Intrinsic constraints Extrinsic constraints
Student profiles Scale

How people learn Time segmentation
Domain epistemology Discipline

Learning time Fairness
Teacher’s energy

Finances
Funding

Producing grades
Culture
Safety

Technology
Learner satisfaction

…

Firstly, instructional design aims to satisfy four intrinsic constraints,
that is, constraints that are intrinsic to the learning process of human learn-
ers—namely, who is learning what, how and for how long. In principle,
these constraints should mostly shape the design of the orchestration graph,
but also have to be respected when the scenario is conducted.

Student profiles: An orchestration graph has to maximize learning
gains for the specific set of students S. Civil engineers do not learn the stat-
ics of buildings in the same way that apprentice carpenters do. What are the
specific features of the students (S) that will engage in the scenario? What are
their prior knowledge and skills? What motivates them? Do they have specific
learning styles? To which culture do they belong? How old are they? As men-
tioned above, this constraint actually includes many variables.

How people learn: An orchestration graph has to take into consider-
ation the cognitive processes by which S actually learn. An example of this
constraint is cognitive load. Cognitive load is not a learning theory, but a con-
straint on the performance of our learning machine; simply stated, human
cognition is limited by the ability to store more than a few elements at the same
time in its working memory.1 Constructivist learning activities have been crit-
icized for neglecting this constraint; a nice exploratory learning activity may

1	 To measure your cognitive load, try to answer the following question: if Mike is
John’s brother, John is Susan’s father, Susan is married to Helmut, Irmi is Hel-
mut’s mother, Nathalie is Helmut’s niece, and Pierre is Nathalie’s brother, who is
Pierre’s grand-father? The difficulty of this question is not the understanding of
relationships, but the temporary storage of each relationship into a buffer—called a
working memory—to mentally constitute the genealogical tree of this family.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 161

fail because it requires students to keep in mind too many pieces of informa-
tion at the same time, and therefore they simply cannot carry out the learning
activity. The solution is obviously not to abandon constructivist activities, but
to design them in such a way that takes this constraint into consideration.

Domain epistemology: An orchestration graph has to take into con-
sideration the intrinsic features of the contents to be learned or skills to be
acquired. We do not learn history in the same way that we learn algebra. The
design of any effective learning scenario requires a deep understanding of the
knowledge structures that learners will have to elaborate. This does not mean
that every teacher has to have a deep knowledge of the epistemology of the
field, but rather a good grasp of the mesh described in the conclusion to Chap-
ter 2. Actually, what matters more is not the scientific field, but the specific
learning goals in the field. Many would agree with the claim “You don’t teach
computer science in the same way that you teach Latin.” Actually, the differ-
ence between these two disciplines may be more cultural than cognitive. Are
syntactic structures of Latin and XML so different from each other? There are
more difference inside disciplines (e.g., between algebra and geometry) than
between disciplines. There are differences between teaching a concept and a
procedure, and between teaching facts versus systems. It remains nonetheless
true that any good design has to rely on a deep understanding of what is to be
taught.

Time: An orchestration graph has to maximize learning gains within a
certain time budget. The time available for a specific lesson is an extrinsic con-
straint, but, at a more general level, time is actually intrinsic to any learning,
since learning refers to a difference of knowledge or skills between two points
in time. The person who decides to learn to play the guitar or to speak Farsi
probably plans on devoting some time to it. If the learning outcomes achieved
within this time budget are not satisfactory, he may either lose motivation and
drop out, or decide to invest more time. Another instance is the “cost-in-time”
of pedagogical scenarios; an intrinsic drawback of discovery learning is that
this method needs much more learning time than, for instance, lecturing. A
common solution is to use discovery methods for elements that students still
need to remember in 10 years time, to conduct lectures for elements that are
important, but not critical, and, finally, to cover the rest of the contents with
optional readings. This segmentation can be rephrased as follows: the time
devoted to learning a specific set of skills should be proportional to the impor-
tance of these skills for the students.

If education occurred in a vacuum, the designer would only pay attention
to these four intrinsic constraints. The reality is, of course, different. In for-
mal education, the institutional context generates multiple extrinsic con-
straints, that is, constraints that are remotely related to learning, but are
more related to the social and physical environment in which learning occurs.

Scale: An orchestration graph has to maximize learning gains for a given
number of students. This constraint has been presented in the introduction; a

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

162	 ORCHESTRATION GRAPHS

method that would be optimal for 10 students might be intractable for 100 of
them. The scale changes the nature of interactions between the students and
the teacher, and the type of assignments that can be graded within a reason-
able workload

Time segmentation: An orchestration graph has to maximize learning
gains despite the time segmentation. The global time budget for a scenario is
an intrinsic constraint; it is defined by the curriculum to which the scenario
belongs. However, the segmentation of scenarios into times slices (50 min-
utes, two hours or one 3-day workshop) is an extrinsic constraint generated
by our institutions; namely, by the availability of teachers and teaching rooms.
The segments of MOOC lectures in 8-to-15-minute videos could be considered
as an intrinsic constraint, since it is justified by the learners’ limited attention
span—one constraint of human cognition.

Discipline: An orchestration graph has to generate rich social interac-
tions while maintaining a reasonable level of discipline. In a physical class-
room, there is no life without a certain amount of noise. Silence is not a condi-
tion for learning. However, if the students are out of control, the teacher will
soon have problems within his classroom. I have seen examples of scenarios
that rely on interactive tabletop environments that have to be operated in the
dark. Try this with 30 children! In a MOOC, discipline issues mostly concern
discussion forums where the teacher is somehow responsible for neutralizing
insults, racist utterances, and so on. Several corporate actors that have dis-
cussed MOOCs with us were concerned by the risk of dissatisfied customers
posting forum messages that would be detrimental to the image of their com-
pany. How to smoothly manage discipline in a class may not sound like a very
interesting issue in learning sciences, but it remains a major concern for many
teachers, especially those who are new to the job.

Fairness: An orchestration graph has to adapt learning activities to
individual needs, while maintaining fair conditions for success among all
learners. This constitutes an implicit, but ubiquitous constraint on educa-
tional practices. For instance, if a team loses a member, this may—depending
upon the task—increase the workload for the remaining team members. Is this
fair? It is genuinely expected that the requirements for a certain certificate or
a certain number of credits are the same for all learners. It is accepted that the
effort to reach these requirements varies across learners, but the requirements
themselves should be stable across learners. Plagiarism and exam cheating
are examples of unfair situations, since the cheater acquires the same certifi-
cate without meeting the requirements.

Teacher’s energy: An orchestration graph has to maximize learning
gains without increasing the teacher’s workload too much. A graph may fail
because it overestimates the time available for the teacher to prepare, conduct,
or evaluate activities. We have witnessed pedagogical reforms, such as “prob-
lem-based learning,” that have been applied to ambitious curricula, but that
were stopped after 3 to 4 years, because the workload (which was fine during the

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 163

novelty phase) became unbearable when the enthusiasm faded out. In empirical
research, new pedagogical methods are often tested with teachers that are espe-
cially motivated and therefore invest an amount of time superior to what can be
expected from the whole population of teachers, or even from the same teacher,
over a longer period. This partly explains why some methods that have been
proven effective in empirical studies fail to generalize across an educational sys-
tem. This energy limitation does not only concern the teacher, but the whole
teaching team, including assistants, as well as any other actor involved. This
notion of “energy” does not only refer to the amount of time a teacher needs to
prepare or grade, but also to the amount of energy required in the classroom to
orchestrate the activities, which we refer to as orchestration load (Point 41).

Finances: An orchestration graph has to maximize learning gains for
a given budget. No need to explain that the available budget is a constraint.
The budget covers the number of teaching assistants (and therefore the global
amount of a teacher’s energy), as well as teaching resources such as books,
scientific equipment, technologies, bandwidth, consumables, and travel for
field trips.

Funding: An orchestration graph has to take into consideration the
origin of the funding that enables an educational action. For instance, it is
expected that when participants pay high fees, the rate of failure is expected
to be reasonably low. From an ethical point of view, the rate of success should
not vary between public and private schools, but the reality is different. Con-
versely, the high dropout rate for MOOCs was tolerated, because they were
accessible for free. We recently compared the MOOC strategy developed at
the EPFL and at the University of Edinburgh, two leading universities in the
European MOOC landscape. We found out that most of the strategy differ-
ences related directly or indirectly to the amount of fees paid by different cat-
egories of students.

Producing grades: Many orchestration graphs have to produce grades.
The need to evaluate (i.e., to determine the learner state) is intrinsic to learning
and to teaching processes, such as giving feedback or adaptation. However, in
many formal educational contexts, producing grades is also an extrinsic con-
straint; a teacher has to provide grades on a regular basis to comply with the
school rules. For instance, some teachers reject collaborative learning, because
their school requires an individual measure of a student’s skills. In the same
vein, parents, learners, and teachers are used to receiving physical traces of stu-
dent activities; documents, notes, textbooks, and posters are among the many
artifacts that make learning tangible, even though it is an invisible process.

Culture: An orchestration graph has to be compatible with the specific
culture of the educational context in which it is used. This culture partly
determines what can be done or not done in a pedagogical scenario. Inter-
national comparison studies, such as PISA, have to carefully avoid instances
that exclude some countries; the sentence “For Christmas, he decided to build
a snowman in the garden” makes no sense for children from non-Christian

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

164	 ORCHESTRATION GRAPHS

countries, from hot countries, or from the southern hemisphere. The culture
constrains the teaching style. For instance, starting a course with the sentence
“Let’s define S as a non-empty sequence of integers” belongs to the culture of
an engineering school, but not of a vocational college. As another example,
we encountered difficulties while using a scenario with collaborative activi-
ties in a medical school, because their first year was competitive (only the N
best students pass) and so collaboration was not part of the students’ culture.
Conversely, we encountered success when training warehouse workers with a
tangible interface, because the physicality of a tangible interface was part of
their culture.

Safety: An orchestration graph has to minimize the risks taken by learn-
ers. In formal education, teachers are responsible for the safety of their stu-
dents. Some British colleagues reported that they had to modify a great learn-
ing scenario, where students would explore a city in small teams before aggre-
gating data (e.g., noise level, pollution level) at many points around town. The
school rules prevented teachers from leaving teenagers alone in the city; so
they explored the city together and the core idea of the pedagogical scenario
vanished. In the case of MOOCs, safety mostly translates into privacy: what
is stored, where it is stored, and what is accessible to whom. This currently
raises major concerns.

Technology: An orchestration graph has to cope with the constraints
imposed by the technologies it uses. Of course, many technological constraints
exist. Some of them are trivial, such as the bandwidth or the size of a display
(e.g., it may be difficult to do complex mathematic symbolic manipulations on
a smartphone). Other technology constraints are less visible, such as the relia-
bility of automatic grading software or the flexibility of a workflow.

Learner satisfaction: An orchestration graph has to maintain a rea-
sonable level of satisfaction among learners. This constraint may sound
awkward, but it is actually ubiquitous in education. Many universities use
teaching evaluation surveys that measure student satisfaction. This process
is often criticized as a symptom of consumerism, but my experience—I have
been in charge of this for 10 years—is that student opinions are actually quite
accurate. They focus on the quality of content more than on the scenic perfor-
mance of the teacher, and their opinion is not correlated with course difficul-
ty.2 In elementary and secondary schools, user satisfaction includes parents‘
satisfaction, measured indirectly by the frequency of complaints to the school
principal. This constraint is especially strong in private schools. In MOOCs,
this is becoming a concern. Several top institutions envisage MOOCs as a way

2	 We found a correlation of r=0.14 (based on 600,000 pairs of data) between the
grade that the student gave to the teacher through a student satisfaction question-
naire and the grade that the teacher gave to the student at the exam. Easier courses
do not generate more student satisfaction.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 165

to maintain their relationship with alumni. Alumni would then receive a kind
of diploma with a maintenance clause, which means that their alma mater
will offer a regular refreshment of their expertise. Since alumni are the main
economic actors in some American university budgets, they have to make sure
that their alumni complete their MOOC with a high level of satisfaction.

Some pedagogical methods, despite being poorly justified by intrinsic con-
straints, are nonetheless widespread in formal education because they satisfy
extrinsic constraints. For instance, lecturing is ineffective from the intrinsic
viewpoint, but very efficient from the extrinsic one. Another instance where
extrinsic constraints override intrinsic constraints is team formation (π2). On
the one hand, intrinsic constraints suggest making teams of 2 to 4 students
for a convergent task, because larger group sizes lead to phenomena such as
the free rider effect (Point 21), which are detrimental to learning. On the other
hand, if there are many students in the class, extrinsic constraints recommend
forming teams of 5 or 6 in such a way that the teacher has to grade fewer
assignments—one per team (teacher’s energy constraint).

When educational researchers conduct experiments in real classrooms,
it could be expected that their methods take these extrinsic constraints into
account. However, extrinsic constraints are often partly waived in these field
studies. For instance, it often occurs that, for the sake of research, the teacher
agrees to spend more time on a topic than he normally would or to adapt the
class schedule. This means that many field studies in authentic classrooms are
still not 100% ecologically valid, that is, not fully representative of genuine
classroom conditions.

My point is NOT that extrinsic constraints are more important than intrin-
sic ones; the goal of an orchestration graph is that students learn, not to please
the institution. Let me repeat this: the goal is that students learn. However,
extrinsic constraints determine the feasibility of the graph; an efficient unfea-
sible graph is as useless as an ineffective feasible graph. Simply put, both
intrinsic and extrinsic constraints need to be satisfied. The reason I have
spent more time describing extrinsic constraints is that in the field of learning
sciences they do not have the epistemological status they deserve, compared
to their role in the success of educational practices. Extrinsic constraints are
often considered to be implementation details. I would instead suggest con-
ceptualizing them at the theoretical level in order to integrate them into the
design process, as well as into adaptation mechanisms. This is how we will
come to the notion of “classroom usability” developed in Point 42.

Since I have expressed design as a constraint satisfaction problem, adap-
tation can be rephrased as attempting to maintain or restore constraints
satisfaction, which can be done in two ways. The first way to cope with con-
straint violation is to restore constraints satisfaction, that is, to adapt the
graph in such a way that constraints are satisfied again. The alternative is to
relax some of the constraints that have been violated. For instance, if too
many students fail the exercise, adding explanations restores the effectiveness

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

166	 ORCHESTRATION GRAPHS

constraint, while postponing the deadline relaxes the time constraint. The
decision to restore or to relax constraints depends upon the nature of these
constraints. If an intrinsic constraint is violated, the priority should be to
restore it by adapting the graph. Conversely, if an extrinsic constraint is bro-
ken, consideration should first be made to relax it in order to avoid break-
ing down intrinsic constraints. Intrinsic and extrinsic constraints determine
the flexibility of a graph in different ways, as illustrated in Dillenbourg &
Tchounikine (2007).

Adaptation searches for the cheapest way to maintain or restore intrinsic
constraints satisfaction, by modifying the graph or by relaxing constraints.

Figure 6.2 illustrates this process of constraints restoration/relaxation
with ArgueGraph, the graph described in Point 13. Forming pairs of learn-
ers with opposite opinions (operator noted as 1 in Figure 6.2) is an intrinsic
constraint and should not be changed, otherwise the whole pedagogical idea
behind the graph collapses. Conversely, the final summary that students had
to produce (denoted by 2 in Figure 6.2) was partly due to an extrinsic con-
straint (producing notes) and could be skipped; for instance, if time is too
short. The flexibility of this graph is encompassed in the weight of the edges.

How do we know which constraints can be more or less relaxed or which
ones are broken if an activity is skipped? To anticipate this question, the graph
needs to keep trace of the design rationale behind each activity: what are the
set of intrinsic or extrinsic constraints associated with an activity? This design
rationale is stored in the activity’s metadata field (Point 4) and in the label
field for edges (Point 5).

Now, if in the same scenario, the teacher feels that the conflicts emerging
in the class are becoming too emotional, he may decide to form pairs with sim-
ilar opinions. This means that he deliberately violates an intrinsic constraint
(conflict generates learning) in order to satisfy an extrinsic constraint (safety);
lesson failure is more acceptable than classroom violence. Teachers should
be able to bypass any designer’s decision, because they know the context. In

Class

Team

Individual Write summary

Debriefing
lecture

Argumentation Reply

Reflect

1

2

Figure 6.2  Adaptation and constraints in ArgueGraph.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 167

terms of design, this means that any platform should encompass a “bypass”
function by which the teacher may manually modify decisions made at design
stage. This illustrates what I mean when I claim that learning technologies
should empower teachers (Dillenbourg, 2013).

Point 36  The economy of evolution
Many forms of adaptation and repair exist; the teacher may change exercises
because they are too difficult for all the students, he may reorganize activi-
ties because the class is too heterogeneous, or he may add an extra question,
because he is not sure if the students have properly understood. These various
examples do not have the same cost; for instance, in terms of teacher work-
load. To analyze these costs, I have further structured the space modifications
applied to an orchestration graph. Table 6.3 shows that various modifications
can be associated with the three axes of the modeling cube (Point 32), as well
as with the 4 categories of evolution that were presented in Table 6.2.

Table 6.3  Classifying the modifications with respect to the modeling cube.

Cube
Axes

Type of Modification

Defined
(Adaptation/Optimization)

Open
(Repair/Redesign)

Horizontal
adaptation
(time axis)

A student who reached a high score
in a1 may skip a2 and go directly

to a3.

As the average team performance is
low, the teacher decides to postpone

the exercises and re-explain the
principles with a new video.

Vertical
adaptation
(social axis)

Based on the answers to the video
quiz, the class is split into two sub-
classes. Every subclass is assigned

either standard or advanced
exercises.

Given the difficulties observed by the
teacher, he asks an assistant to work

with the three students in trouble.

Depth
adaptation

(diagnosis axis)

If the learner state reaches a nor-
malized entropy above 0.6, the sys-
tem automatically generates 3 more

questions.

If the analytics produced too much
uncertainty, the teacher will modify

the items for the next session

Adaptations or repairs are triggered if a specific learner state (Point 21)
has been detected during the activities. The criteria or parameters that trigger
evolution will be different on each axis of the modeling cube:
•	 Drift (horizontal axis): Adaptations or repairs are required if the state

of the learner is too far from what it should be in order to maintain the
effectiveness of the next activities. This increase in distance between the

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

168	 ORCHESTRATION GRAPHS

actual and desired state is referred to as “drift.” If the drift is too large,
activities must be adapted.

•	 Heterogeneity (vertical axis): Adaptations or repairs are required if
the heterogeneity of the class is too high to guarantee the effectiveness of
the next activities. In this case, the class could be split for the next activities
or new activities that reduce heterogeneity have to be introduced.

•	 Uncertainty (depth axis): Adaptations or repairs are required if the
teacher or the system has too much uncertainty with respect to the state of
learners. If it does not know whether learners are in the appropriate state
or not, the system should try to find out.

On each axis, the system or the teacher has to monitor the evolution of a
parameter (respectively, drift, heterogeneity, and uncertainty) and to modify
the graph if the value of any of these parameters passes a predefined thresh-
old. The extent to which the current parameter is higher than the predefined
threshold tells us how much adaptation is necessary. It is called the “neces-
sity” hereafter. This mechanism applies to each axis and is represented in Fig-
ure 6.3.

The necessity establishes that some modification of the graph should be
performed, but it does not determine which one. In order to choose among
several possible modifications, two other considerations have to be taken
into account: the predicted benefit and the cost of modifications, described
hereafter.

The benefit expected from an evolution, hereafter referred to as the gain or
the predicted benefit, measures how much the problem at hand would be
reduced if this modification were performed. I call it “benefit” despite the fact
that, in Table 6.3, it is represented as a reduction, because reducing a problem

Time

N
ec

es
si

ty

Evolution

Threshold

xi(S)

x’j(S)

G
ai

n

P
ar
am
et
er
s

Figure 6.3  Adaptation is triggered if one of the monitored parameters represented by the verti-
cal axis (i.e., drift, uncertainty, or heterogeneity) passes over a certain threshold.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 169

constitutes an improvement in the situation. This benefit will vary for each
axis:
•	 Horizontal axis: Will the learner get closer to the desired state after the

newly modified activity, that is, will drift decrease?
•	 Vertical axis: How much will class heterogeneity be reduced after a split

into subclasses?
•	 Depth axis: How much will diagnosis entropy be reduced after the ques-

tion is modified?

The system cannot know in advance what the state of the learner or the
class after a modification would be. This is why I call it “predicted benefit.”
Actually, the benefit of an adaptation can be predicted if transition matrices
are available. For instance, the transition matrix Mi,j and Mik can be compared
to determine how much would be gained from replacing aj by ak. However, for
a modification of type “repair,” this benefit can only be guessed.

Now, the various possible modifications should not only be compared in
terms of predicted benefit but also in terms of cost. Creating a new activity
may have a higher benefit than re-explaining the current activity, but it repre-
sents much more work for the teacher. Every adaptation or repair has a cost
in terms of the teacher’s time, energy, and money, as well as learner time,
energy, and money. The modification should be performed only if the neces-
sity for adaptation justifies these costs. If the adaptation has been integrated
in the graph as a distribution operator, the cost is minimal. If the teacher has
to split the class and quickly build new activities for a subset of the class, the
cost is higher. The cost is therefore more of a technical issue, related to the
flexibility of the technology: if the teacher has to change a sentence in a docu-
ment, the cost is much lower than if he has to edit a video.

In summary, the selection of a graph modification follows a cost/benefit
model on each axis; if the parameter bypasses a certain threshold, it creates
a need for evolution. If there is a modification that can bring the parameter
back below the threshold and if the cost is affordable, then the adaptation or
repair will be applied.

p G G(modification ()) necessity (modification ()=)) benefit (modification ())
cost (modificat

× G
iion ())G

where G is the graph and P (modification(G)) is the probability of performing
a modification.

This looks like an equation, but it is more conceptual than numerical. The
equation means that for a serious problem, there are more opportunities to
change the graph if there is an optimistic way of solving the problem, and
if this solution is affordable. We will see that some of these elements can be
measured. However, the 3 variables (necessity, benefit, costs) refer to the

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

170	 ORCHESTRATION GRAPHS

constraints described in the previous point, which were mostly described in
qualitative terms. The intrinsic and extrinsic constraints influence both the
necessity and the costs of adaptation. For instance, low participant scores
(intrinsic constraint) or a copyright problem (extrinsic constraint) determine
the necessity of modifying the graph.

In adaptive systems, the benefit can be predicted, but the costs are negligi-
ble, since all modifications have been predefined. The main cost is the risk of
violating other constraints (time, curriculum). In repairs, the benefit cannot
be predicted, and the cost can be much higher. Therefore, in the next two
points, I will elaborate on the “economy of evolution” equation for adaptations
(Point 37) and repairs (Point 38), respectively.

This “economy of evolution” equation reflects a very rational view of
education. This is indeed the perspective on education that I have main-
tained throughout the book. It can inspire algorithms, but it does not
faithfully model the reasoning of a human teacher, which is certainly
more intuitive than analytical. Moreover, if this equation is intended to
model the way teachers make decisions, it should be enriched with per-
sonality traits. An idealistic teacher would repair any problem, despite
the costs. A perfectionist teacher would try to repair, even if the benefit is
minimal. A disillusioned teacher would consider heterogeneity or failure
as natural phenomena that cannot be compensated. For a lazy teacher,
any cost could be too high. My goal with this fake equation is to isolate the
rational elements in adaptation and repair, not to predict the behavior of
teachers in a real context.

Point 37  Graph adaptations
I will now elaborate the process of adaptation, that is, choosing among pre-
defined activities or among predefined parameter values for a given activity. I
will look at adaptation from the perspective of the three modeling axes, start-
ing with the horizontal axis. A pedagogical scenario, despite having been
skillfully designed, is rarely perfect. Even if this scenario has been successfully
conducted 17 times, students vary, the context evolves, and accidents hap-
pen. Inescapably, minor problems (misunderstandings, delays, or difficulties)
accumulate and the students, individually or collectively, drift away from the
optimal path. This drift is defined as follows:
•	 x*i(s) is the desired learner state of student s at the end of activity ai.

It can be defined as the optimal state among the set of states for ai or as a
“reasonable expectation” state (e.g., I expect all students to reach “inter-
mediate” level, even if some may reach an “advanced” state). The expec-
tation varies depending upon the context; the state “being able to open
one’s parachute” is clearly a desired state before jumping out of a plane. In

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 171

many courses, the teacher would discriminate between fundamental skills,
for which he expects all learners to reach full mastery, and optional skills,
where a lower state of mastery would be tolerated. In general, x*i(s) can
be calculated as the state with the highest probability of being successful
in the next activity, as predicted by the transition matrix. The best state in
this next activity is itself the optimal state for the following activity, and so
forth recursively till the final state, defined by the learning outcomes asso-
ciated with the scenario.

•	 ∆ (xi(s), x*i(s)), abbreviated as ∆xi(s), is the drift, that is, the difference
between the state in which the learner is after ai and the state in which he
was expected to be. This difference can be positive (i.e., the student’s state
is lower than the expected state), but it can also be negative, if the student
reached a higher state than expected. Negative drifts are not a problem, but
they are worth capturing. I use ∆ instead of a subtraction3 to refer to any
measure of differences.

•	 The next element anticipates how a learner state would evolve if the next
activity was modified in a specific way: xj’(s) is the predicted learner
state after an activity aj’, where aj’ is the adapted version of aj M. ∆ (xi(s),
xj’(s)) is the predicted benefit, that is, the difference between the learn-
er’s current state and the state in which he could be after the modification
of the graph.

In some cases, students reach the expected state much later than expected,
which can be modeled (if all activities use the same set of states) as another
type of drift xi(s) =x*j(s) but i > j. This time drift can also be negative if i <
j. If this delay is shorter than the duration of ai, this won’t be modeled in the
system, since the model only considers states at the end of an activity. Again,
if time drift is a concern—actually a frequent issue in lecturing—the activity
should be broken up into subactivities.

If drift passes above a certain threshold, the student or the class will even-
tually reach a point where activities are not appropriate anymore. Drift on the
horizontal axis leads to adaptation on the same axis—changing the current
or the next activity. A positive drift may trigger adaptation operators such as
lowering the level of difficulty or re-explaining the prerequisites. A negative
drift may also trigger adaptation; for instance, increasing the level of difficulty
or skipping some learning activities.

The economy equation presented in the previous point has 3 parameters,
necessity, benefit, and cost. Table 6.4 presents the values of these parameters
for adaptations of the horizontal axis.

3	 A subtraction would only apply to metric states, while this book mostly referred to
discrete states.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

172	 ORCHESTRATION GRAPHS

Table 6.4  Parameters of the economy of adaptations equation on the horizontal axis.

Parameter Description of this parameter for the horizontal axis

Necessity The necessity is the drift ∆xi(s): the further the learner is from the desired
state, the more it is necessary to change something.

Cost The cost of adaptation is minimal, since, according to my definition of adap-
tation, these modifications have been predefined: the modification has to be
decided, but applying it requires no effort. There can, however, be collateral
costs due to the fact that the modification violates other constraints, such as
the total time available.

Predicted
benefit

The predicted benefit is the reduction of drift after the adaptation, if this
adaptation is to replace aj is by ak as the next activity:

(∆xi(s) – ∆xj(s)) – (∆xi(s) – ∆xk(s))

The predicted benefit can be calculated as a subtraction if the states are
numerical values, such as a performance score. If modeling relies on a set of
discrete states, it can be calculated in the way my following example outlines.
I have looked at a simple case where the teacher has to choose between two
activities that have already been used in the past, aj and ak, which means that
two transition matrices are available, Mij and Mik (Figure 6.4). They have the
same utopy value for the whole class (Point 24), but the data are distributed
differently over rows. If a learner encountered difficulties in ai, (xi(s)=”diffi-
culties”), his possible transitions are located in the second row of each matrix.
The second row of Mij is more pessimistic than the second row of Mik in
which this learner has a 40% chance of improvement (p(x’k(s)=”medium”)=.3
+ p(x’k(s)=”good”)=.1). The teacher should therefore select ak for a learner
who has difficulties. Conversely, if the learner was fine in ai (xi(s)=”good”),
the fourth row of Mij is more optimistic than the second row of Mik in which
there is a probability of 30% that the learner will end up with a lower state
(p(x’j(s)=”medium”)=.3). This could happen if ak was so easy that the best
students in the class got bored. In summary, if transition matrices enable pre-
dictions, the rational decision is to choose the next activity that has the most
optimistic prediction.

It could be argued that predicting the state of the learner in the next activ-
ity is not so important, since what matters is the final state, or whether the
learner will reach the learning goals of the scenario. If the learner is in state
xi(s), which according to the Mi,i+1 is related to xi+1(s) (and which is itself pre-
dictive of xi+2(s)), the final learner state xend(s) can be recursively predicted
and the necessity of changing the next activity can be decided on. It would—
mathematically speaking—make sense to calculate predictions up to the final
state, but as education is not an exact science, I am not optimistic that accu-
mulating uncertainty over several transition matrices will produce accurate
predictions.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 173

Let’s now consider the vertical dimension of the modeling cube—the
social heterogeneity. In rare cases, drift can be the same for all students; for
instance, if nobody found the correct answer. However, in most cases, drift is
not the same for all learners. So, drift also leads to an increase in class heter-
ogeneity on the vertical axis: σ{x1(si), …, xi(sn) } where n is the number of stu-
dents in S and σ is any measure of dispersion on the set of individual states. If
the differences among learners grow, they will eventually reach a point where
what is suited for one subset of the class is no longer suited for the rest of the
learners. In actual fact, a typical form of class heterogeneity is not a Gauss-
ian distribution with a large variance, but rather a bimodal distribution. This
corresponds to a frequent discourse among colleagues, such as, “There are
actually two subsets of students in my class; those who have no problem at
all and those who struggle to pass.” In many other cases, colleagues report a
trimodal distribution; “Those who don’t need me, those who have no chance,
and, in the middle, those for whom I work.” The most obvious adaptation
is to split the class into two or three subclasses and give them parallel inde-
pendent activities, as explained in Point 8. For instance, in a language class,
the adaptation could be to split the class into native and non-native speakers,
which enables activities that suit the needs of both levels.

The economy equation presented in the previous point has 3 parameters,
necessity, benefit, and cost. Table 6.6 presents the values of these parameters
for adaptations of the vertical axis.

Now, reducing heterogeneity is not the only choice. In the language class
example, the graph can form pairs of students—a native speaker with a
non-native speaker—so that the one who is fluent will help the one who faces
difficulties. Therefore, the social operators that adapt the graph are not only
able to minimize heterogeneity, but can also optimize it, that is, find the level

Mij Lo
st

D
iffi

cu
lti

es

M
ed

iu
m

G
oo

d

Br
ill

ia
nt

Mik Lo
st

D
iffi

cu
lti

es

M
ed

iu
m

G
oo

d

Br
ill

ia
nt

Lost 0.8 0.2 0 0 0 Lost 0.6 0.3 0.1 0 0

Difficulties. 0.3 0.6 0.1 0 0 Difficulties 0.1 0.5 0.3 0.1 0

Medium 0 0.1 0.6 0.2 0.1 Medium 0 0.1 0.5 0.3 0.1

Good 0 0 0.1 0.6 0.3 Good 0 0 0.3 0.6 0.1

Brilliant 0 0 0 0.1 0.9 Brilliant 0 0 0.2 0.3 0.5

U(M) 0.04 U(M) 0.04

Figure 6.4  Predicting the future state of a learner in order to choose between two activities.
U(M) is the utopy index of the matrix (Point 24).

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

174	 ORCHESTRATION GRAPHS

of heterogeneity that produces the richest interactions. I stress the words
“optimize heterogeneity” instead of “maximize” because, beyond a certain
threshold, heterogeneity may lead to the emergence of negative phenomena
such as the free rider effect (Point 21).

Finally, adaptation also occurs in the depth axis of the cube. Table 6.5
presents the values of the 3 equation parameters for adaptations of the depth
axis.

Table 6.5  Parameters of the economy of adaptations equation on the depth axis.

Parameter Description of this parameter for the depth axis

Necessity The necessity for adaptation is the uncertainty regarding the current state
of the learner(s). If the teacher or the system has too much uncertainty
to make a decision, he/it has to modify the diagnostic process; namely,
by asking an additional question or rephrasing an existing question. In
Point 31, the uncertainty was calculated as the normalized entropy of the
vector made from all possible learner states. This applies both for an indi-
vidual learner and for a class of learners. Now, what is the acceptable level
of entropy between 0 and 1? This question cannot be answered in general
terms, but only empirically. There are activities where entropy can be tol-
erated, because whatever the state of the learner is in ai, it will not greatly
affect aj, according to Mij.

Cost The cost of adaptation is low if the adaptive system has a library of addi-
tional questions or tasks available, or if the system includes disambiguation
mechanisms as in some computational models of dialogue (Traum, 1999).

Predicted benefit The benefit is the diagnosis power of the new question (Point 31); for
instance, “Is this clear?” does less to reduce uncertainty than “Which of
these examples contradict the definition?” The benefit is therefore the
decrease in uncertainty provided by an additional diagnostic act, that is, the
difference in entropy after the adaptation, if this adaptation is to replace aj
by ak as the next activity:

(H(Xi(S)) – H(Xj(S))) – (H(Xi(S)) – H(Xk(S)))

Table 6.6  Parameters of the economy of adaptations equation on the vertical axis.

Parameter Description of this parameter for the vertical axis

Necessity The necessity is the dispersion of the class or the distance between modes in
a bimodal or trimodal distribution.

Cost This adaptation has a low cost if the graph includes subclass activities, and if
there is a distribution operator (Point 15) that partitions class S into {Si} in
such a way that reduces the heterogeneity of individual states within each Si.

Predicted
benefit

The predicted benefit is the difference in variance between the whole class
and the split classes.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 175

Point 38  Graph repairs
Repairs are the modifications of the graph that were not anticipated at design
time, but are performed on the fly by the teacher. Let’s again consider the
three variables of the economy equation, the cost/benefit ratio. The necessity
to repair the graph will be the same as for adaptations, and this is the case for
each of the 3 cube axes. The benefit that can be expected from a repair cannot
be predicted, since the modified activity, by definition, is new and therefore
no transition matrix is available. Intuitively though, an experienced teacher
could anticipate some benefits. The key variable in the “economy of repair” is
therefore the cost of a modification. The cost of a repair is determined by the
flexibility of a graph, that is, the amount of effort necessary to modify it. This
implies some pedagogical and technical flexibility.
•	 The pedagogical flexibility is determined by the intrinsic constraints; if an

activity is changed, how will this increase or reduce the probability that
students learn what they have to learn? The weight of an edge indicates
how necessary one activity is for the next one: skipping ai will be less det-
rimental if ωij is low. For instance, skipping a prerequisite activity is more
risky than skipping a motivation activity. The cost can also be estimated
by the extent to which extrinsic constraints are violated; for instance,
increasing the duration of an activity can either reduce the time devoted
to another activity or modify the total time budget of the scenario (what I
called “relaxing the constraint”).

•	 The technical flexibility of the graph refers to the energy required for chang-
ing it; even if the activity could be modified from a pedagogical viewpoint, it
is sometimes difficult to change the technology. Some technical choices in
the construction of a workflow can be antagonist to flexibility—workflows
were invented for automating processes. Since operators transform data
structures into other data structures, they can’t be permuted randomly
without a risk of breaking data consistency. If an aggregation operator col-
lects the products of four learners, A, B, C and D, in order to compute A+B/
C+D, what happens if D is missing? It is a challenge for computer scientists
to develop operators with a level of abstraction sufficient for substantial
flexibility.

Figure 6.5 illustrates how we increased the technical flexibility of a work-
flow operator, within an online CSCL environment called ManyScripts (Dil-
lenbourg & Hong, 2008). This feature was part of the graph ConceptGrid
(Point 19). The window shown in Figure 6.5 enables manual repair (by the
teacher) of team composition. For instance, if 16 students have to form teams
of 3, what should we do with the 16th student? What if a student drops out
in the middle of the teamwork? ManyScripts allows the teacher to cope with
these constraints with the buttons on the right hand side of the window in

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

176	 ORCHESTRATION GRAPHS

Figure 6.5. If there are fewer students than roles, ManyScripts suggests the
“spy” feature—if role 3 is missing in Team 33, this team may borrow the defi-
nitions produced by any student who is playing role 3 in another team. If there
are more students than roles, ManyScripts allows the teacher to choose the
“joker” feature—the extra student(s) will have the right to choose any of the
already distributed roles in his team. If the team has 9 concepts to define,
but includes 4 members instead of 3, they can freely decide how to distribute
the workload among themselves. These solutions are not perfect, as because
workload is somewhat uneven within or between groups, this may violate the
fairness constraint. However, they enable the teacher to continue the scenario
despite unexpected events (e.g., a student dropout). This is an example of the
teacher’s bypass function presented in the previous point.

On the diagnosis axis, the cost of a repair is the time spent by the teacher
or the students for collecting the additional behavioral information required to
reduce uncertainty. “Is this clear?” is often used despite its low benefit, because
it takes 2 seconds, while “Write a summary” provides a fine diagnosis, but takes
time both for the student and for the teacher who grades it. An interesting way

Spy

Jo
ke

r

Figure 6.5  Examples of flexibility tricks for group formation in ManyScripts.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 177

to implement diagnosis repair is the so-called open learner model (Bull &
Kay, 2010), that is, the possibility for learners to access the information the sys-
tem inferred from their behavior and to repair it—to modify it—if they consider
it wrong. Moreover, inviting students to control how their own cognitive state is
modeled by the system constitutes an opportunity for reflective activities. This
self-repair is an interesting activity for the development of metacognitive skills.
Actually, in proper communication settings, humans are quite good at detect-
ing if they have been misunderstood and in repairing the conversation if that is
the case. This phenomenon has been investigated in psycholinguistics, where
models of mutual understanding discriminate two ways of repairing misunder-
standings4 (Clark, 1996). If A has too much uncertainty of what B meant, A asks
a clarification question. Conversely, B may repair dialogue by rephrasing what
he said. This repair requires B to build a representation of how A understood
what he meant. This may sound sophisticated, but I have heard learners com-
menting on their interactions with the computer: “It thinks that I believe this,
but this is not what I believe.” The possibility of detecting and repairing mis-
understandings is related to the features of the communication medium; Clark
& Brennan (1991) analyzed several medium features that influence the cost of
grounding. One key feature is that the people who communicate with each other
have a shared workspace that supports deictic gestures; the learner points to
an object with a gesture or a mouse cursor to disambiguate what he meant by
“here” or “it.” This refers to the first key finding in CSCL: the critical design
factor for an interface that supports collaboration is less the epistemic truth of
the graphical representations than the ability for learners to refer to interface
objects in order to detect and repair misunderstandings (Roschelle, 1992).

Point 39  Self-improving systems
As defined in Table 6.1, I call ‘optimization’ the process by which systems
improve their effectiveness or their teaching resources. In the past, I developed
and tested a self-improving system (Dillenbourg, 1989). The system taught
geometrical concepts by systematically varying the learning activities—10
activities being available for teaching each concept. It recorded the student’s
profile before each activity and immediately measured the activity’s effective-
ness by testing the concept to be learned. The system used machine-learning
algorithms to discover which student profile was predictive of the effectiveness
of each method. At that time, symbolic machine-learning methods were rudi-
mentary, and the sample size was too low to produce any robust results. This
research direction faded out rapidly. However, three decades later, machine

4	 For instance, Naël indicates to Savita that he lives in Geneva, and Savita confuses Geneva with
Genoa, in Italy. When she replies, “I love Italy,” Naël understands that Savita misunderstood
him. Naël has naturally built a representation of how Savita understood what he said. This
triggers the dialogue repair.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

178	 ORCHESTRATION GRAPHS

learning has become very powerful, and MOOCs provide wonderful sample
sizes. I expect this topic to receive renewed attention in the near future. The
term “self-improving system” is, however, a bit misleading. Machine-learning
algorithms have to be run many times, manually trying various parameters
and thresholds, before getting interesting results. Moreover, these interesting
results will have to be filtered by human judgment. In other words, the machine
does not really operate the improvement process in an autonomous way.

The modeling language I proposed for orchestration graphs supports this
optimisation, since the transition matrices store the information collected
from every activity with every learner. As data accumulate in the transition
matrices, the prediction based on these matrices will become more accurate,
which should enhance the efficiency of the digital learning environment in a
similar way to how a teacher accumulates experience.

My goal in formalizing pedagogical scenarios is to even go beyond this accu-
mulation of experience. Evolutive systems should discover new states as clusters
of learner states, and refine the decision process with new rules that associate
a state with a learning activity. The formal description of states and transitions
aims to connect education with machine learning. Supervised machine-learn-
ing algorithms may discover data patterns where the final output can be classi-
fied as being positive or negative. This is the case with orchestration graphs, for
instance by dichotomizing post-test scores into “pass” or “fail.”

Now, machine-learning methods find relationships between variables,
but do not establish any causality between them. Correlation is not causality.
Analytics won’t contribute to educational theories (which require causal pro-
cesses) without being combined with controlled experiments. The formalism
of graphs could allow us to precisely describe the nature of the intervention
(which elements of the graph are being manipulated) and to include experi-
mental comparisons in the graph.

The basic idea behind the experimental methods used in educational
research is to compare the learning gains of students who followed method A
versus those of students using method B. This comparison can be integrated
into the graph (Figure 6.6 and Figure 6.7). If A is the new method, it’s called
the “treatment” and the subjects who follow it are called the “experimental
condition,” while the group following the standard method is called the “con-
trol condition.” Figure 6.6 and Figure 6.7 present two typical experimental
designs. In both designs, students start with a pretest (a1), and subjects are
assigned to the experimental group or to the control group. The edge operator
may assign them randomly to one of the two groups or structure the assign-
ment with “stratified sampling” based on pretest results. For instance, subjects
may be classified as “good,” “medium,” and “low,” and the sampling method
makes sure the ratio of each category is the same in the experimental group as
in the control group (see distribution operators, Point 15). It is also possible
to include a questionnaire in the pretest and to balance the two groups with
respect to gender, age, background, and so on.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 179

In the “between subjects” experiment design (Figure 6.6), subjects from the
control and the experimental groups perform different activities, respectively,
a2.1 and a2.2. The differences between a2.1 and a2.2 are the “independent varia-
bles” or factors. Their effect on learners is measured through a post-test (a3).
The variables differentiating performance at this test are called “dependent
variables.” A delayed post-test is sometimes used to see how much is retained
1 hour, 1 week, or 6 months later.

The “within subjects” experiment design (Figure 6.7) follows the same
approach for the first phase as the previous one, but students switch activities
for the second phase, usually to task (a4), which is as similar as possible to the
first task (a2). All students pass through both conditions, which implies that
the differences, in effect, between methods A and B are not due to the differ-
ences that might emerge between two subsets of the class, despite random
sampling. This design requires fewer subjects and is ethically more accept-
able; if our hypothesis predicts that method A is more effective than method
B, it’s unfair to assign students to method B. This method guarantees that
all subjects benefit from the most effective method, A. Half of the class does
A before B and B before A in such a way to neutralize the order effect, but
this often generates results that are complex to interpret. This within-subjects
approach is very hard to apply when the experiment plan includes multiple
factors or independent variables.

a1

a2.a

a2.b
a3

a4

a5

a6

Delayed post-test

Post-test Pre-test

a1
a2.a

a2.b

 Phase 1

a5

Post-test 2

a4.b

a4.b
Pre-test

a3

Post-test 1

 Phase 2

Figure 6.6  “Between subjects” experimental design.

Figure 6.7  “Within subjects” experimental design.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

180	 ORCHESTRATION GRAPHS

Point 40  Participatory graphs
This point develops a special case of self-improving systems in which the evo-
lution does not result from a learning algorithm system, but instead comes
from the students’ contributions to the contents of the course or the MOOC,
a socio-constructivist idea close to cMOOCs. MOOCs provide spectacular
ways of collecting information in a structured and scalable way. The mode-
ling language orchestrates this participation process. Graph operators enable
the collecting of examples, pictures, or cases studies, which capture what the
employees of a company think or the citizens of a country want. I illustrate
participation mechanisms with a MOOC on geology (Figure 6.8).

After the introductory lecture (a1), the 10,000 students are asked in a2 to
upload 2 pictures of erosion that they have taken in their surroundings. They also
have to enter the coordinates of the place where the photo has been taken. Oper-
ator 1 collects the pictures, classifies them by location, and removes all pictures
that are of bad quality, too fuzzy, or that contain human faces, pornographic ele-
ments, and so on. From the 20,000 collected pictures, let’s assume that 15,000
are usable. Operator 2 randomly selects two pictures that have been taken in
different part of the worlds and gives them to pairs of learners. They have to
classify the pictures as examples of “geological erosion” versus “accelerated ero-
sion.” They also have to rate the quality of the image. Operator 3 aggregates
pictures into 3 categories: those for which there is over 90% agreement that the
picture shows geological erosion, those with the same unanimity for accelerated

a3 a1

a2

a3

a4
Op1

Op2 Op3

Figure 6.8  Collecting and filtering new teaching material.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 181

erosion, and those that led to disagreement. In the newly formed subsets, each
of which includes maybe 5,000 pictures, the third operator keeps the 10% of
pictures with the highest quality ratings. The teacher finally obtains a database
of 1,000 high quality pictures. He can also further analyze the examples that
have been rejected due to a lack of consensus, since their analysis might reveal
why students have difficulties discriminating between the two concepts.

This example has a pedagogical goal, but the process can go further.
Imagine that the participants are not worldwide learners, but the employees
of the company. The participants of a MOOC on management have to upload
examples of suboptimal processes in the company. As the end, beyond the
value in the course itself, it could be very worthwhile for the company man-
agement team to analyze these examples. MOOCs can become both a training
tool and an information-collecting tool, provided that individual privacy is
treated carefully. This participatory approach may appear slightly idealistic.
Actually, from talking to many chief learning officers from large European cor-
porations, I have noticed their considerable interest in these forms of training,
where top-down delivery of contents is enriched with bottom-up collection of
information. In addition, managers appreciate the benefit their company may
expect, if its employees, sales networks, or even customers feel empowered as
knowledge contributors. In this approach, similar to that of cMOOCs, training
is no longer treated as an activity different to work; it removes the boundary
between training and working. Orchestration graphs implement these partic-
ipatory scenarios, making them more manageable.

If we extend the same data collection idea to a local, regional, or national
community of citizens, these educational graphs could lead to new forms of
democracy being invented. An intensive argumentation cannot occur in a
forum with 30,000 participants. The easiest way to scale up is to simplify
interactions; for example, voting, where citizens can only choose among exist-
ing proposals; they cannot propose new ideas unless they engage in politics.
These graphs could support methods by which 200,000 citizens jointly build
a proposal in the same way they processed the geology pictures.

Point 41  Orchestration load

Orchestration load is the sum of two sources, workload and cognitive load.
The workload is the amount of energy necessary for running the scenario,
monitoring the state of all learners, and adapting and repairing the graph.
The teacher’s cognitive load refers to the quantity of information the teacher
needs to process and temporarily store; for instance, in order to think care-
fully about what he will say (e.g., lecturing on a complex topic), or to infer the
state of the learners plus the costs of adaptations and repairs, which have been
described in the previous point.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

182	 ORCHESTRATION GRAPHS

The concept of cognitive load is simple and intuitive; our working mem-
ory can only store a limited number of pieces of information at the same
time. If humans were computers, we could say that our hard drive is unlim-
ited, while our RAM is limited to a few elements. I mentioned in Point 35 my
criticisms against scholars who use cognitive overload as an argument for
pedagogical fast food. Simply stated, learning is the side effect of process-
ing information, and any information processing inevitably implies some
cognitive load. Writing the summary of a lecture is a more intense process-
ing of information than listening to the lecture, hence a higher cognitive
load, but it should lead to higher learning outcomes. Now, I consider the
concept of cognitive load useful for describing the teacher’s activities and
understanding the acceptance of technologies in classrooms.

Let’s consider a teacher who is in front a class of 30 pupils. His load
includes reasoning on the contents, following the graph activities, managing
time constraints, managing discipline, monitoring the state of the students,
adapting and repairing the graph, and so on. If any slot remains available in
his limited working memory buffer, he might add some instances of humor.
Let’s consider a single task among these many parallel tasks: “Monitoring the
state of the students.” If every learner state is defined by 3 variables such as
“attention: high,” “motivation: low,” “understanding: low,” this means that
the teacher needs to have 90 information pieces permanently available to fol-
low his whole class. This is far from what empirical studies have established
as the maximal capacity of the working memory: 7 ±2 units. These two values,
9 versus 90 pieces of information, are actually not incompatible because the
“unit” of the working memory is undefined. For an expert, a unit can be a rich
structure such as a disease, its mechanisms, its symptoms, and its treatment.
Experienced teachers probably develop similar rich structures that allow them
to condense information. I will risk an analogy with methods for compressing
images: how can we reduce the file size of an image without a major loss of
quality? Here are three answers to this question:
•	 Depth reduction: The file size of an image can be reduced by minimizing

the amount of information per pixel, or pixel depth: one bit of information
allows 2 colors, 2 bits 4 colors, n bits 2n colors. To minimize orchestration
load, the multiple features used for describing a learner can be summa-
rized by a single pattern (e.g., “smart-lazy,” “meticulous-but-limited,”…).
In large data sets, such as those generated by MOOCs, these patterns can
be extracted from multiple variables by using techniques such as princi-
pal component analysis (PCA). In image compression, such a method is
called “lossy” since some data are lost and the final image is less accurate.
However, it may be that the difference in quality is not noticeable by the
eye looking at the picture. Similarly, in the classroom, the teacher using
this kind of pattern could lose details about individual differences, but this
would have no impact on the next decision to be made.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 183

•	 Spatial compression: If all pixels within an n × m pixel-wide area of a
picture are the same color, the information about the n  ·  m pixels can be
replaced with the information about one pixel and the parameters that
define the area. To minimize orchestration load, a teacher who is in front of
a whole lecture theatre; for instance, could also do spatial compression by
replacing n students by “the last two rows.” Other categories of students
could be used to reduce information about the class, such as the chemists
versus the biologists, the first year students versus the second year ones,
the boys versus the girls, or the native speakers versus the others.

•	 Time compression: In a movie, if two successive images are very similar,
the system may store only the first one and then the differences between
the first and the second one. This may apply to n images. To minimize
orchestration load, the teacher may only keep the relevant changes of state
in the classroom in his working memory.

Every human task requires some cognitive load, teaching being one of
them. This is not the point. My point is that orchestration load is a key cri-
terion to understand why technologies are accepted or not by teachers. For
instance, while lecturing on a tablet whiteboard, it can be very demanding to
use all the options (changing tools, pen color, pen size, …), while concentrat-
ing on the discourse. If a teacher uses two interactive tables in his classroom,
each with 5 learners, he may still have 15 learners left to manage while wait-
ing. He will eventually find a way to orchestrate this class, but this requires
an extra effort. I hypothesize that orchestration load partly explains the low
rate of acceptance for many learning technologies. Despite 30 years of rich
development, these technologies are still mostly underexploited in schools.
Many scholars claim that this slow development is due to teacher’s traditional
resistance to new things. But why would a teacher not use the technology they
use in their everyday life in their classroom? I believe instead that the design
of these technologies often increases their orchestration load, to a point where
the technology is simply too painful to use.

The corollary is that the design of a learning technology should strive for
minimizing the teacher’s orchestration load. I illustrate this with a device
called Lantern (Alavi et al., 2009). We observed that, in our university, exercise
sessions are often orchestrated in a suboptimal way. Students typically work
in teams of 2 or 3, receive a list of exercises, start to do these exercises up to
the moment where they need help from a teaching assistant (TA), and then
raise their hand. While students are waiting for the TA, many don’t continue
searching for a solution. Instead, for 62% of their waiting time, they visually
track the TA to make sure they grab him as soon as he is available. Therefore,
we developed a very simple device (Figure 6.9) that each team puts on its desk.
The color of the device indicates which exercise the team is working on. When
a team moves to the next exercise, it rotates the cap of the Lantern and the

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

184	 ORCHESTRATION GRAPHS

color is updated. At a glance, the TA knows the position of each team within
the series of exercises. Once a team starts a new exercise, only the lowest LED
of the Lantern is on, but as they spend more time, the higher the LEDs will
turn on. This allows the TA to let teams try to solve the problem by themselves
before offering help. When a team needs help, it pushes on the Lantern top,
which starts blinking, first slowly and then faster and faster. Alavi tested the
Lantern in classrooms and observed that the time wasted while waiting for the
TA, decreased from 62% to 6%.

The Lantern clearly illustrates the notion of orchestration technology; the
tool does not change the learning activity, per se, as it remains the same, but
instead optimizes the orchestration of the activity. In terms of orchestration
load, the Lantern acted as an information buffer. Without a Lantern, a TA sees
hands rising here and there, and he has to remember who was first (which he
often forgets), who is late in the sequence of exercises, and so on. The Lan-
tern actually gathers this information for each team, and by glancing over the
classroom, the TA can perceive the state of the whole class. The Lantern can
be described as an orchestration prosthesis, an extension of the TA’s working

Figure 6.9  Various states of the Lantern. A color state corresponds to a learner cognitive state
at π2 (usually it corresponds to a team of 2 to 4 students). The Lantern displays 4 pieces of infor-
mation that describe the team’s state: the exercise they are currently working on, the time spent
on this exercise, if they asked for help, and how long ago.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 185

memory embedded into a physical device. Another orchestration prosthesis
was developed by Raca & Dillenbourg (2013): the system uses computer vision
methods to measure the attention of all learners in the class and provide the
teacher with a synthetic account of their attention. As would many prostheses,
an attention meter will probably be useless for an experienced teacher, but
useful for those with lower skills, which could be progressively internalized.

The Lantern can be viewed as a dashboard that has been distributed over
space. A dashboard is to teachers what a cockpit is to aircraft pilots: it summa-
rizes all the necessary information so that the orchestrator, teacher, or pilot,
can make decisions quickly. Several colleagues have developed dashboards for
online education. Producing visualizations from analytics is a great domain
for research. The same approach applies to physical classrooms.

Do Lenh et al. (2010) developed a real time orchestration tool for teachers
in a vocational school. The learning activity was conducted with an augment-
ed-reality environment. The students were logistics apprentices, studying how
to optimize storage and the transportation of goods in a warehouse. Apprentices
used an interactive lamp, called TinkerLamp (Figure 6.11), developed by Zuffe-
rey et al. (2009). They built a warehouse through a tangible interface, namely
placing plastic shelves on the table. The camera situated in the lamp captured
the position of the shelves, via two mirrors, and the beamer overlaid information
(the simulation of the warehouse); the learner could then see forklifts operating
between the shelves and the trucks that came in and out the warehouse. Typi-
cally, four TinkerLamps were used in the classroom, which made the orchestra-
tion pretty difficult. Therefore, Do Lenh developed a dashboard (Figure 6.10) in
order to facilitate orchestration. The dashboard displayed the warehouse cre-
ated by each team, as well as various parameters that summarized the perfor-
mance of these warehouses. The teacher could use the dashboard to automati-
cally compare the performance of two warehouses—comparisons that are useful
for debriefing lectures, but difficult to calculate without a tool. This dashboard
therefore included an aggregation operator (Point 13). The classroom workflow
connected the four TinkerLamps and the teacher projection device.

Actually, a dashboard or any other orchestration tool provides more infor-
mation to the teacher and invites him to perform more operations. Does it
really offload the teacher or does it instead increase his orchestration load?
The field of information visualization is a great space for creativity, but I must
say the usefulness of the visualization is often neglected in favor of its sophis-
tication or aesthetics. How can analytics visualization really facilitate orches-
tration? I illustrate the notion of relevant visualization with the TinkerLamp
example. Through several empirical studies, Do Lenh et al. found that the
warehouse simulation was almost too engaging: students built a specific ware-
house, ran the simulation, changed the layout, ran the simulation again, and
so on. Running many experiments does not generate learning outcomes with-
out some kind of reflection activity, that is, a moment where students try to
understand why one warehouse layout worked better than another. Therefore,

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

186	 ORCHESTRATION GRAPHS

knowing how many changes students performed on their warehouse and how
often they ran the simulation was precious information for the teacher. This
information was represented on the dashboard by the yellow to red color
scale (Figure 6.10). It was directly relevant for any important orchestration
act, engaging students into reflective activities (e.g., explaining, comparing,
predicting). Actually, classroom response systems (or clickers) also constitute
good examples of simple, but useful, dashboard systems.

Point 42  Classroom usability
Usability is a key concept in human-computer interaction. It describes how
easy it is to learn and to use a technology. Usability is not simply about design-
ing nice looking interfaces or increasing user satisfaction. It also aims to under-
stand why some designs trigger, for instance, many user mistakes, while other
designs quickly make the user effective at his task. A piece of software that
generates a high cognitive load for the user will be difficult to learn, and will
generate stress and mistakes, which will eventually lead to low acceptance. The
analogy with orchestration load is obvious. A piece of learning technology that
generates a high orchestration load will also generate stress and errors, and
end up with low acceptance. This analogy prompted the notion of classroom
usability (Dillenbourg et al., 2012); it is a measure of the extent by which a
learning technology facilitates the orchestration of pedagogical scenarios by a
teacher. For instance, we noticed that paper-based interfaces made pedagogi-
cal scenarios easy to orchestrate, for reasons that are explained below.

Figure 6.10  An orchestration dashboard for the TinkerLamp scenarios.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 187

Let’s consider tablet computers. For the learner who interacts with a tablet,
this device has a great usability; it’s easy to learn and to use, providing that
no long text entry is required. Conversely, for the teacher, the same tablets
make orchestration more difficult. If the learners are using the devices, and
the teacher wants their attention before giving a short collective explanation,
it may take up to 2 minutes to have all the students “with him.” If this epi-
sode occurs 5 times during a 50-minute-long lesson, it represents 20% of the
learning time. In other words, the same technology may have high usability
from an individual viewpoint, but a low usability from the classroom perspec-
tive. This explains why we distinguish three planes of usability (Dillenbourg et
al., 2011): the individual, the team, and the classroom. They match the three
lower planes of our orchestration graphs. We defined classroom usability as
the third plane of usability (π3).

These three planes of usability differ in terms of who is considered as “the
user”: it can be an individual person at π1, a team at π2, and the classroom at
π3. Each plane can also be defined in terms of constraints.
•	 At π1, the constraints are the individual’s cognitive load, his background

knowledge, experience, or motivation.
•	 At π2, the constraints are related to the team’s need to build enough shared

understanding to carry out the task at hand, the peers’ degree of interde-
pendence, or the possibility or not of having synchronous interactions.

•	 At π3, teachers have to cope with the constraints listed in Point 35. The
classroom usability of a learning environment is inversely proportional to
the orchestration load it generates.

I illustrate this third plane of usability with three examples. The first pic-
ture (Figure 6.11) describes a classroom where 23 apprentices are working on
four TinkerLamps (see Point 41). One peculiarity of this picture is that each
lamp has a different color. Why would the color of a computer have any role

Figure 6.11  Why does the color of computers matter?

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

188	 ORCHESTRATION GRAPHS

beyond marketing and sales? At π1, the color of the device has no influence on
individual interactions. At π2, the color is no more relevant for teams interact-
ing with the TinkerLamp. It is only at π3 that the color plays a role; it allows
the teacher to easily refer to any team during the lesson, by mentioning the
color of its device. This helps the teacher to manage the learning processes,
to intervene rapidly, and to control his class (which correspond to extrinsic
constraints, such as minimizing teacher’s workload and managing time). This
is not a significant breakthrough in design, only a simple example of what is
meant by the third plane of usability.

The second picture (Figure 6.12) compares two designs of the TinkerLamp
hardware. Functionally, both designs are equivalent: they include a beamer, a
camera, some mirrors and a computer that runs the same software. The learn-
ing activities are the same at the planes π1 and π2, but a difference appears at
π3, in terms of orchestrating the class. In a classroom made up of 18-year-old
apprentices, the left-hand-side model violates an extrinsic constraint, main-
taining discipline, because it interrupts the teacher’s line of sight. A good
teacher has to visually scan the class on a regular basis to monitor learner
states, and this is difficult if some apprentices are hidden behind the lamp.
Conversely, in Swiss elementary classrooms, there is usually a small corner,
with a book shelf, a sofa, and a computer, where from time to time the teacher
can send one or two pupils to carry out individual exercises or teamwork on
the computer. In this context, where discipline is less of an issue, the black
model creates an intimacy that allows the pupils to concentrate on a task dis-
tinct from the activities of the rest of the class. In other words, the shape of
this device mainly affects the third plane of usability.

The third example is also related to the TinkerLamp. As I mentioned earlier,
the apprentices tended to manipulate the simulation too often, without much

Figure 6.12  Two designs of TinkerLamp that differ at the 3rd plane of usability. Left lamp design
by D’Esposito & Gaillard; right lamp design by Y. Guibinelli.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 189

reflection. Apprentices did not spontaneously analyze the performance of their
warehouse layouts. The role of the teacher was to engage them into reflective
activities. In terms of orchestration, this implied monitoring the progress of
every team and jumping into their work when relevant for prompting reflec-
tion. Therefore, Do Lenh developed orchestration cards (Figure 6.13). The left
one has two sides: when the teacher shows one side to a TinkerLamp, the team
cannot run the simulation anymore. They may build a new layout, but, when
they are ready to run the simulation, they have to call the teacher. He will then
prompt reflection by asking team members to justify their design and to qual-
itatively predict the results of the next simulation (e.g., “Will this warehouse
operate faster or slower than the previous one?”). Once the teacher is satisfied
with the team’s answer, he shows the other side of the orchestration card to the
TinkerLamp, and the apprentices can then run the simulation. The right card
in Figure 6.13 allows the teacher to pause all TinkerLamps; when the teacher
shows this card to any of the four TinkerLamps in the classroom, none of the
lamps project information, just white light. This “pause” provides the teacher
with the attention he needs for a short, collective explanation. Teachers appre-
ciate the ease of use of orchestration cards; they simply walk across the class-
room with 5 to 10 cards in their hands.

Moreover, to launch and run a particular pedagogical scenario on the Tink-
erLamps, teachers simply had to select from a binder the A4 paper sheet that
corresponded to the scenario (left side of Figure 6.14) and place the right half
of that sheet below the TinkerLamp. The left part of the orchestration sheet
includes instructions for human users (teachers and learners), while the right

Figure 6.13  Two paper orchestration cards for the TinkerLamp: π2 on the left and π3 on the right.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

190	 ORCHESTRATION GRAPHS

part serves as interaction area; the user selects choices by moving a token
on the paper “buttons,” the system displays parameters that describe the lay-
out being constructed below the lamp. Distributing a sheet of paper to each
student corresponds to a lower orchestration load than the traditional process
of login, followed by navigating along a sequence of menus and submenus.

The right side of Figure 6.14 shows homework sheets; when the apprentices
had designed several warehouse layouts, they were asked to save their best
designs. The system then prepared and printed a homework sheet that asked
them to compare the warehouse they designed at school with the warehouse
where they work the rest of the week. They were also invited to discuss this
comparison with their workplace supervisor. Teachers warned us that appren-
tices never usually do their homework. As it turned out, 90% of them filled in
their homework, and 82% discussed it with their workplace supervisor. This
success can be explained by the novelty effect, but my hypothesis again refers
to the minimal orchestration load of paper; it took one minute for appren-
tices during a coffee pause to take the homework sheet out of their pocket and
show it to their work supervisor. In comparison, if the same activity had been
computer-based, the apprentice would have had to ask his supervisor to sit
together in front of a computer, to log in, to access the right document… an
eternity compared to the paper version.

The positive experience with paper-based interfaces can be understood in
the light of orchestration. If, in schools, paper has resisted the digital push

Figure 6.14  Two orchestration sheets for TinkerLamp—to set up a scenario on the left and for
homework on the right.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 ORCHESTRATION	 191

so well, it may not be simply due to nostalgia or fear of change, but because
it is a very efficient technology from an orchestration viewpoint, that is, at
the third plane of usability. Darwin would say that paper is well adapted to
the classroom ecosystem, through generations of paper forms. I do not claim
that every paper interface, per se, is efficient, simply because it is paper based.
Instead, paper has affordances that the design both captures and fails to take
advantage of. For instance, the orchestration cards were appreciated by logis-
tic teachers, who walked around the class with 5 to 10 cards in hand or in
their pocket. We designed another augmented reality for training carpenters
where apprentices had to manipulate around 25 paper cards. The experiment
quickly revealed that they lost a lot of time and concentration in searching for
the right card (Cuendet et al, 2013).

The functionality of paper in the classroom reminds me of a seminal paper
by Hutchins (1995): “How a cockpit remember it speeds.” Hutchins described
an aircraft cockpit in which paper cards were still in use and explained their
relevance. He modeled the aircraft cockpit as a distributed information sys-
tem within which information flows between artifacts (e.g., altitude meters),
pilots, tools, and these paper cards. A very similar analysis is relevant in the
classroom context, where information flows across multiple channels and
buffers (the blackboard, the notebooks, or devices like the Lantern).

In summary, technologies acquire high usability in a classroom if they sat-
isfy the many constraints of this ecosystem. This requires the technology to
be considered not as a monolithic device, but as a distributed system in which
heterogeneous elements find their relevance in the classroom ecosystem.

Conclusions

I often use the slogan “no more log-in” to illustrate the pragmatic viewpoint of
orchestration. Asking students to log into the system can take from 2 to 3 min-
utes, because some of them may have forgotten their password, while others
have the caps lock on. This process consumes 5% of lesson time without any
guarantee of bringing 5% additional learning gains. Log-in is a practical point,
not a pedagogical one, but it has an impact on teaching. By also paying atten-
tion to practical aspects of classroom life, I wanted this book to end up with
what a teacher’s common sense would call “a method that works well.” The
term “works well” does not necessarily refer to the learning results of students
(the intrinsic constraints), but very much to the extrinsic constraints: teachers’
workload, the difficulty in managing students’ participation, the stress related
to time, and so on. The beginning of this book, because of its formalism, may
appear far from classroom practices. I hope that this chapter shows why the
modeling language is, in fact, so compatible with the practical considerations
that arise while running a pedagogical scenario in a classroom or online.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

192	 ORCHESTRATION GRAPHS

The last two points overemphasize classroom practices to the detriment of
online education. However, orchestration load and the third circle of usability
can be translated into the MOOC space. For instance, the reason why online
forums “work well,” despite large participant numbers, is that smart workflow
operators have been introduced on forum platforms, such as the possibility of
voting for someone else’s question, the possibility for TAs to filter the messages
that the course teacher should personally reply to, and so on. I would say that
MOOC forums are well-orchestrated technologies. The success of MOOCs can
be understood by analyzing the orchestration load and usability of MOOCs.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

Discussion

Every step in this book could be further developed, and every formula should
be substantiated with authentic empirical data. Remaining at a high level has
allowed me to use the modeling language across all aspects of a pedagogical
scenario: the design, the learning processes, the analytics, and the adaptation/
evolution process. The next steps are to collect the empirical evidence for some
points and to implement the whole framework. This book can be understood
as the presentation of a research program for the next decade. It is a proposal.

Design for analytics
This slogan appeared in the introduction. I hope the 42 points have clarified
that the slogan does not mean that the goal of instructional design is to pro-
duce data. My claim is that a formal description of a MOOC makes analytics
more powerful. This is not a book on statistics or machine learning, but it aims
to describe educational challenges in a way that is meaningful for experts in
these fields. The formal description of MOOCs is also motivated by the expec-
tation that this could facilitate the sharing of data produced by running dif-
ferent MOOCs.

Pedagogy inside technology
Learning technologies is an interdisciplinary field. For the last 30 years, I have
heard colleagues defending the preponderance of pedagogy over technology,
as if there was a clear boundary between them. Of course, the goal of learning
technologies is that students learn; the technology is not the goal. However,
I hope that this book demonstrates that the craft of learning technologies is
to understand the computational mechanisms that implement pedagogical
ideas. The devil lies in the detail. The field of learning technologies is more
than the union of pedagogical and computational pieces of knowledge. At its
heart are these in-depth links that explain, for instance, how the operator
associated with the edge of a graph will trigger different verbal interactions.
This is why I have stressed the notion of workflow; even if it may sound like
a terribly technical or even “bureaucratic” concept, it in fact encompasses the
dynamics of rich pedagogical scenarios.

Cognitive tool for teachers
The proposed modeling language constitutes a tool for thinking about teach-
ing. A tool is not a theory, and this book does not explain why people learn.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

194	 ORCHESTRATION GRAPHS

A model does not aim to be true, but rather to be useful for tackling complex
situations such as the new rich integrated learning scenarios described in this
book. However, this tool is not limited to MOOCs; it can apply to education
with or without technologies. It can be applied to a pedagogical scenario in a
class of 20 students that does not include any computational device. I believe
that a professional teacher would be more comfortable when driving a les-
son if he had a clear vision of inductive mechanisms, the role of positive and
negative instance, near-miss examples, and if he orchestrated his lesson by
thinking in terms of undergeneralization and overgeneralization. A formali-
zation of the inductive process may help him to cope with the complexity of
the induction processes of 20 heads. Orchestrating a class requires thinking in
terms of planes and operators, with or without the use of computers. Actually,
I have run several sessions of ArgueGraph without computers, by handling
paper sheets, and it worked very well. Some technology is necessary to run the
operators of ArgueGraph with 1,000 students, but the model, per se, is a guide
for running this graph in technology-free classes.

Flipped Classes
This model applies to both classroom and online activities, especially when
they are integrated into a consistent graph, as in “blended learning” or flipped
classes. A class is said to be flipped when students get the theory before the
class-contact hours; for instance, the students watch the lecture videos or read
some texts before the lesson, and then do more interactive activities with the
teacher, such as exercises, case studies, or real-world examples. What orches-
tration graphs describe is how these activities can be integrated within a con-
sistent pedagogical scenario.

Implementation
This book does not address specific implementations of the modeling lan-
guage, but I hope it will inspire developers. The ontologies used in current
MOOC platforms are not as rich as one could hope for. Hence, this model
could inspire the evolution of platforms or the design of new ones. A central
challenge is to develop flexible workflows, that is, to invent architectures that
take advantages of the power of workflow, but still allow substantial flexibility.
I expect that blackboard architectures or “publish and subscribe” architectures
(where distributed agents read and write in a central information space) could
be one direction. Another challenge is to describe the workflow operators with
a sufficient level of abstraction, so that they can be applied to a variety of data
structures. Beyond a new platform, my dream would be that this model could
be used for dialogue between platforms. I anticipate the emergence of an eco-
system of MOOC services. Some services (e.g., translation, coaching, proctor-
ing) are already available, if we consider “service” in the business sense of the
word. More services—in the computational sense—will emerge. For instance,
a platform could send a list of students, plus some team formation criteria, to

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 DISCUSSION	 195

a specific service and would receive a list of teams that match these criteria in
return.

XMOOCs versus cMOOCs
A model is only valid within some boundaries. This model focuses on formal
education with no claim regarding its validity in informal/community learn-
ing. In all examples, a teacher has designed or at least prepared the learn-
ing activities. What if a student organizes his own learning activities or if a
community constructs its own collective knowledge as in cMOOCs? In these
cases, the activity graph has not been “designed,” but emerges progressively
through interactions. However, the way the community designs its own graph
is shaped by the technology it uses, which has itself been designed by some-
one—this is what Fischer (2003) called “meta-design.”

It may be useful at this point to discriminate between constructivism and
connectivism (Siemens, 2005). The latter gives a holistic learning experi-
ence by which learners integrate learning, work, democracy, culture, and
so on. As Fischer put it (2004), this approach is relevant “when the answer
is not known.” When the answer is well known by the teacher, a construc-
tivist teacher may still desire to set up activities through which the learner
elaborates knowledge, as described in this book. In other words, the model
I presented is more relevant for xMOOCs than cMOOCs, that is, when there
is a clear didactic plan, but it also allows socio-constructivist methods to be
brought into the realm of xMOOCs.

Learners are more than just brains
Another limitation of this book is that it provides a very partial account of edu-
cation. Like any model, it cuts out a slice in the multidimensional complexity of
reality. It emphasizes the rational aspects of education, but does not consider
the rich emotional aspects, the importance of the teacher’s personality, the
relationship the teacher builds with the learner, or the social dynamics among
learners. My focus in no way implies that these factors are not important.
Once, when I was an elementary school teacher, a father said to me “Thank
you. Since my daughter joined your class, she has started smiling again.”
What else is there? This moment was more important than the acquisition of
any cognitive skill. The graphs I present focus on knowledge and skills, that is,
the cognitive facet of education, but that does not dismiss the role of teachers
as people, the importance of sharing their personality and enthusiasm, or how
important it is that they believe in what learners will achieve. I hope that a
teacher who is at ease with the mechanics of orchestration graphs, that is, the
rational side of education, could more easily express his social and emotional
talent, to the same extent that a musician needs a high technical mastery to
express his personality.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

196	 ORCHESTRATION GRAPHS

Acknowledgments
Thanks to Xavier Silva, Louis D’Hainaut, and John Self, who shaped my
rational stance on education. Thanks to my former colleagues Christian
Depover, Peter Goodyear, Daniel Schneider, and Patrick Mendelsohn who
influenced my work. Thanks to my team in the EPFL who developed the tech-
nologies that inspired this book: Patrick Jermann, Guillaume Zufferey, Son
Do-Lenh, Sébastien Cuendet, Frédéric Kaplan and Hamed Alavi. Many of
these team members also commented on earlier drafts of this book, as did Luis
P. Prieto, Beat Schwendimann, Daniela Caballero, Lorenzo Lucignagno, Mina
Shrivani, Ayberk Özgür, Mirko Raca, Severin Lemaignan, Wen Chen, Julia
Fink. Thanks to Miguel Nussbaum, Erik Duval, Dan Schwartz, Olivier Levêque,
Gerhard Fischer, Roland Tormey and Jeremy Roschelle who also commented
earlier versions. Special thanks to Lukasz Kidzinski ,Valerie Chavez and Pierre
Tchounikine who read this book more than once. Thanks to Patrick Aebisher,
Martin Vetterli, Philippe Gillet and Jean-Marc Tassetto (Coorp Academy) who
very early on realized the potential of MOOCs. Thanks to my friends from
Waterloo, Honnelles, Lancaster, Igloolik, Prémanon, Genève, and Lausanne
who know that 42 does not refer to any galaxy, but to our gravity-sensitive
world. Thanks to EPFL Press for their support during this long journey. This
book was written in Givrins, Villars-sur-Ollon, Haute-Nendaz, Château d’Oex,
Les Diablerets, Skellefteå, Al Ain, Palo Alto, Angres, Waterloo, Bordeaux, Lei-
den, Pavia, Barbaggio, Edinburgh, Fort Williams, and Ullapool, as well as in
many trains and airports.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

References

Ainsworth, S. (1999). “The functions of multiple representations.” Computers
& Education 33 (2): 131–152.

Akshay, N., Deepu, S., Rahul, E.S., Ranjith, R., Jose, J., Unnikrishnan, R.,
Rao, R. & Bhavani, (2013).“Design and evaluation of a haptic simulator for
vocational skill training and assessment.” 39th Annual Conference of the
IEEE Industrial Electronics Society. Vienna.

Alavi, H. S., Dillenbourg, P. & Kaplan, F. (2009). “Distributed awareness
for class orchestration.” In Learning in the Synergy of Multiple Disci-
plines, 211–25. Berlin Heidelberg: Springer-Verlag.

Aronson, E., Blaney, N., Sikes, J., Stephan, G. & Snapp, M. (1978). The Jigsaw
Classroom. Beverly Hills, CA: Sage Publication.

Ausubel, D. P. (1960). “The use of advance organizers in the learning and
retention of meaningful verbal material.” Journal of Educational Psychol-
ogy 51 (5): 267.

Bachour, K., Kaplan, F. & Dillenbourg, P. (2010). “An interactive table for sup-
porting participation balance in face-to-face collaborative learning.” IEEE
Transactions on Learning Technologies 3 (3): 203–13.

Bargh, J. A. & Schul, Y. (1980). “On the cognitive effects of teaching.” Journal
of Educational Psychology 72: 593–604.

Beattie IV, V., Collins, B. & McInnes, B. (1997). “Deep and surface learning: A
simple or simplistic dichotomy?” Accounting Education 6 (1): 1–12.

Berger, A., Moretti, R., Chastonay, P., Dillenbourg, P., Bchir, A., Baddoura,
R., Bengondo, C., Scherly, D., Ndumbe, P., Farah, P., & Kayser, B. (2001).
“Teaching community health by exploiting international socio-cultural and
economical differences.” In Proceedings of the First European Conference on
Computer Supported Collaborative Learning, ed. P. Dillenbourg, A. Eurel-
ings & K. Hakkarainen, 97–105. Maastricht: Maastricht McLuhan Institute.

Blaye, A. (1988). “Confrontation socio-cognitive et résolution de problèmes.”
PhD dissertation. Centre de Recherche en Psychologie Cognitive, Univer-
sity of Provence.

Bloom, B. S. (1984). “The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring.” Educational Researcher 13
(6): 4–16.

Bloom, B. S. & Carroll, J. B. (1971). Mastery Learning: Theory and Practice,
ed. J. H. Block. New York: Holt, Rinehart, and Winston.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

198	 ORCHESTRATION GRAPHS

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H. & Krathwohl, D. R.
(1956). Taxonomy of educational objectives. Handbook I: Cognitive
domain. New York: David McKay.

Borgatti, Stephen P. & Everett, Martin G. (2006). “A graph-theoretic perspec-
tive on centrality.” Social Networks, 28: 466–84.

Brown, A. L. & Palincsar, A. S. (1987). Reciprocal Teaching of Comprehen-
sion Strategies: A natural history of one program for enhancing learn-
ing. Westport, CT: Ablex Publishing.

Bull, S. & Kay, J. (2010). “Open learner models.” In Advances in Intelligent
Tutoring Systems, 301–22. Berlin Heidelberg: Springer-Verlag.

Chan, T. W. & Baskin, A. B. (1988). “Studying with the prince: The computer
as a learning companion.” In Proceedings of the First International Con-
ference on Intelligent Tutoring Systems, Vol. 194200.

Chase, C. S., Chin, D. B., Oppezzo, M. A. & Schwartz, D. L. (2009). “Teach-
able agents and the protégé effect: Increasing the effort towards learning.”
Journal of Science and Educational Technology, 18: 334–52.

Clark, H. H. (1996). Using language, (vol. 1996, p. 92). Cambridge: Cam-
bridge University Press.

Clark, H. H. & Brennan, S. E. (1991). “Grounding in communication.” In Res-
nick, L. B.; Levine, J. M.; Teasley, J. S. D., Perspectives on socially shared
cognition, American Psychological Association, 13 (1991), 127–49.

Clark, H. H. & Wilkes-Gibbs, D. (1986). “Referring as a collaborative process.”
Cognition, 22: 1–39.

Crouch, C. H. & Mazur, E. (2001). “Peer instruction: Ten years of experience
and results.” American Journal of Physics, 69: 970–77.

Cuendet, S. & Dillenbourg, P. (2013). “The benefits and limitations of dis-
tributing a tangible interface in a classroom.” In Proceedings of the Tenth
Computer Supported Collaborative Learning Conference, 137–44. Madi-
son, WI.

d’Hainaut, L. (1983). Des fins aux objectifs de l’éducation. Paris: Nathan.
de Jong, T. & van Joolingen, W. (1998). “Scientific discovery learning with

computer simulations of conceptual domains.” Review of Educational
Research 68: 179–202.

de Jong, T. (2006). “Scaffolds for scientific discovery learning.” Handling
Complexity in Learning Environments: Research and theory, 107–28.

Dewey, J. (1938). Experience and Education. New York: Macmillan.
Dickson, W. P. & Vereen, M. A. (1983). “Two students at one microcomputer.”

Theory into Practice, 22 (4), Special Issue: Microcomputers: A Revolution
in Learning: 296–300.

Diestel, R. (2005). Graph Theory. Electronic EditionHeidelberg: Springer.
Dillenbourg, P. (1989). “Designing a self-improving tutor: PROTO-TEG.”

Instructional Science, 18 (3): 193–216.
Dillenbourg, P. (2002). “Over-scripting CSCL: The risks of blending col-

laborative learning with instructional design.” In Three worlds of CSCL.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 REFERENCES	 199

Can we support CSCL?, ed. P. A. Kirschner, 61–91. Heerlen: Open
Universiteit.

Dillenbourg, P. (2013). “Design for classroom orchestration.” Computers &
Education, 69: 485–92.

Dillenbourg, P., & Hong, F. (2008). “The mechanics of CSCL macro scripts.”
International Journal of Computer-Supported Collaborative Learning, 3
(1): 5–23.

Dillenbourg, P. & Jermann, P. (2010). “Technology for classroom orchestra-
tion.” In New Science of Learning: Cognition, Computers and Collabo-
ration in Education, ed. M. S. Khine & I. M. Saleh, 525–52). Dordrecht:
Springer-Verlag.

Dillenbourg, P. & Self J. A. (1992). “A framework for learner modelling.”
Interactive Learning Environments, 2 (2): 111–37.

Dillenbourg, P. & Tchounikine, P. (2007). “Flexibility in macro-scripts
for computer-supported collaborative learning.” Journal of Computer
Assisted Learning, 23 (1): 1–13.

Dillenbourg, P. & Traum, P. (1999). “Does a shared screen make a shared
understanding?” Proceedings of the Third Computer-Supported Collab-
orative Learning Conference, ed. C. Hoadley and J. Roschelle, Stanford,
CA: 127–35.

Dillenbourg, P., Zufferey, G., Alavi, H., Jermann, P., Do-Lenh, S., Bonnard,
Q., Cuendet, S. & Kaplan, F. (2011). “Classroom orchestration: The third
circle of usability.” Proceedings of the Ninth Computer-Supported Collab-
orative Learning Conference. Hong Kong.

Do-Lenh, S., Zufferey, G., Jermann, P. & Dillenbourg, P. (2010). “TinkerSheets
and Reflection: Design augmented papers to facilitate student’s reflection.”
In ACM International Conference on Ubiquitous Computing (UBICOMP
2010): Workshop on Paper Computing, PaperComp’10.

Engeli, M. (2000). Digital stories. Berlin: Springer-Verlag.
Fischer, G. (2003). “Meta-design: Beyond user-centered and participatory

design.” In Proceedings of HCI International, 88–92.
Fischer, G. (2004). “Social creativity: Turning barriers into opportunities for

collaborative design.” In Proceedings of the Eighth Conference on Partici-
patory Design. Artful Integration: Interweaving Media, Materials and
Practices, 1: 152–61. ACM.

Foster, G. & Ysseldyke, J. (1976). “Expectancy and halo effects as a result of
artificially induced teacher bias.” Contemporary Educational Psycho-
logy, 1 (1): 37–45.

Freinet, C. (1966). Essai de psychologie sensible appliquée à l’éducation.
Neuchâtel: Delachaux & Niestlé.

Gijlers, H. & de Jong, T. (2005). “Confronting ideas in collaborative scientific
discovery learning.” Paper presented at AERA 2005, Montreal.

Guilford, J. P. (1956). “The structure of intellect.” Psychological Bulletin, 53
(4): 267–293.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

200	 ORCHESTRATION GRAPHS

Hmelo-Silver, C. E. (2004). “Problem-based learning: What and how do stu-
dents learn?” Educational Psychology Review, 16 (3): 235–66.

Hoppe, H. U. (1995). Using multiple student modeling to parameterize group
learning. In J. Greer (Ed.), Proceedings of the Seventh World Conference
on Artificial Intelligence in Education (pp. 234-241). Charlottesville, VA:
Association for the Advancement of Computing in Education.

Hoppe, H. U. & Ploetzner, R. (1999). “Can analytic models support learning in
groups.” In P. Dillenbourg, Collaborative Learning: Cognitive and Com-
putational Approaches, 147–168. Oxford: Elsevier.

Hutchins, E. (1995). “How a cockpit remembers its speeds.” Cognitive science,
19 (3): 265–88.

Infante, C., Hidalgo, P., Nussbaum, M., Alarcón, R. & Gottlieb, A. (2009).
“Multiple mice based collaborative one-to-one learning.” Computers &
Education, 53 (2): 393–401.

Jermann, P. & Dillenbourg, P. (1999). “An analysis of learner arguments in a
collective learning environment.” In Proceedings of the 1999 Conference
on Computer Support for Collaborative Learning, 33. International Soci-
ety of the Learning Sciences.

Jermann, P. & Dillenbourg, P. (2008). “Group mirrors to support interaction
regulation in collaborative problem solving.” Computers & Education, 51
(1): 279–96.

Jermann, P., Mullins, D., Nüssli, M.-A. & Dillenbourg, P. (2011). “Collaborative
gaze footprints: Correlates of interaction quality.” In Proceedings of the Int.
Conference on Computer Supported Collaborative Learning. Hong Kong.

Jermann, P. & Nüssli, M. A. (2012). “Effects of sharing text selections on gaze
cross-recurrence and interaction quality in a pair programming task.”
In Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, 1125–34. ACM.

Kadushin, C. (2012). Understanding Social Networks: Theories, concepts,
and findings. Oxford: Oxford University Press.

Li, N., Verma, H., Skevi, A., Zufferey G., Blom, J., Dillenbourg P. et al. (2014)
“Watching MOOCs together: Investigating co-located MOOC study
groups.” Distance Education, 1–17.

Liu, Y., Hsueh, P. Y., Lai, J., Sangin, M., Nussli, M. A. & Dillenbourg, P. (2009).
“Who is the expert? Analyzing gaze data to predict expertise level in col-
laborative applications.” In IEEE International Conference on Multimedia
and Expo, 2009, 898–901). IEEE.

McPherson, N., Smith-Lovin, L., Cook, J. M. (2001). “Birds of a feather:
Homophily in social networks.” Annual Review of Sociology, 27: 415–44.

Miyake, N. (1986). “Constructive interaction and the iterative process of
understanding.” Cognitive Science, 10: 151–77.

Mugny, G. & Doise, W. (1978). “Socio-cognitive conflict and structure of indi-
vidual and collective performances.” European Journal of Social Psychol-
ogy, 8 (2): 181–92.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 REFERENCES	 201

Mulholland, P., Anastopoulou, S., Collins, T., Feisst, M., Gaved, M., Kerawalla,
L., Paxton, M., Scanlon, E., Sharples, M. & Wright, M. (2012). “nQuire:
Technological support for personal inquiry learning.” IEEE Transactions
on Learning Technologies, 5 (2): 157–69.

Muukkonen, H., Hakkarainen, K. & Lakkala, M. (1999). “Collaborative tech-
nology for facilitating progressive inquiry: Future learning environment
tools.” In Proceedings of the 1999 Conference on Computer Support for
Collaborative Learning (CSCL ‹99), eds. Christopher M. Hoadley and Jer-
emy Roschelle (p. 51). International Society of the Learning Sciences.

Paas, F., Renkl, A. & Sweller, J. (2003). “Cognitive load theory and instruc-
tional design: Recent developments.” Educational Psychologist, 38 (1):
1–4.

Parriaux, A. (2009). Géologie: Bases pour l’ingénieur. Lausanne: Presses
polytechniques et universitaires romandes.

Perkins, D. N. & Salomon, G. (1992). “Transfer of learning.” In T. Husen and
N. Postlethwaite (EdS), International Encyclopedia of Education, Second
edition, pp. 6452-6457). Oxford, UK: Pergamon Press.

Prieto, L. P., Asensio-Perez, J.-I., Dimitriadis, Y., Gomez-Sanchez, E. &
Munoz-Cristobal, J.-A. (2011). “GLUE!-PS: A Multi-language architecture
and data model to deploy TEL designs to multiple learning environments.”
In EC-TEL 2011 ed. C. Delgado Kloos et al., LNCS 6964: 285–298, Berlin
Heidelberg: Springer-Verlag.

Prieto, L. P., Dlab, M. H., Gutiérrez, I., Abdulwahed, M. & Balid, W. (2011).
“Orchestrating technology enhanced learning: A literature review and a
conceptual framework.” International Journal of Technology Enhanced
Learning, 3 (6): 583–98.

Prieto, L. P., Villagrá-Sobrino, S., Jorrín-Abellán, I. M. , Martínez-Monés, A
& Dimitriadis, Y. (2011). “Recurrent routines: Analyzing and supporting
orchestration in technology-enhanced primary classrooms.” Computers &
Education, 57 (1): 1214–27.

Raca, M. & Dillenbourg, P. (2013). “System for assessing classroom atten-
tion.” In Proceedings of the Third International Conference on Learning
Analytics and Knowledge, 265–69. ACM.

Roschelle, J. (1992). “Learning by collaborating: Convergent conceptual
change.” The Journal of the Learning Sciences, 2 (3): 235–76.

Roschelle, J. & Teasley S. D. (1995). “The construction of shared knowledge
in collaborative problem solving.” In Computer-Supported Collaborative
Learning, ed. C.E. O’Malley, 69–197. Berlin: Springer-Verlag.

Rouet, J. F. (1992). “Cognitive processing of hyperdocuments: When does
nonlinearity help?” In Proceedings of the ACM conference on Hypertext,
131–40. ACM.

Salomon, G. & Globerson, T. (1989). “When teams do not function the way
they ought to.” International Journal of Educational Research, 13 (1):
89–100.

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

202	 ORCHESTRATION GRAPHS

Schellens, T., Van Keer, H. & Valcke, M. (2005). “The impact of role assign-
ment on knowledge construction in asynchronous discussion groups: A
multilevel analysis.” Small Group Research, 36 (6): 704–45.

Schoenfeld, A. H. (1988). “When good teaching leads to bad results: The disas-
ters of ‘well-taught’ mathematics courses.” Educational Psychologist, 23
(2): 145–66.

Schwartz, D.L. (1995). “The emergence of abstract dyad representations in dyad
problem solving.” The Journal of the Learning Sciences, 4 (3): 321–54.

Schwartz, D. L. & Bransford, J. D. (1998). “A time for telling.” Cognition and
instruction, 16 (4): 475-5223.

Self, J. A. (1990). “Bypassing the intractable problem of student model-
ling.” Intelligent Tutoring Systems: At the Crossroads of Artificial Intel-
ligence and Education, 107–23.aC. Frasson and G. Gauthier, eds., Ablex
Publishing Company, Norwood, NJ.

Self, J. A. (1992). “Computational orchestrationsmathetics: The missinglLink
in intelligent tutoring systems research?” In New Directions for Intelligent
Tutoring Systems, ed. E. Costa, NATO ASI Series, 91: 38–56.

Siemens, G. (2005). “Connectivism: A learning theory for the digital age.”
International Journal of Instructional Technology and Distance Learn-
ing, 2 (1): 3–10.

Steiner, D. D. & Rain, J. S. (1989). “Immediate and delayed primacy and
recency effects in performance evaluation.” Journal of Applied Psychol-
ogy, 74 (1): 136.

Suthers, D. D., Dwyer, N., Medina, R. & Vatrapu, R. (2010). “A framework
for conceptualizing, representing, and analyzing distributed interaction.”
International Journal of Computer-Supported Collaborative Learning, 5
(1): 5–42.

Szewkis, E., Nussbaum, M., Rosen, T., Abalos, J., Denardin, F., Caballero, D.
& Alcoholado, C. (2011). “Collaboration within large groups in the class-
room.” International Journal of Computer-Supported Collaborative
Learning, 6 (4): 561–75.

Tourneur, Y. (1975). “Effets des objectifs dans l’apprentissage. Etude expéri-
mentale.” In Recherche en Education, n°6. Bruxelles: Direction générale
de l’organisation des études.

Traum, D. R. (1999). “Computational models of grounding in collaborative
systems.” In Psychological Models of Communication in Collaborative
Systems—Papers from the AAAI Fall Symposium, 124–31.

Van Lehn, K. (1988). Toward a theory of impasse-driven learning, 19–41.
New York (NY), Springer US.

Vinciarelli, A., Pantic, M. & Bourlard, H. (2009). “Social signal processing:
Survey of an emerging domain.” Image and Vision Computing, 27 (12):
1743–59.

Vosniadou, S. (1994). “Capturing and modeling the process of conceptual
change.” Learning and Instruction, 4: 45–69.

http://link.springer.com/book/10.1007/978-3-642-77681-6
http://link.springer.com/book/10.1007/978-3-642-77681-6

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

	 REFERENCES	 203

Vygotsky, L. S. (1962). Thought and Language. Cambridge, MA: MIT Press.
Vygotsky, L. S. (1994). “Extracts from thought and language and mind in soci-

ety.” Language, literacy and learning in educational practice, 45–58. Cle-
vedon: Multilingual Matters.

Webb, N. M. (1989). “Peer interaction and learning in small groups.” Interna-
tional Journal of Educational Research, 13 (1): 21–39.

Webb, N. M. (1991). “Task related verbal interaction and mathematics learn-
ing in small groups.” Journal for Research in Mathematics Education, 22
(5): 366–89.

Weinberger, A. & Fischer, F. (2006). “A framework to analyze argumentative
knowledge construction in computer-supported collaborative learning.”
Computers & Education, 46 (1): 71–95.	

Weinberger, A., Stegmann, K., Fischer, F. & Mandl, H. (2007). “Scripting
argumentative knowledge construction in computer-supported learning
environments.” In Scripting computer-supported collaborative learning,
191–211. Springer US.In F. Fischer, H. Mandl, J. Haake & I. Kollar (Eds.),
Scripting computer-supported communication of knowledge - cognitive,
computational and educational perspectives (pp. 191-211). New York:
Springer.

Wenger, E. (2010). “Communities of practice and social learning systems:
The career of a concept.” In Social Learning Systems and Communities of
Practice, 179–98. London: Springer-Verlag.

Whyte, Jr., W. H. (1952). «Groupthink». Fortune. March, 114–117.
Wichmann, A., Hoppe, U., Spikol, D., Milrad, M., Anastopoulou, S., Sharples,

M., Pea, R., Maldonado, H. & de Jong, T. (2010). “Three perspectives on
technology support in inquiry learning: Personal inquiry, mobile collabo-
ratories and emerging learning objects.” In Proceedings of the 9th Inter-
national Conference of the Learning Sciences, (ICLS ‘10), ed. Kimberly
Gomez, Leilah Lyons, and Joshua Radinsky, 2: 499–500. International
Society of the Learning Sciences.

Xu, Guandong et al. (2010). Web Mining and Social Networking: Techniques
and Applications, p. 25. New York (NY), Springer.

Zufferey, G., Jermann, P., Lucchi, A. & Dillenbourg, P. (2009). “TinkerSheets:
Using paper forms to control and visualize tangible simulations.” In Pro-
ceedings of the 3rd International Conference on Tangible and Embedded
Interaction, pp. 377–84. TEI ‘09. ACM, New York, NY.

http://en.wikipedia.org/wiki/Fortune_(magazine)

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

T
hi

s
do

cu
m

en
t i

s
th

e
pr

op
er

ty
 o

f S
tia

n
H

ak
le

v
(s

ha
kl

ev
@

gm
ai

l.c
om

)
-

Ju
ly

 1
0,

 2
01

5
11

:2
7

By modeling pedagogical scenarios as directed geometrical
graphs and proposing an associated modeling language, this
book describes how rich learning activities, often designed
for small classes, can be scaled up for use with thousands of
participants.
With the vertices of these graphs representing learning
activities and the edges capturing the pedagogical relationship
between activities, individual, team, and class-wide activities
are integrated into a consistent whole.
The workflow mechanisms modeled in the graphs enable the
construction of scenarios that are richer than those currently
implemented in MOOCs. The cognitive states of learners
in two consecutive activities feed a transition matrix, which
encapsulates the probability of succeeding in the second
activity, based on success in the former. This transition matrix is
summarized by a numerical value, which is used as the weight
of the edge.
This pedagogical framework is connected to stochastic models,
with the goal of making learning analytics more appealing for
data scientists. However, the proposed modeling language
is not only useful in learning technologies, it also allows
researchers in learning sciences to formally describe the
structure of any lesson, from an elementary school lesson with
20 students to an online course with 20,000 participants.

Pierre Dillenbourg is a professor of learning
technologies at the EPFL and the academic director
of the EPFL Center for Digital Education. This center
produces MOOCs that involve nearly one million

participants. Pierre has conducted research in learning technologies since
1985. He currently leads a lab (chilli.epfl.ch) that among other things explores
augmented reality, tangible interfaces, paper-based computing, and eye
tracking. He started as a schoolteacher in Brussels, graduated in educational
sciences at the University of Mons (Belgium) and obtained a PhD in computer
science from the University of Lancaster (UK).

http://chilli.epfl.ch/

	Summary
	Introduction
	Orchestration Graphs
	Point 1 Horizontal axis
	Point 2 Vertical axis
	Point 3 Topology
	Point 4 Activities
	Point 5 Edges
	Point 6 Skills and competencies
	Point 7 Control structures
	Point 8 Parallelism

	Conclusions
	The Edges Library
	Point 9 Preparation edges
	Point 10 Set edges
	Point 11 Translation edges
	Point 12 Generalization edges

	Conclusions
	The Operators Library
	Point 13 Workflows
	Point 14 Aggregation operators
	Point 15 Distribution operators
	Point 16 Social operators
	Point 17 Social distance criteria
	Point 18  Back-office operators
	Point 19 Patterns of operators

	Conclusions
	Stochastic processes
	Point 20 Learner states
	Point 21 The states library
	Point 22 States transitions
	Point 23 Matrix entropy
	Point 24 Matrix utopy
	Point 25 Edge elasticity
	Point 26 Operators and matrices
	Point 27 Theory plug-ins

	Conclusions
	Learning analytics
	Point 28 Cognitive diagnosis
	Point 29 Behavioral abstractions
	Point 30 Diagnosis entropy
	Point 31 The diagnosis axis
	Point 32 The modeling cube
	Point 33 Multidimensional predictions

	Conclusions
	Orchestration
	Point 34 Scope and space
	Point 35 The constraints library
	Point 36 The economy of evolution
	Point 37 Graph adaptations
	Point 38 Graph repairs
	Point 39 Self-improving systems
	Point 40 Participatory graphs
	Point 41 Orchestration load
	Point 42 Classroom usability

	Conclusions
	Discussion

	References

