
Like normal organs, tumours need to establish a blood 
supply to satisfy their demand for oxygen and nutri-
ents and accomplish other metabolic functions1. This 
is achieved primarily through angiogenesis, the process 
whereby new blood vessels develop from a pre-existing 
vascular network. Hypoxia is a key driver of tumour angio
genesis2. Hypoxic cancer cells secrete vascular endothe-
lial growth factor A (VEGFA), which initiates tumour 
angiogenesis by engaging VEGF receptor 2 (VEGFR2) 
expressed on the endothelial cells (ECs) of neighbouring 
blood vessels1. Gradients of soluble VEGFA induce the for-
mation of motile ECs, called tip cells, which break down 
the surrounding extracellular matrix (ECM) and lead the 
growth of new vascular sprouts towards VEGFA. This 
process requires the participation of additional signal-
ling molecules, including delta ligand-like 4 (DLL4) and 
angiopoietin 2 (ANGPT2), which, respectively, control 
the tip-cell phenotype and destabilize EC junctions1.

In pre-malignant stages of epithelial tumours (for 
example, hyperplasia and carcinoma in situ), a basal 
lamina separates the tumour from the vascularized peri-
tumoural tissues, so blood vessels rarely infiltrate these 
early lesions3,4. In malignant tumours, cancer cells acquire 
invasive behaviours and induce a stromal response 
involving robust angiogenesis5. Therefore, tumour pro-
gression from a benign to a malignant stage is typically 
associated with an angiogenic switch — the triggering 
and development of a vascular network that is actively 
growing and infiltrative5 (FIG. 1). However, considerable 
variation exists in the patterns of tumour vasculariza-
tion, which reflect differences in the tumour type, grade 
and stage (for example, primary versus metastatic), 
the anatomical site, the stromal cell composition and the 
spatiotemporal expression of pro-angiogenic factors and 
anti-angiogenic factors4,6–10.

Owing to excessive and sustained pro-angiogenic 
signalling5, tumour-associated blood vessels (TABVs) 
typically acquire an aberrant morphology, character-
ized by excessive branching, abundant and abnormal 
bulges and blind ends, discontinuous EC lining, and 
defective basement membrane and pericyte coverage. 
These features are all indicative of — or conducive to — 
impaired vascular maturation, poor vessel functionality 
and incoherent tumour perfusion1,5,11. Furthermore, the 
ECs of TABVs display structural and molecular traits 
that distinguish them from their counterparts in normal 
organs (BOX 1).

Although the cancer cells can be an important 
source of VEGFA and other pro-angiogenic medi
ators12, recruited leukocytes increase VEGFA bioavail-
ability and signalling during the angiogenic switch13. 
Furthermore, many signals that emanate from various 
tumour-associated stromal cells (TASCs), and the ECM 
in which they are embedded14, sustain angiogenesis 
after the angiogenic switch through the subsequent 
phases of tumour progression (TABLE 1). In this Review, 
we discuss the extrinsic regulation of angiogenesis by 
the tumour microenvironment (TME), with the premise 
that harnessing such regulation may be instrumental in 
developing more effective anticancer therapies targeting 
angiogenesis and beyond.

Regulation of angiogenesis by TASCs
The abundance and composition of TASCs vary con-
siderably between tumours and in their diverse micro
environments15–18. TASCs can be classified into two 
main categories on the basis of their origin. Tumour-
infiltrating cells of haematopoietic origin are recruited 
from the bone marrow to the tumour via the systemic 
circulation and comprise diverse leukocyte types and 
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Hypoxia
The condition of low oxygen 
availability. In tumours, 
hypoxia is observed in cancer 
cells that reside more than 
70–150 μm away from a 
perfused blood vessel.

Pro-angiogenic factors
Biological molecules that 
stimulate endothelial cell 
proliferation and angiogenesis.

Anti-angiogenic factors
Biological molecules that 
block angiogenesis or promote 
the regression of angiogenic 
blood vessels.
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Abstract | Tumours display considerable variation in the patterning and properties of angiogenic 
blood vessels, as well as in their responses to anti-angiogenic therapy. Angiogenic programming 
of neoplastic tissue is a multidimensional process regulated by cancer cells in concert with a 
variety of tumour-associated stromal cells and their bioactive products, which encompass 
cytokines and growth factors, the extracellular matrix and secreted microvesicles. In this Review, 
we discuss the extrinsic regulation of angiogenesis by the tumour microenvironment, 
highlighting potential vulnerabilities that could be targeted to improve the applicability and 
reach of anti-angiogenic cancer therapies.
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Pericyte
Cell that enwraps and 
promotes the survival of 
endothelial cells, stabilizing 
small blood vessels.

Tumour microenvironment
(TME). The complex and 
dynamic ensemble of cancer 
cells, tumour-associated 
stromal cells (TASCs; 
comprising primarily 
leukocytes, fibroblasts and 
vascular cells) and their 
extracellular products.

Progenitors
Undifferentiated cells capable 
of producing lineage- 
committed cellular progeny.

subtypes, such as monocytes and macrophages, neutro
phils, lymphocytes, as well as their immature precursors. 
There are also reports of non-haematopoietic, bone 
marrow-derived endothelial or mesenchymal progenitors 
contributing to tumour angiogenesis19. Tissue-resident 
cells are also recruited, including vascular cells (ECs 
and pericytes), fibroblasts, adipocytes, but also some 

tissue-resident leukocytes such as mast cells and macro
phages. We discuss below the main TASC types involved 
in the regulation of tumour angiogenesis.

Macrophages. In mouse cancer models, macrophages 
largely derive from circulating monocytes that extravasate to 
tumours in response to various chemoattractants, including 
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Figure 1 | Angiogenesis during malignant progression. Early-stage (pre-malignant) tumours typically display scant or no 
intra-tumoural vascularization, although a vascularized stroma surrounds the tumours and may adjoin parenchymal tumour 
domains (part a, left panel). In malignant tumours, the cancer cells acquire invasive behaviours and induce a stromal response 
involving robust intra-tumoural angiogenesis, along with leukocyte infiltration, fibroblast proliferation and extracellular 
matrix (ECM) deposition (part a, right panel). In pre-malignant lesions, a basal lamina separates the tumour from the 
surrounding tissues; this, together with angiostatic signals conveyed by some ECM components, and the relatively low levels 
of pro-angiogenic factors, prevents intra-tumoural vascularization or constrains it into a quiescent state. In malignant lesions, 
angiogenesis is largely controlled through the actions on vascular endothelial cells (ECs) of multiple pro-angiogenic 
mediators, which include growth factors, cytokines, various ECM proteins, ECM-remodelling enzymes, as well as extracellular 
vesicles (EVs) and by‑products of deregulated tumour metabolism. Panels in b show early (left) or late (right) mammary 
tumours of mouse mammary tumour virus–polyoma middle T antigen (MMTV–PyMT) transgenic mice. Avascular adenomas 
(AD; left) develop from mammary glands embedded in vascularized adipose tissue (AT). In progressing adenocarcinomas 
(ADCA; right), blood vessels (arrows) infiltrate the tumours, along with pro-angiogenic tumour-associated macrophages 
(TAMs; green). In RIP1–Tag2 transgenic mice (part c), hyperplastic islets of Langerhans (islet; left) present a quiescent vascular 
network, which becomes angiogenic and plethoric when the islets progress into pancreatic neuroendocrine tumour (PNET). 
ACPA, acinar pancreas; ANGPT, angiopoietin; CXCL, CXC-chemokine ligand; EV, extracellular vesicle; FGF2, fibroblast 
growth factor 2; GFP, green fluorescent protein; IFNα, interferon‑α; IL, interleukin; MMP, matrix metalloproteinase; 
PAI1, plasminogen activator inhibitor 1; PDGF, platelet-derived growth factor; PlGF, placental growth factor; TABV, tumour- 
associated blood vessel; THBS1, thrombospondin 1; TNF, tumour necrosis factor; VEGFA, vascular endothelial growth 
factor A. Images in panel b were adapted with permission from REF. 215, Elsevier.
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Damage-associated 
molecular patterns
(DAMPs). Biological 
molecules that can initiate 
an inflammatory response 
independently of infection.

Clodronate liposomes
A formulation of small lipid 
vesicles containing a 
bisphosphonate that is capable 
of inducing macrophage death 
upon engulfment.

Angiostatic functions
Properties that promote 
endothelial cell quiescence 
and limit angiogenesis.

chemokines, pro-inflammatory signalling molecules and 
damage-associated molecular patterns (DAMPs)18,20. Upon 
their extravasation, monocytes differentiate and mature 
into tumour-associated macrophages (TAMs) under 
the influence of colony-stimulating factor 1 (CSF1; also 
known as M‑CSF). T cell cytokines and various tumour-
derived factors further sculpt the macrophage phenotype, 
inducing TAMs to acquire substantial molecular and 
functional heterogeneity, both within and across distinct 
cancer types18,20.

High macrophage numbers are frequently associated 
with increased vascular density in human tumours21–23. 
Accordingly, macrophages exert a pro-angiogenic role 
in mouse cancer models. Mouse mammary tumour 
virus–polyoma middle T antigen (MMTV–PyMT) 
transgenic mice that had been rendered macrophage 
deficient through Csf1 inactivation displayed decreased 
vascularization in the mammary tumours24. Likewise, 
the broad elimination of TAMs by clodronate liposomes 

or CSF1 receptor (CSF1R) antibodies decreased angio
genesis in various tumour models25–27. However, the 
pro-angiogenic capacity of TAMs may depend on their 
activation state, which is modulated by the cytokine 
milieu to which they are exposed, and the specific TME 
in which they reside18,28. In some developmental pro-
cesses, such as the remodelling of retinal blood vessels, 
macrophages may acquire anti-angiogenic or angiostatic 
functions29. However, there is currently little evidence for 
TAMs having vascular-inhibitory roles in tumours.

TAMs secrete growth factors and inflammatory 
cytokines that support angiogenesis by promoting EC 
survival, activation and proliferation (FIG. 2). TAMs are 
an important source of VEGFA in both mouse and 
human tumours26,30–32. The conditional elimination 
of Vegfa in myeloid cells (including TAMs) delays the 
angiogenic switch and attenuates the abnormal features 
of TABVs in mouse cancer models31. Furthermore, 
Vegfa deficiency in TAMs limits their ability to restore 
angiogenesis and to support the relapse of transplanted 
tumours after chemotherapy32. TAM-derived VEGFA 
also enhances vascular permeability, thereby facilitating 
cancer cell intravasation and metastasis33. Additional 
pro-angiogenic factors produced by TAMs include 
two VEGF-family members, placental growth factor 
(PlGF) and VEGFC, tumour necrosis factor (TNF), 
interleukin‑1β (IL‑1β) and IL‑6, CXC-chemokine 
ligand 8 (CXCL8; also known as IL‑8) and fibroblast 
growth factor 2 (FGF2); the angiogenic responses 
evoked by these cytokines have been reviewed else-
where28,29,34. TAMs also express members of the WNT 
family. The genetic deletion of Wnt7b in TAMs reduced 
the expression of mitogenic WNT–β‑catenin target 
genes in tumour ECs and decreased the vascular density 
in MMTV–PyMT mouse mammary carcinomas35.

TAMs often enwrap TABVs, and the intimate associ
ation between perivascular TAMs and ECs creates an 
instructive niche that supports tumour angiogenesis29,36. 
TAMs secrete membrane-bound or soluble proteases 
that, through ECM degradation, facilitate the infiltra-
tive growth of TABVs and mobilize pro-angiogenic 
growth factors sequestered in the perivascular ECM5,14. 
Macrophage-derived proteases include matrix metallo-
proteinases (MMPs; for example, MMP2, MMP9 and 
MMP12) and serine or cysteine proteinases, such as 
cathepsins and plasminogen activator14,37,38. Genetic or 
bisphosphonate-mediated inhibition of MMP9 decreased 
angiogenesis in human tumour xenografts39 and in a 
mouse model of human papillomavirus 16 (HPV16)-
driven cervical cancer40. Likewise, the pharmacological 
inhibition of cathepsin activity attenuated the vasculari-
zation of pancreatic neuroendocrine tumours (PNETs) in 
RIP1–Tag2 transgenic mice41. However, MMPs and cathep-
sins are expressed by multiple cell types in tumours — 
not only TAMs but also other leukocytes and cancer cells 
— and exert broad pro-tumoural functions that can also 
influence angiogenesis indirectly by regulating diverse 
parameters of tumour progression14,37,38.

Conditional cell depletion studies have implicated 
perivascular TAMs that express the ANGPT receptor 
TIE2 (also known as TEK) in the promotion of tumour 

Box 1 | Features of tumour endothelial cells

Morphology. Tumour endothelial cells (ECs) are structurally abnormal. They generally 
present excessive fenestrations, uneven surfaces and intra-luminal projections, and 
loosened intercellular junctions, and can also form multi-layered endothelia. These 
features favour vascular leakage and may limit blood flow1,11,224.

Gene expression. The vascular ECs of different tissues and organs show distinct gene 
expression profiles224. In analogy, tumour ECs may display considerable inter- and 
intra-tumoural molecular heterogeneity224,225. Both gene expression profiling and the 
use of phage-display peptide libraries identified several tumour-type or stage-specific 
vascular markers (termed ‘tumour endothelial markers’ or ‘vascular zip codes’) in 
mouse models of cancer. The targeting of such tumour EC‑specific markers may 
facilitate the selective delivery of therapeutic agents to tumour-associated blood 
vessels (TABVs)226,227.

Proliferative signalling. Tumour ECs display increased proliferative, migratory and 
tube-formation capabilities in response to growth factors and cytokines, compared 
with non-tumour ECs1,224. Furthermore, they are resistant to senescence and can grow 
ex vivo in serum-free conditions. The upregulation of growth factor and cytokine 
receptors (for example, vascular endothelial growth factor receptors (VEGFRs)) by 
tumour ECs may account for such abilities224. Tumour ECs, but not normal ECs, may 
express epidermal growth factor receptor (EGFR) and proliferate in response to EGF228. 
They also show constitutive activation of PI3K–AKT signalling, which promotes cell 
survival and resistance to apoptosis225.

Metabolism. Quiescent ECs display relatively high glycolysis rates1,160. However, tumour 
ECs are hyper-glycolytic and largely use aerobic glycolysis to address their energy 
requirements160.

Drug resistance. There is evidence for tumour ECs being more resistant than normal 
ECs to various cytotoxic drugs229. For example, tumour ECs were shown to acquire 
resistance to the cytotoxic agent paclitaxel through the upregulation of the 
ATP-dependent efflux pump, P‑glycoprotein 1 (PGY1; also known as ABCB1), which is 
induced by VEGFA signalling230.

Genetic abnormalities. Gene and chromosomal abnormalities, including aneuploidy, 
supernumerary centrosomes and translocations, have been documented in 
subpopulations of tumour ECs of both mouse and human origin225,231. Tumour ECs may 
accumulate genetic mutations through several routes. They produce substantial 
amounts of reactive oxygen species (ROS) in response to cycles of anoxia–
reoxygenation (oxidative stress), and are directly exposed to ROS released by 
tumour-infiltrating inflammatory cells and cancer cells. Furthermore, hypoxia represses 
the cellular DNA repair machinery. Both processes, coupled to the high proliferation 
rate of tumour ECs, can be directly mutagenic and also promote genetic instability in 
tumour ECs232. Alternatively, genetic alterations in tumour ECs might result from the 
direct trans-differentiation of cancer cells or, possibly, cancer stem cells into ECs233,234.
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Table 1 | Angiogenesis regulators in the TME

TME 
component

Main angiogenesis regulators produced by 
TME component

Effects of TME component on TABVs Refs

Macrophages VEGFA, FGF2, CXCL8, CXCL12, PlGF, VEGFC, 
IL‑1β, IL‑6, TNF, WNT7B, MMPs and cathepsins

Pro-angiogenic; induce EC proliferation, migration and 
survival, as well as ECM remodelling, to facilitate sprouting 
angiogenesis

24,28–37, 
40,41,67, 

138

CXCL9, CXCL10, CXCL11 and TNF Potentially angiostatic under the influence of IFNγ and other 
TH1 cytokines

83,85

Neutrophils and 
MDSCs

VEGFA, FGF2, BV8 and MMP9 Pro-angiogenic; the role is well established during early 
tumour stages or after therapeutic neutralization of VEGFA

13,54,55,57, 
59,64,65

Mast cells FGF2, VEGFA, TNF, CXCL8, chymase, tryptase 
and MMP9

Pro-angiogenic during the transition from non-angiogenic to 
angiogenic tumours

72–74

Eosinophils VEGFA, FGF2, IL‑6, CXCL8 and MMP9 Potentially pro-angiogenic, but relevance for tumour 
angiogenesis unclear

77

TH2 cells IL‑4 Potentially pro-angiogenic by stimulating the alternative 
(M2‑like) activation of TAMs

84

TH1 cells IFNγ Potentially angiostatic through the induction of CXCL9, 
CXCL10 and CXCL11 in TAMs or via direct angiostatic or 
anti-angiogenic effects on ECs

80–83,85

TH17 cells IL‑17 Pro-angiogenic by inducing CAFs to release CSF3, which 
recruits pro-angiogenic neutrophils

219

Treg cells VEGFA Pro-angiogenic 86

B cells VEGFA, FGF2, MMP9 and IgG Potentially pro-angiogenic, either directly or via 
IgG-dependent recruitment and activation of myeloid cells

78,79

Anti-VEGFA or anti‑ANGPT2 IgG Potentially angiostatic through the production of 
autoantibodies against pro-angiogenic cytokines in the 
context of immunotherapy

222,223

NK cells VEGFA Potentially pro-angiogenic, but relevance for tumour 
angiogenesis unclear

87,88

Platelets VEGFA, PDGFB, FGF2 and CXCL12 Pro-angiogenic 90,91,93,95–97

THBS1, PAI1, endostatin and ANGPT1 Potentially angiostatic 91,92,94

Pericytes VEGFA, ANGPT1 and ECM components Promote EC survival and, possibly, proliferation; they may 
contriute to stabilization of TABVs

100,103

CAFs VEGFA, PDGFC, FGF2, CXCL12, osteopontin 
and CSF3

Pro-angiogenic, both directly and indirectly by recruiting 
myeloid cells and through ECM production

17,117–123

Adipocytes Adipokines and free fatty acids Pro-angiogenic and pro-inflammatory; stimulate 
peri-tumoural angiogenesis

128,130,131, 
134

ECM Periostin, tenascin C, fibronectin, osteopontin 
and CCN-family proteins

Pro-angiogenic through the storage and concentration of 
pro-angiogenic factors, and recruitment of pro-angiogenic 
leukocytes

138,140–147

THBS1, osteonectin, decorin, proteolytic 
fragments of type IV and XVIII collagens

Potentially angiostatic 138,139,141

Hypoxia HIF-inducible genes: VEGFA, CXCL12 and 
ANGPT2

Pro-angiogenic 2

Metabolites Lactate 153,154,157

H+ Pro-angiogenic through increased expression and 
stabilization of VEGFA mRNA

151,152

ROS Free radicals and non-radical ROS Potentially pro-angiogenic by enhancing HIF1 transcription 
and the expression of pro-angiogenic and pro-inflammatory 
factors; they also generate pro-angiogenic lipid oxidation 
products

162,163

Tumour- 
derived EVs

Various pro-angiogenic and inflammatory 
mediators, ECM-remodelling enzymes and 
mitogenic factors for ECs

Potential pro-angiogenic effects mediated via contacts 
with, or transfer of their cargo to, ECs; relevance for tumour 
angiogenesis unclear

176,178,182, 
187

ANGPT, angiopoietin; CAF, cancer-associated fibroblast; CSF3, colony-stimulating factor 3; CXCL, CXC-chemokine ligand; EC, endothelial cell; ECM, extracellular 
matrix; EV, extracellular vesicle; FGF2, fibroblast growth factor 2; HIF, hypoxia-inducible factor; IFNγ, interferon‑γ; IgG, immunoglobulin G; IL, interleukin; MDSC, 
myeloid-derived suppressor cell; MMP, matrix metalloproteinase; NK, natural killer; PAI1, plasminogen activator inhibitor 1; PDGF, platelet-derived growth factor; 
PlGF, placental growth factor; ROS, reactive oxygen species; TABV, tumour-associated blood vessel; TAM, tumour-associated macrophage; TH, T helper; 
THBS1, thrombospondin 1; TME, tumour microenvironment; TNF, tumour necrosis factor; Treg cells, regulatory T cells; VEGF, vascular endothelial growth factor.
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RIP1–Tag2 transgenic mice
Expression of the SV40 large T 
antigen (Tag) under the control 
of the rat insulin promoter (RIP) 
causes β-cell hyperplasia, 
which progresses through a 
series of rate-limiting stages 
to invasive pancreatic 
neuroendocrine 
tumour (PNET).

Vascular guidance
The guided, directional growth 
of blood vessels.

angiogenesis36,42,43. Accordingly, the abundance of TIE2+ 
TAMs positively correlates with microvascular density 
and/or distant metastasis in some types of human can-
cer33,44. Hypoxia-induced expression of CXCL12 (also 
known as SDF1) and ANGPT2 stimulates the recruit-
ment and perivascular accumulation of TAMs that 
express the respective cognate receptors CXC-chemokine 
receptor 4 (CXCR4) and TIE2. These CXCR4+TIE2+ 
TAMs support angiogenesis in both treatment-naive43,45 
and chemotherapy- or ionizing radiation-treated 
tumours32,46–48. In a transplant sarcoma model, TIE2 
increased AKT activation in TAMs and protected them 
from the pro-apoptotic effects of the chemotherapy drug 
doxorubicin49. Moreover, the genetic inactivation of Tie2 
in TAMs impaired their ability to associate with imma-
ture blood vessels and sustain tumour angiogenesis45 or 
revascularization after chemotherapy49 in mouse tumour 

models. Of note, genetic or pharmacological inhibition 
of TIE2 in TAMs phenocopies some of the effects of 
blocking EC‑derived ANGPT2 in tumours, suggest-
ing that ANGPT2–TIE2 signalling regulates the pro-
angiogenic interactions between perivascular TAMs and 
nascent TABVs36,45.

Additional cues may regulate TAM–EC interactions. 
Notch signalling in macrophages has been implicated 
in macrophage-assisted pathological angiogenesis50, 
but currently its role in tumour angiogenesis is little 
known. TAMs express vascular guidance molecules, 
namely semaphorins, some of which modulate EC sur-
vival and migration51. The physical association between 
TAMs and TABVs may, therefore, enhance EC survival, 
activation and migration, to facilitate vascular growth 
both in untreated tumours and during post-therapy 
relapse36. Finally, macrophages were shown to perform 
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Figure 2 | Myeloid cell regulation of tumour angiogenesis. Various tumour-derived myeloid-cell chemoattractants — such 
as CC-chemokine ligand 2 (CCL2), CCL11, colony-stimulating factor 1 (CSF1), CSF2, CSF3, vascular endothelial growth 
factor A (VEGFA) and BV8 — recruit immature myeloid cells from the systemic circulation to the tumours.  Upon their 
extravasation, subsets of myeloid cells may differentiate into tumour-associated macrophages (TAMs), neutrophils and 
eosinophils. Some myeloid cells maintain an immature phenotype in the tumour microenvironment (TME), and are referred to 
as monocytic myeloid-derived suppressor cells (M‑MDSCs) or granulocytic MDSCs (G‑MDSCs). Myeloid cells promote tumour 
angiogenesis by producing pro-angiogenic growth factors such as VEGFA, fibroblast growth factor 2 (FGF2), CXC-chemokine 
ligand 8 (CXCL8), WNT7B and BV8. They also secrete various pro-inflammatory cytokines, namely interleukin‑1β (IL‑1β), IL‑6 
and tumour necrosis factor (TNF), and many proteases, including matrix metalloproteinases (MMPs) and cathepsins, which also 
have pro-angiogenic roles. Myeloid-cell derived MMP9 mobilizes extracellular matrix (ECM)-bound VEGFA and enables its 
binding to VEGF receptor 2 (VEGFR2), which is expressed on ECs, triggering angiogenesis. TIE2‑expressing TAMs derive from 
circulating monocytes; they associate with endothelial cells (ECs) and facilitate tumour angiogenesis by providing paracrine 
pro-angiogenic and tissue-remodelling support to sprouting or anastomosing blood vessels. EC‑derived angiopoietin 2 
(ANGPT2) supports angiogenesis in an autocrine manner by binding to the TIE2 receptor but also promotes leukocyte 
extravasation and mediates interactions between angiogenic ECs and TIE2‑expressing TAMs. CSF1R, CSF1 receptor; 
CCR, CC-chemokine receptor; IL‑4Rα, IL‑4 receptor‑α.
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Vascular mimicry
The process whereby 
vascular-like channels are 
formed by non-endothelial 
cells in certain tumours, 
namely melanomas.

Non-thrombogenic EC‑like 
surfaces
Cellular surfaces capable of 
preventing the formation of a 
clot (or thrombus) when in 
contact with blood.

Type I interferon
A family of secreted proteins 
with antiviral and 
immunomodulatory functions, 
which bind to a common 
receptor.

Genetically engineered 
mouse models (GEMMs) 
of cancer
Transgenic mice in which 
cancer is initiated and driven 
by defined genetic alterations, 
such as the expression of 
oncogene(s) and/or the 
inactivation of tumour 
suppressor gene(s), or both.

Immunocompetent mice
Mice that have an intact 
immune system. They are 
permissive to the growth of 
transplanted tumours with 
matched genetic background 
(syngeneic tumours).

vascular mimicry52. Although macrophages have infiltrative 
capacity and may transiently develop non-thrombogenic 
EC‑like surfaces53, it is currently unclear whether, and to 
what extent, macrophage channels provide a scaffold for 
subsequent endothelialization of bona fide TABVs.

Neutrophils. Neutrophils are the most abundant 
granulocytic population in the human blood and 
generally account for a substantial proportion of the 
haematopoietic cell infiltrate in experimental and 
human cancers. CSF3 (also known as G‑CSF) is a key 
regulator of neutrophil production. CSF3 binds to its 
receptor (CSF3R) expressed on neutrophil precursors 
to activate the downstream Janus kinase (JAK)–signal 
transducer and activator of transcription 3 (STAT3) 
pathway, which promotes neutrophil proliferation and 
expansion. Recruitment of neutrophils to tumours is 
in part mediated by CXCL chemokines through the 
cognate receptors CXCR1 and CXCR2 (REF. 54).

Like macrophages, neutrophils are an important 
source of pro-angiogenic factors and proteases in 
the TME55 (FIG. 2). In mice, STAT3 signalling controls the 
pro-angiogenic functions of neutrophils and other mye-
loid cells by activating Vegfa, Fgf2 and Mmp9 transcrip-
tion56. Human neutrophils contain VEGFA-rich granules 
that are rapidly deployed on stimulation with TNF57. 
CSF3 induces neutrophils to upregulate the expression 
of BV8 (also known as prokineticin 2; a hormone-like 
protein) in a STAT3‑dependent manner58; in turn, 
BV8 promotes EC proliferation and angiogenesis in 
tumours59. The pharmacological or genetic blockade of 
CSF3, CSF3R or BV8 decreases intra-tumoural neutro
phils and inhibits tumour angiogenesis and growth55. 
Consistent with its angiostatic functions, type I interferon 
(IFN) signalling inhibits STAT3 activation and sup-
presses the production of VEGFA and MMP9 by neutro
phils, hence limiting their pro-angiogenic capacity in 
mouse models of cancer60.

The pro-angiogenic activity of neutrophils is cru-
cial during the early stages of tumour progression. 
Neutrophil-derived MMP9 prompts the angiogenic 
switch in RIP1–Tag2 mice13,55,61 by facilitating the mobi-
lization of ECM-bound VEGFA and its subsequent 
binding to VEGFR2 on tumour ECs13. Accordingly, 
neutrophil depletion by GR1 or LY6G antibodies delays 
the angiogenic switch in both genetically engineered 
mouse models (GEMMs) of cancer and tumours trans-
planted in immunocompetent mice60–62. Moreover, Mmp9 
deficiency in myeloid cells impairs vascular maturation 
in transplant tumour models, suggesting that MMP9 
also controls late events during tumour angiogenesis63,64. 
The absence of tissue inhibitor of metalloproteinases 
(TIMPs) in complex with secreted pro‑MMP9 is 
required for the rapid activation and pro-angiogenic 
capacity of secreted pro‑MMP9 (REF. 65). Neutrophils 
are a key source of TIMP-free pro‑MMP9, which 
greatly exceeds the amount per cell produced by TAMs 
in transplant tumour models64. However, considering 
their abundance, TAMs may also provide a biologically 
relevant source of MMP9 in the TME39,48,61. Proteases 
released by activated neutrophils may also function as 

negative regulators of angiogenesis. For example, pro-
teolysis of plasminogen by MMP9 and/or elastase lib-
erates angiostatin, which limits angiogenesis directly 
by degrading VEGFA and FGF2, and indirectly by 
preventing CXCL8‑dependent neutrophil recruitment38.

Immature myeloid cells. In addition to mature macro
phages and neutrophils, tumours contain abundant 
infiltrates of immature myeloid cells, such as deactivated 
dendritic cells (DCs) and myeloid-derived suppressor 
cells (MDSCs). The latter comprise myeloid cells at vari-
ous stages of development and maturation, which can be 
resolved into monocytic (M‑MDSC) and granulocytic 
(G‑MDSC) cell populations66. Tumour-derived factors 
such as CSF3, IL‑1β and IL‑6, fuel STAT3 activation 
in MDSCs to promote their expansion, inhibit their 
full maturation into macrophages or neutrophils and 
enhance their pro-angiogenic functions in the TME66. 
Although immature DCs and MDSCs display distinctive 
metabolic properties and immunomodulatory capaci-
ties, their pro-angiogenic functions largely overlap with 
those of mature macrophages and neutrophils67 (FIG. 2).

M‑MDSCs and macrophages have been thoroughly 
characterized as both immunosuppressive and pro-
angiogenic in cancer66,68. T cells extravasate to tumours 
through a multi-step process that involves binding to cell 
adhesion molecule (CAM)-family proteins expressed 
on ECs. Under the influence of myeloid cell-derived 
VEGFA and FGF2, the ECs of TABVs downregulate the 
expression and abrogate the clustering of intercellular 
adhesion molecule 1 (ICAM1) and vascular cell adhesion 
molecule 1 (VCAM1), hence limiting T cell adhesion and 
extravasation68–70. These findings suggest that myeloid cells 
may impair T cell homing to tumours also through direct 
effects of their pro-angiogenic products on TABVs68,70.

Mast cells and eosinophils. Mast cells are tissue-resident 
granulocytes, the involvement of which in tumour angio
genesis has long been postulated71. Mast cells release 
pro-angiogenic factors, such as FGF2, VEGFA, TNF and 
CXCL8, along with MMPs, including MMP9; they also 
produce specific proteases (for example, chymase and 
tryptase) that activate pro-MMPs72. The pro-angiogenic 
functions of mast cells have been documented in GEMMs 
of HPV16‑driven skin cancer72, adenomatous polyposis 
coli (Apc)Min intestinal adenoma73, and MYC-induced 
PNET74. In these cancer models, mast cells surrounded 
or infiltrated early pre-neoplastic lesions, and their inacti
vation delayed the angiogenic switch and malignant pro-
gression. In PNETs, a mast cell inhibitor could also regress 
established TABVs by inducing EC apoptosis74.

Eosinophils represent a minor granulocytic cell infil-
trate in experimental mouse tumours75. They are mainly 
recruited to tumours by CC-chemokine ligand 11 
(CCL11; also known as eotaxin) through CC-chemokine 
receptor 3 (CCR3) and preferentially localize to hypoxic 
areas in tumours76 (FIG. 2). Eosinophils activated in vitro 
secrete various pro-angiogenic factors through degranu
lation. They release VEGFA upon stimulation with 
IL‑5, whereas CCL11 and TNF prompt the secretion of 
FGF2, IL‑6, CXCL8 and MMP9, among others77. Further 
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T helper 1 (TH1) cells
T cells that can stimulate other 
immune cells, such as 
macrophages and cytotoxic T 
lymphocytes, to kill infected or 
cancer cells. They do so 
primarily through the release of 
the TH1 cytokine interferon-γ.

TH2 cells
T cells that stimulate B cells to 
produce immunoglobulins. 
They do so through the release 
of TH2 cytokines, such as 
interleukin‑4.

Cytotoxic T lymphocytes
(CTLs). T cells capable of killing 
other cells, including cancer 
cells, generally through the 
recognition of specific antigens.

studies are necessary to establish the importance of 
eosinophil-derived pro-angiogenic factors for tumour 
angiogenesis and revascularization after therapy.

Lymphocytes. Lymphocytes are cells that accomplish 
antigen-specific immune responses. By modulating 
myeloid cell activation, B cells and T cells may indi-
rectly control tumour angiogenesis. Furthermore, some 
lymphocyte-derived cytokines directly influence EC 
biology in tumours (FIG. 3).

B cells may facilitate angiogenesis in tumours by 
expressing various pro-angiogenic mediators, includ-
ing VEGFA, FGF2 and MMP9, in a STAT3‑dependent 
manner78. They may also stimulate tumour angiogenesis 
indirectly through immunoglobulin G (IgG) and by 
polarizing macrophages. For example, in a GEMM of 
HPV16‑driven skin cancer, deposition of B cell-derived 
IgG in the pre-malignant skin was shown to recruit and 
activate pro-tumoural and pro-angiogenic TAMs, which 
fostered skin carcinogenesis79. Pro-angiogenic TAM pro-
gramming was dependent on activating IgG receptors 

(FcγRs) expressed on the macrophages. Indeed, mice 
lacking FcγRs failed to mount a robust angiogenic 
response and had delayed tumour progression and 
reduced incidence of squamous cell carcinomas79.

There is also increasing evidence that T cells mod-
ulate tumour angiogenesis, both directly and indirectly. 
Immunotherapy-elicited CD4+ T helper 1 (TH1) cells can 
directly inhibit tumour angiogenesis by enforcing the 
maturation and/or quiescence of TABVs80. This process 
may involve IFNγ, which restrains EC proliferation and, 
when overexpressed experimentally, can cause the regres-
sion of immature blood vessels81,82. T cells may also influ-
ence tumour angiogenesis indirectly. For example, CD4+ 
TH2 cells secrete IL‑4 and stimulate the STAT6‑dependent 
alternative (or M2‑like) activation of TAMs, which 
entails immunosuppressive, tissue-remodelling and 
pro-angiogenic functions83,84. Conversely, IFNγ secreted 
by CD4+ TH1 cells or CD8+ cytotoxic T lymphocytes 
(CTLs) may stimulate TAMs to upregulate the expres-
sion of the angiostatic cytokines CXCL9, CXCL10 and 
CXCL11, in a STAT1‑dependent manner83,85. There is, 
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angiogenesis directly by impairing endothelial cell (EC) proliferation. TH2 cells may activate humoral immunity, prompting 
B cells to secrete immunoglobulin G (IgG) that can stimulate pro-angiogenic macrophage programming via Fcγ receptor 
(FcγR) engagement. TAM-derived immunosuppressive cytokines, such as IL‑10 and transforming growth factor‑β (TGFβ), 
promote the expansion of regulatory T (Treg) cells that sustain angiogenesis by releasing vascular endothelial growth factor A 
(VEGFA). The tumour microenvironment (TME) may suppress natural killer (NK) cell cytotoxic activity and induce their 
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Cancer immunosurveillance
The process whereby immune 
cells, namely lymphocytes 
and natural killer cells, 
recognize initiated cancer 
cells and eliminate them; it 
may also lead to the selection 
of less immunogenic cancer 
cell clones.

however, little evidence for T cells promoting angiostatic 
or anti-angiogenic TAM reprogramming, at least in 
treatment-naive, progressing tumours.

In contrast to TH1 cells and CTLs, immunosuppressive 
regulatory T (Treg) cells seem to possess pro-angiogenic 
capacities68. Treg cells may facilitate angiogenesis indi-
rectly by suppressing IFNγ-expressing effector TH1 cells. 
Furthermore, hypoxia-induced CCL28 recruits Treg cells 
that express VEGFA, and depletion of Treg cells abates 
VEGFA levels and angiogenesis in the TME86. These obser-
vations add weight to the notion that immunosuppressive 
cell networks involving myeloid cells and Treg cells not 
only cause subsidence of antitumour immunity, but also 
function to stimulate tumour angiogenesis68.

Natural killer cells. Although natural killer (NK) cells 
have important pro-angiogenic roles in the uterine 
vasculature, their involvement in tumour angiogenesis 
is less well understood87. The genetic inactivation of 
Stat5, which is required for NK cell-mediated cancer 
immunosurveillance, upregulates VEGFA in NK cells and 
enhances angiogenesis in mouse lymphoma models88. 
Deactivated VEGFA-expressing NK cells have been 
observed in various human cancer types (FIG. 3), suggest-
ing potential associations between NK cell deactivation 
and angiogenesis in progressing tumours87.

Platelets. The link between cancer progression and 
thrombocytosis (increased platelet counts) is well estab-
lished89. Activated platelets are a rich source of pro-
angiogenic factors, including VEGFA, platelet-derived 
growth factors (PDGFs) and FGF2 (FIG. 4). They also 
contain and deploy angiostatic molecules, such as throm-
bospondin 1 (THBS1), plasminogen activator inhibi-
tor 1 (PAI1; also known as SERPINE1) and endostatin90. 
Pro-angiogenic and angiostatic molecules are stored in 
distinct α‑granules, which may be selectively released 
depending on the specific stimulus91. However, this 
concept has been challenged by studies suggesting that 
platelet secretion is, in fact, a stochastic process92.

In tumours, platelets are activated at sites of vascular 
hyperpermeability and plasma leakage by contact with 
collagen and cancer cells90,93. Tumours cause platelet 
activation, aggregation and degranulation in their vas-
culature by expressing platelet-activating factors, such 
as tissue factor (TF), thrombin and ADP. Tumour ECs 
frequently overexpress TF, and positive correlations 
between TF expression and microvessel density, or TF 
and VEGFA expression, have been observed in several 
cancer types90,93. Although disrupting platelet function 
does not obviously impair tumour angiogenesis94, the 
overall outcome of platelet activation and degranulation 
in tumours appears to be pro-angiogenic90,93. In par-
ticular, platelet degranulation of VEGFA, CXCL12 and 
PDGF, may initiate a ‘wound-healing’ response involv-
ing the recruitment and activation of myeloid cells and 
cancer-associated fibroblasts (CAFs), and increased ECM 
deposition, which in turn foster tumour angiogenesis14.

Interestingly, platelets can avidly sequester pro-
angiogenic factors in cancer-bearing hosts95, and plate-
lets isolated from cancer patients indeed contain higher 

levels of pro-angiogenic factors compared with those 
from healthy donors96,97. In one study, platelets were 
shown to sequester pro-angiogenic factors from aggres-
sive mouse mammary tumours and to deploy them to 
indolent tumours to induce angiogenesis and instigate 
their progression98. Platelets can also promote angio-
genesis by stimulating the mobilization of myeloid cells 
from the bone marrow and enhancing their homing to 
tumours99. This may involve deployment to the bone 
marrow niche of factors that had been sequestered at the 
tumour site. Provocatively, the shuttling of sequestered 
myeloid-cell chemoattractants (for example, CXCL12) 
and pro-angiogenic mediators (for example, VEGFA) 
by platelets99 might trigger the coordinate awaken-
ing of dormant disseminated cancer cells and thereby 
induce metastatic outgrowth through the induction of 
the angiogenic switch. Together, these findings illustrate 
complex roles for platelets in the regulation of vascular 
homeostasis and growth in tumours.

Pericytes. Pericytes are cells of mesenchymal origin that 
enwrap and stabilize capillaries. They are embedded in 
the basement membrane of small blood vessels and pro-
mote survival of ECs, while restraining their proliferation, 
through the secretion of EC growth factors, MMP inhib-
itors and various ECM molecules. Pericytes also stabilize 
EC junctions to limit vascular permeability100. At vari
ance with quiescent capillaries, TABVs display uneven 
and loose pericyte coverage11,101. The paucity of stable 
pericyte–EC interactions in tumours enables sprouting 
angiogenesis (FIG. 4), but also generates a dysfunctional 
vascular network characterized by EC hyperplasia, 
defective cellular junctions and vascular leakiness11,100,101.

EC‑derived PDGFB promotes the recruitment of 
pericytes to the tumour vasculature100, whereas the 
ANGPT–TIE2 system plays fundamental roles in regu
lating subsequent pericyte–EC interactions102. The 
binding of pericyte-derived ANGPT1 to TIE2 on ECs 
inhibits EC proliferation, tightens EC junctions and 
stabilizes newly formed vessels103. Furthermore, peri-
cytes express neural cell adhesion molecule 1 (NCAM1) 
and the NG2 proteoglycan, which contribute to vascu-
lar maturation by increasing pericyte recruitment104,105. 
By contrast, angiogenic ECs produce ANGPT2, which 
competes with ANGPT1 for binding to TIE2, disrupt-
ing pericyte–EC interactions and destabilizing the 
TABVs to enable angiogenesis102. Accordingly, genetic or 
pharmacological inhibition of ANGPT2 or TIE2 activa-
tion inhibits tumour angiogenesis and increases pericyte 
coverage of the surviving blood vessels45,106–109.

Mounting data suggest that pericytes are hetero
geneous cell subpopulations with different develop-
mental origins and diverse gene expression profiles100. 
Two main pericyte subsets have been identified in mice, 
termed type‑1 (nestin−NG2+) and type‑2 (nestin+NG2+) 
pericytes110. Only type‑2 pericytes were found in trans-
plant B16 melanoma and G26‑H2 glioma tumour 
models110, but it is currently unclear whether other 
tumour models, such as GEMMs of cancer, also 
lack type‑1 pericytes. Tumour pericytes exert pro-
angiogenic functions and display an activated phenotype 
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characterized by increased expression of α‑smooth 
muscle actin (αSMA; also known as ACTA2), regula-
tor of G‑protein signalling‑5 (RGS5) and endosialin, 
and reduced levels of desmin and contractile proteins, 
compared with normal-tissue pericytes70,100,110. The acute 
elimination of tumour pericytes, for instance, by PDGF 
receptor (PDGFR) signalling inhibition or suicide 
gene-based cell depletion approaches, disrupts angio-
genesis in both transplant and GEMMs of cancer111,112. 
Furthermore, kinase inhibitors that concomitantly 
block the VEGFRs and PDGFRs, such as sunitinib and 
sorafenib, induce more pervasive and sustained TABV 
regression than pure VEGFR inhibitors113,114. These find-
ings indicate that pericytes provide crucial pro-survival 
cues to angiogenic TABVs.

Cancer-associated fibroblasts. CAFs have a key role in 
producing a reactive stroma that frequently perpetuates 
a tumour-promoting, tissue-repair response in solid 
tumours17. CAFs largely derive from tissue-resident 
fibroblasts that, under the influence of transforming 

growth factor‑β (TGFβ), acquire traits of functional 
hyperactivation, including enhanced proliferation and 
motility, along with robust ECM biosynthesis and depo
sition capacity. Indeed, CAFs secrete enzymes, such as 
lysyl oxidases (LOXs) and hydroxylases, which catalyse 
the crosslinking of collagens to elastin and other ECM 
molecules. By controlling the biomechanical properties 
of the tumour stroma, including stiffness, elasticity and 
interstitial fluid pressure, CAFs indirectly modulate 
vascularization and blood flow in tumours115.

CAFs have well-established pro-angiogenic functions 
in tumours (FIG. 4). They often colocalize with TABVs in 
human cancers, and co‑implantation of CAFs and 
cancer cells enhances angiogenesis, decreases cancer cell 
dormancy and accelerates tumour growth in mice116,117. 
CAFs are a major source of tumour VEGFA118,119, but 
can also support tumour angiogenesis in a VEGFA-
independent manner120. CAF-derived PDGFC sus-
tains angiogenesis by further stimulating CAFs to 
secrete pro-angiogenic growth factors, such as FGF2 
and osteopontin121–123. The CAF secretome potentiates 
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Figure 4 | Chronic wound-healing response promotes tumour angiogenesis. Under the influence of transforming growth 
factor‑β (TGFβ) and other tumour-derived factors, peri-tumoural fibroblasts differentiate into cancer-associated fibroblasts 
(CAFs), which secrete various components of the tumour extracellular matrix (ECM) and induce the crosslinking of collagen 
fibres through lysyl oxidase (LOX) activity.  Moreover, CAFs stimulate angiogenesis by secreting pro-angiogenic growth 
factors, such as vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2), CXC-chemokine ligand 12 
(CXCL12) and platelet-derived growth factor C (PDGFC). The loose association of pericytes with tumour-associated blood 
vessels (TABVs) favours chronic vascular leakage in tumours. This process is enhanced by autocrine angiopoietin 2 (ANGPT2) 
signalling and is inhibited by ANGPT1 and PDGFB, which promote vascular maturation when VEGFA and ANGPT2 levels are 
low. Platelet extravasation and degranulation at sites of vascular leakage liberates numerous pro-angiogenic mediators and 
proteases, as well as cytokines and growth factors that support the proliferation and activation of CAFs, such as PDGFB 
and TGFβ. Platelets may also sequester different tumour-derived factors, for example CXCL12 and VEGFA, in the tumour 
microenvironment (TME) and deploy them to the bone marrow haematopoietic niche to enhance myelopoiesis and 
myeloid-cell mobilization. CXCR4, CXC-chemokine receptor 4; G-MDSC, granulocytic myeloid-derived suppressor cell; 
M‑MDSC, monocytic myeloid-derived suppressor cell; VEGFR1, VEGF receptor 1.
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tumour angiogenesis also by attracting vascular ECs 
and recruiting monocytes from the bone marrow, for 
example, through the CXCL12–CXCR4 axis17,117. In mel-
anoma, aged CAFs secrete the WNT antagonist secreted 
frizzled-related protein 2 (SFRP2), which exacerbates 
the angiogenic and malignant behaviour of tumours in 
old individuals124. Although CAFs also secrete angio
genesis inhibitors, such as THBS1 (REF. 17), tumours 
may overcome their angiostatic properties by adaptively 
increasing the production of pro-angiogenic factors125.

Adipocytes. Adipose tissue may foster the growth of 
initiated cancer cells through the promotion of angio
genesis. Indeed, tumour growth was accelerated when 
cancer cells were implanted in the white or brown adi-
pose tissue of mice, compared with the subcutaneous 
space126,127. The tumours implanted in adipose tissue 
displayed a more florid vascular network than those 
implanted subcutaneously, suggesting a potential role for 

adipocytes in accelerating angiogenesis127. Tumours that 
arise in or in proximity to adipose tissue (for example, 
breast, ovarian or colon cancers, as well as bone or lymph 
node metastases) are exposed to a milieu of cytokines, 
chemokines and hormones, collectively termed 
adipokines, some of which have well-established pro-
angiogenic functions (FIG. 5). Pro-angiogenic adipokines 
are secreted by adipocytes, infiltrating inflammatory 
cells and other adipose tissue-associated stromal cells, 
and may either target vascular ECs directly or recruit 
vascular-modulatory inflammatory cells128.

Of note, obesity is associated with increased risk 
of several cancer types129. The adipose tissue of obese 
individuals is not only enlarged, but also chronically 
inflamed and adipokine rich. Adipocytes isolated 
from obese individuals enhanced EC proliferation 
and migration in vitro to a greater extent than adipo-
cytes from non-obese individuals130. Furthermore, in a 
mouse mammary tumour model, pre-existing obesity 
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and IL‑6, insulin growth factor 1 (IGF1), vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2), 
hepatocyte growth factor (HGF), angiopoietins (ANGPTs), CC-chemokine ligand 2 (CCL2) and colony-stimulating factor 2 
(CSF2) (reviewed in REF. 128). Chronic hypoxic conditions in the tumour microenvironment (TME) promote the expression of 
hypoxia-inducible factor (HIF)-induced pro-angiogenic mediators, namely VEGFA and CXC-chemokine ligand 12 (CXCL12), 
which directly stimulate tumour angiogenesis. Furthermore, sustained oncogenic signalling in the cancer cells is associated 
with the upregulation of various myeloid-cell chemoattractants and activators, such as CSF2, CSF3, CXCL8 and VEGFA. 
Metabolically active cancer cells secrete lactate, which is internalized by ECs and tumour-associated macrophages (TAMs) 
through the lactate importer monocarboxylate transporter 1 (MCT1). Lactate stimulates tumour angiogenesis both by acting 
directly on ECs and indirectly by promoting M2‑like TAM programming. Tumour ECs respond to hypoxia and acidosis by 
upregulating mediators of the glycolytic pathway, such as glucose transporter 1 (GLUT1). Finally, under the influence of 
VEGFA, the ECs of TABVs produce various reactive oxygen species (ROS), which promote EC proliferation and angiogenesis 
under conditions of metabolic stress. MMP, matrix metalloproteinase.

R E V I E W S

466 | AUGUST 2017 | VOLUME 17	 www.nature.com/nrc

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



Lipolysis
The process whereby 
triglycerides are resolved into 
glycerol and free fatty acids 
through hydrolysis.

β‑Oxidation
The process that occurs in the 
mitochondrion and that uses 
fatty acids to generate 
acetyl-CoA, which is essential 
for producing ATP through 
oxidative phosphorylation.

facilitated tumour growth by inducing angiogenesis131. 
Both human and mouse mammary adipocytes were 
shown to recruit and activate macrophages through 
a CCL2–IL‑1β–CXCL12 signalling pathway. In turn, 
the activated macrophages promoted stromal angio
genesis before the appearance of cancer nodules131. 
Consistent with these findings, leukaemic cells were 
shown to preferentially thrive in so‑called ‘milky spots’ 
— aggregates of immune cells embedded in highly vas-
cularized adipose tissue — in an experimental model of 
peritoneal metastasis132.

Compared with normal adipose tissue, the peri-
tumoural adipose tissue is highly vascularized and 
macrophage rich, and produces higher levels of pro-
teases, ECM proteins and various pro-angiogenic adi-
pokines. Moreover, cancer cells reprogramme adjacent 
adipocytes to acquire an activated phenotype character-
ized by reduced cell size and sustained lipolysis126,133. As a 
result of increased lipolysis, cancer-associated adipo-
cytes may supply fatty acids to metastatic ovarian cancer 
cells through the chaperone protein fatty acid-binding 
protein 4 (FABP4), boosting β‑oxidation of fatty acids 
in cancer cells134. Of note, not only cancer cells but also 
VEGFA-stimulated, angiogenic ECs express high levels 
of FABP4 (REF. 135). Angiogenic ECs can utilize fatty acid 
β‑oxidation for their growth136, so cancer-associated 
adipocytes may directly fuel peri-tumoural angiogenesis.

The extracellular matrix
The ECM is an intricate network of fibrous proteins, 
glycosaminoglycans and matricellular proteins that pro-
vide structural support as well as biochemical and bio-
mechanical cues for cancer cell growth115,137,138. Vascular 
ECs and mural cells produce a specialized ECM, the 
basement membrane, which is crucial for blood vessel 
integrity and function. Sprouting angiogenesis involves 
the degradation of the basement membrane by MMPs 
produced by activated ECs and recruited myeloid 
cells, the ensuing formation of a provisional fibrin- 
and fibronectin-rich ECM that supports EC prolifer-
ation and migration, and the ultimate reassembly of a 
mature basement membrane that, in the context of non-
pathological angiogenesis, contributes to EC quiescence 
and vascular integrity1,138,139. Sustained pro-angiogenic 
signalling in tumours impairs the subsequent steps of 
vascular morphogenesis, namely the acquisition of a qui-
escent EC phenotype and the development of an intact 
and selectively permeable vascular barrier1.

In tumours, the vascular basement membrane is fre-
quently discontinuous and loosely associated with ECs 
and pericytes140, which contributes to increasing vas-
cular leakiness and facilitates cancer cell intravasation 
and metastasis1,115. Furthermore, the composition, 
topography and ligand density of both the vascular and 
interstitial ECM are altered in tumours138. The ECM may 
have both pro-angiogenic and vascular-stabilizing roles. 
It serves as a depot for various pro-angiogenic growth 
factors, notably VEGFA, FGFs, PDGFB and TGFβ, 
which are released in their bioactive forms through 
the proteolytic processing of the ECM by plasmin, 
MMPs and other proteases5,138,139. The breakdown of 

the ECM may also generate chemoattractants for pro-
angiogenic inflammatory cells, such as TAMs141. Direct 
pro-angiogenic activities have been described for many 
tumour ECM molecules, such as periostin, tenascins, 
fibronectin, perlecan, osteopontin and CCN-family 
proteins142–144. For example, in the RIP1–Tag2 PNET 
model, tenascin C sustained angiogenesis by downregu-
lating Dickkopf-related protein 1 (DKK1) and increasing 
WNT signalling145. Conversely, several ECM matricellu-
lar proteins, such as THBS1, osteonectin (also known as 
SPARC) and the proteoglycan decorin, may exert angio
static functions146,147. Sustained ECM remodelling in 
tumours may also generate biologically active fragments 
of type IV and XVIII collagens, which limit angiogenesis 
by competing with intact collagen fibres for interaction 
with EC integrins138,139.

The biophysical and mechanical properties of 
the tumour ECM, such as the altered geometry and 
increased density and crosslinking of collagen fibres, 
influence tumour angiogenesis both directly and indi-
rectly115,138. In experimental matrices, ECM stiffness 
and contractility modulate the spatial organization of 
VEGFA gradients and VEGFR2 expression by ECs148,149. 
The abnormal arrangement of ECM fibres facilitates 
tumour angiogenesis also by enhancing the migration 
of ECs and pro-angiogenic TASCs, such as TAMs and 
CAFs. Indeed, these cells migrate more rapidly on lin-
earized collagen fibres, which are enriched in tumours 
compared with non-neoplastic tissues115,150.

Tumour metabolism
The key role of hypoxia in tumour angiogenesis is well 
established2. The transcriptional activity of hypoxia-
inducible factor 1 (HIF1) induces the expression of sev-
eral pro-angiogenic genes, such as VEGFA, VEGFR2, 
DLL4, CXCL12 and ANGPT2, in both cancer cells and 
TASCs2. Under hypoxic conditions, cancer cells consume 
glucose and secrete lactate, which generates an acidic 
TME (FIG. 5). Glucose deprivation and acidosis increase 
VEGFA mRNA stability post-transcriptionally in the 
cancer cells151,152. Also, ECs internalize cancer cell-derived 
lactate through the lactate importer monocarboxy
late transporter 1 (MCT1; also known as SLC16A1), 
which enhances angiogenesis in a nuclear factor‑κB  
(NF‑κB)- and HIF1‑dependent manner153,154.

Similarly to cancer cells, TASCs also respond to 
hypoxia2. Hypoxic conditioning of TASCs modulates the 
tumour metabolic landscape and angiogenesis. Hypoxia 
stimulates CAFs to secrete ECM-remodelling enzymes 
and HIF-inducible pro-angiogenic factors (for exam-
ple, CXCL12), which facilitate tumour angiogenesis2. 
Macrophages accumulate in hypoxic tumour regions155 
and around nascent (non-perfused) TABVs29,36,45. These 
hypoxic microenvironments fine-tune the activation of 
TAMs and stimulate pro-angiogenic gene transcription156. 
In analogy, lactate induces pro-angiogenic (M2‑like) 
TAM activation in a HIF1α‑dependent manner157. 
Hypoxic TAMs express several HIF-dependent glyco-
lytic genes, suggesting that they preferentially utilize a 
glycolytic metabolism158. However, under the influence 
of TH2 cytokines (for example, IL‑4), TAMs may tune 
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Glycolysis
The metabolic process that 
occurs in the cell cytoplasm 
and that uses glucose to 
generate pyruvate and the 
high-energy molecules ATP and 
NADH; in the presence of 
oxygen, pyruvate may enter 
the mitochondrion to sustain 
oxidative metabolism.

Reactive oxygen species
(ROS). Chemically reactive 
molecular species that contain 
oxygen; by reacting with 
biological molecules, ROS 
can alter their structure 
and function.

Oxidative metabolism
The metabolic processes 
that converge on oxidative 
phosphorylation to 
produce ATP.

Extracellular vesicles
(EVs). The heterogeneous 
assortment of secreted vesicles 
produced by virtually any cell 
type through diverse 
biogenesis processes.

Tetraspanins
A family of transmembrane 
proteins that organize 
microdomains enriched 
in membrane-bound 
signalling proteins.

Orthotopic tumour 
transplant
An experimental tumour that 
results from the injection of 
cancer cells into the tissue or 
organ from which the cancer 
cells were originally derived.

Ectopic tumour transplant
An experimental tumour that 
results from the injection of 
cancer cells into an anatomical 
site that is different from the 
one from which the cancer cells 
were originally derived. 
Generally, ectopic tumours 
are inoculated in the 
subcutaneous space.

down glycolysis and enhance oxidative phosphorylation, 
a metabolic switch that is associated with the acquisition 
of immunosuppressive and pro-angiogenic functions158. 
Attenuated glycolysis in TAMs was also shown to facili-
tate glucose consumption by tumour ECs, leading to their 
acquisition of robust angiogenic capacities159. Despite 
their proximity to blood oxygen, tumour ECs mainly rely 
on aerobic glycolysis (rather than oxidative phosphoryla-
tion) and fatty acid oxidation for their bioenergetics and 
biosynthetic needs160. Such metabolic reprogramming 
enables ECs to create new blood vessels while maximizing 
oxygen transfer to surrounding tissues, limiting the pro-
duction of reactive oxygen species (ROS), and producing 
ATP more rapidly than through oxidative metabolism160.

Cycles of hypoxia–reperfusion, high metabolic 
activity and sustained oncogenic signalling, together 
induce unbalanced ROS production in tumours161. 
Depending on the exact species, concentration and cel-
lular source, ROS can either promote or inhibit tumour 
angiogenesis. ROS production in both cancer cells and 
TASCs cell-autonomously induces VEGFA transcrip-
tion through HIF1, and also generates lipid oxidation 
metabolites, such as end-products of docosahexaenoic 
acid oxidation, which induce tumour angiogenesis in a 
VEGFA-independent and Toll-like receptor 2 (TLR2)-
dependent manner162,163. Although ROS production 
in ECs may sustain tumour angiogenesis164, excessive 
ROS levels may blunt EC responsiveness to extracellular 
VEGFA by increasing VEGFR2 recycling165, a process 
that can be bypassed through the induction of anti
oxidative responses166. It remains unclear whether ROS 
generated by cancer cells and TASCs in highly hypoxic 
and inflamed TMEs can directly penetrate ECs to 
influence their angiogenic properties.

Finally, there is also experimental evidence for 
oncogenic drivers to control tumour angiogene-
sis. Constitutively activated RAS and RAF proteins 
directly induce the expression of pro-angiogenic fac-
tors, such as VEGFA and CXCL8, in cancer cells167–170. 
Furthermore, mutant oncogenes may also elicit pro-
angiogenic responses indirectly (for instance, by induc-
ing the expression of myeloid cell chemoattractants171,172). 
However, there is currently little clinical evidence that 
specific oncogenes, such as mutant KRAS, confer higher 
sensitivity to anti-angiogenic therapy, for example, in 
colorectal cancer173,174.

Tumour-derived extracellular vesicles
Cancer cells and TASCs secrete various vesicles of dif-
ferent sizes, together referred to as extracellular vesicles 
(EVs), which contain proteins, nucleic acids and lipids 
that in part reflect the biomolecular composition of 
the cell of origin175. The hypoxic and acidic TME may 
enhance the production of tumour-derived EVs, and 
increasing data suggest that tumour-derived  EVs 
can influence vascular function, both locally in 
tumours and remotely in distant organs through the 
systemic circulation29,175,176.

EVs secreted by cancer cells have been shown to 
contain pro-angiogenic mediators, including VEGFA, 
CXCL8, IL‑6 and FGF2 (REFS 177,178). Of note, the 

acidic TME may facilitate EV disruption178, enabling 
the interaction of pro-angiogenic molecules with 
cognate receptors expressed on tumour ECs. Cancer 
cell-derived EVs may also deploy pro-angiogenic ECM-
remodelling enzymes, such as urokinase plasminogen 
activator (uPA), MMP2 and MMP9 (REFS 178,179). 
Besides cancer cells, several TASC types produce EVs 
with potential pro-angiogenic functions. These include 
macrophages180, platelets181 and ECs182,183.

The EV surface displays several tetraspanins184. The 
expression of certain tetraspanins on cancer cell-derived 
EVs was shown to enhance EV internalization by ECs, 
which in turn stimulated the transcription of angio
genesis-related genes and promoted EC proliferation 
and migration185. The fusion of tumour EVs with the 
plasma membrane of ECs may also be conducive to 
the horizontal transfer of mitogenic RNAs or proteins, 
which may influence the biology of the recipient ECs 
and stimulate tumour angiogenesis182,186–188. For example, 
EVs secreted by cancer cells were reported to transfer 
mutant epidermal growth factor receptor (EGFR) to 
tumour ECs, inducing mitogenic MAPK and AKT sig-
nalling activation187. However, although an increasing 
number of studies document the transfer of functional 
macromolecules from tumour-derived EVs to TABVs 
or vascular beds in pre-metastatic sites, the mechan
istic underpinning and clinical implications of these 
phenomena remain poorly understood175,184.

Distinct organ microenvironments
Heterogeneous vascular morphology and blood ves-
sel patterns are observed across distinct tumour types 
and in different microenvironments of individual 
tumours6–10. In mouse transplant cancer models, the site 
of tumour inoculation (for example, orthotopic tumour 
transplant versus ectopic tumour transplant) can markedly 
influence angiogenesis along with tumour histopathol-
ogy, gene expression and several parameters of cancer 
progression6,7. Also, the structure and density of metasta-
sis-associated blood vessels vary considerably according 
to the location of the metastatic site after dissemination 
from a primary human tumour9,10. Of note, the genetic 
background of the mouse influences innate and adaptive 
immune cell biology, which in turn may reverberate on 
tumour angiogenesis. As a consequence of these many 
variables, experimental tumours may substantially dif-
fer from human tumours in terms of vascular density, 
functionality and phenotype, as well as responsiveness 
to anti-angiogenic therapy.

Mouse cancer models typically display fast growth 
kinetics and a ‘pushy’ (expansive) growth pattern, which 
may exacerbate the requirement for angiogenesis and 
the involvement of pro-angiogenic TASCs. Although 
sprouting angiogenesis undeniably contributes to 
human tumour vascularization5,189, non-angiogenic 
modes have also been observed, especially in metastatic 
human cancers. Vascular co‑option — the infiltrative 
growth of cancer cells along pre-existing host vessels — 
has been documented in tumours that develop in highly 
vascularized organs, such as the lung, liver, brain and 
lymph nodes10,190–192. Remarkably, the analysis of 164 
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human lung metastasis specimens derived from primary 
cancers of the breast, colon or kidney found evidence for 
vessel co‑option in 80% of the cases190. Although mye-
loid cells have been implicated in metastasis-associated 
angiogenesis in mouse models193,194, the contribution of 
TASCs to vessel co‑option in both primary and meta-
static tumours has been poorly studied, and further work 
in this area is needed.

Implications for anticancer therapies
As discussed above, the mechanisms involved in the 
induction and maintenance of the tumour vasculature 
are diverse and robust, and involve the action of mul-
tiple biochemical mediators and cell types with osten-
sibly redundant pro-angiogenic functions. Accordingly, 
the pharmacological inhibition of VEGFA signalling 
inhibits tumour angiogenesis in some but not all mouse 
cancer models, and it typically does not block tumour 
progression in mice and humans189. By striking con-
trast, the genetic inactivation of Vegfa impairs devel-
opmental angiogenesis and is embryonic lethal1. These 
observations support the notion that the regulation 
of tumour angiogenesis is a multidimensional pro-
cess that is less dependent on VEGFA signalling than 
developmental angiogenesis. Furthermore, tumours 
can rapidly adapt to the neutralization of individual 
pro-angiogenic growth factors, including VEGFA189,195, 
through routes that involve metabolic adaptation and 
reprogramming196–201, the enforcement of compen-
satory pro-angiogenic signals108,202,203 or the acquisi-
tion of angiogenesis-independent modes of tumour 
growth190,191,204,205 (FIG. 6a–c).

Myeloid cells, macrophages and neutrophils in par-
ticular sustain both VEGFA-dependent and independent 
angiogenesis in tumours. This is particularly relevant con-
sidering the notion that anti-angiogenic drugs provoke the 
surge, in tumours, of hypoxia-inducible chemoattractants 
for myeloid cells, which can rescue angiogenesis through 
VEGFA-independent pathways48,55,59,195,206,207. Strategies 
that selectively impair pro-angiogenic macrophages, 
for example, perivascular TIE2+ TAMs, may help to dis-
rupt compensatory pro-angiogenic cues36 while sparing 
TAM subpopulations that have potential roles in antigen 
presentation or the production of angiostatic factors in 
response to TH1 cytokines18,83,85. Blocking ANGPT2 or 
TIE2 signalling decreases TIE2+ TAMs208, impedes their 
association with angiogenic blood vessels45 and increases 
the proportion of TAMs that exhibit an M1‑like (angio
static) phenotype209,210. However, different myeloid-cell 
types may contribute to limiting tumour responsiveness 
to anti-angiogenic therapies62,67,211. For example, macro
phage or neutrophil elimination in a mouse PNET 
model did not impede the emergence of resistance to 
sorafenib, an anti-angiogenic multi-kinase inhibitor, 
but depleting both cell types improved the therapeutic 
benefits62. These preclinical findings are consistent with 
initial reports showing that anti-macrophage drugs, for 
example, CSF1R inhibitors, have limited therapeutic 
activity in patients with cancer212,213. Therefore, broadly 
targeting myeloid cells may be required for effective abla-
tion of their pro-angiogenic capacity in the context of 

cancer treatment. A promising targeted approach might 
be inhibiting the γ-isoform of PI3K (PI3Kγ), which is 
preferentially expressed in myeloid cells and sustains 
their immunosuppressive and pro-angiogenic func-
tions62,214. Furthermore, TAMs can also be engineered to 
express biologics that inhibit tumour angiogenesis and 
reprogramme the TME215.

Pericytes have emerged as important regulators 
of tumour angiogenesis and revascularization post-
therapy70. Interestingly, regression of TABVs in response 
to anti-VEGFA therapy leaves empty sleeves of basement 
membrane and pericytes45,216, which provide a guiding 
scaffold for rapid tumour revascularization after ther-
apy withdrawal216. Co‑targeting pericytes and ECs 
with inhibitors that potently block both PDGFRs and 
VEGFRs, such as sunitinib, delays tumour revascular-
ization post-therapy compared with selective VEGFR 
inhibitors113,114,195 and has clinical efficacy in PNETs217. 
However, there is also evidence for pericytes limiting 
cancer-cell intravasation and metastasis104. The latter 
observation may explain the propensity of sunitinib 
to increase metastasis from primary tumours in some 
cancer models218. Because metastatic dissemination 
from pericyte-depleted tumours may rely, at least in 
part, on the acute release of ANGPT2 from sensitized 
ECs, co‑targeting ANGPT2 may serve to blunt the 
pro-metastatic potential of pericyte elimination and to 
improve the therapeutic benefits112.

There is increasing evidence that acute vascular 
pruning by potent angiogenesis inhibitors may exacer-
bate or even instigate the pro-tumoural capabilities of 
TASCs189,195,207. Notably, interception of VEGFA signal-
ling enhances M2‑like TAM polarization108,206 and pro-
angiogenic CAF programming120. Moreover, TH17 cells 
were shown to produce IL‑17 in response to anti-VEGFA 
therapy; in turn, IL‑17 induced tumours to release CSF3, 
which promoted VEGFA-independent tumour revascu
larization and regrowth through neutrophil recruit-
ment219. Conversely, defined regimens of anti-angiogenic 
drugs may normalize, rather than regress, TABVs in a 
process involving the selective pruning of immature 
capillaries and the concomitant stabilization of perfused 
vessels220 (FIG. 6d). Both suboptimal VEGFA neutralization 
and ANGPT2 inhibition have been reported to normal-
ize TABVs, which may improve chemotherapy delivery, 
enhance radiosensitivity and facilitate T cell extravasation 
in tumours70,209,210,220. The design of anti-angiogenic treat-
ments needs to incorporate these complexities in order 
to maximize the therapeutic benefits in cancer patients. 
This remains a challenging clinical task and open area of 
preclinical research.

Concluding remarks
Most of the studies discussed in this Review employed 
mouse cancer models as a platform for mechanistic 
investigations of molecular or cellular players involved 
in tumour angiogenesis. The many idiosyncratic details 
inherent to each tumour model and its underlying biol-
ogy determine the experimental results and may limit 
the applicability and relevance of the selected model to 
human pathology. Interrogating the vascular-modulatory 

TH17 cells
T cells that have roles in 
protecting organ surfaces, in 
particular the gut mucosa, 
from pathogens. They produce 
interleukin‑17 and stimulate 
B cell-mediated humoral 
immunity.
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Figure 6 | Mechanisms of tumour escape from angiogenesis inhibition. Tumours can adapt to the acute neutralization 
of key pro-angiogenic growth factors, including vascular endothelial growth factor A (VEGFA). a | By acutely disrupting 
tumour angiogenesis and perfusion, anti-VEGFA therapy can activate metabolic or stress responses in the cancer cells, 
which enable their survival under hostile conditions of oxygen and nutrient deprivation. Such mechanisms include 
increased autophagy196 or the establishment of ‘metabolic symbiosis’ — the process whereby hypoxic cancer cells in 
avascular tumour areas import glucose and export lactate, while normoxic cells in proximity to the surviving blood vessels 
import and catabolize lactate198–200. Acute hypoxia may also precondition cancer cells for re‑growth after withdrawal of 
anti-angiogenic therapy by inducing fatty acid uptake and storage through the transporters fatty acid-binding protein 3 
(FABP3) and FABP7 (REF. 201). Accordingly, tumour re‑growth after anti-angiogenic kinase inhibitors may rely on de novo 
lipogenesis197. b | Alternative mechanisms of tumour adaptation to VEGFA deprivation include the induction of 
compensatory pro-angiogenic growth factors, namely fibroblast growth factor 2 (FGF2), angiopoietin 2 (ANGPT2), 
placental growth factor (PlGF) and BV8, which can rescue angiogenesis in VEGFA-depleted tumours. Furthermore, various 
anticancer drug regimens provoke the surge, in tumours, of hypoxia-inducible chemoattractants for neutrophils and 
macrophages, including colony-stimulating factor 2 (CSF2), CSF3 and CXC-chemokine ligand 12 (CXCL12), which recruit 
angiogenesis-promoting myeloid cells. c | Cancer cells may circumvent dependence on angiogenesis by acquiring the 
ability to hijack the pre-existing vasculature through an infiltrative growth mode called vascular co‑option. Cancer-cell 
growth along existing blood vessels has been implicated in tumour resistance to anti-angiogenic therapy in both 
preclinical cancer models and patients with colon cancer liver metastases. d | Anti-angiogenic drugs may paradoxically 
improve blood flow by normalizing the tumour-associated blood vessels (TABVs). Vascular normalization can be achieved 
by attenuating pro-angiogenic signalling in tumours (for example, by chronically reducing VEGFA bioavailability or 
blocking ANGPT2). Vascular normalisation may reshape the immune cell repertoire of tumours and facilitate antitumour 
immunity, for example, by improving T cell extravasation or by promoting the conversion of pro-angiogenic (M2‑like) into 
angiostatic (M1‑like) tumour-associated macrophages (TAMs). CTL, cytotoxic T lymphocyte; GLUT1, glucose transporter 1; 
MCT1, monocarboxylate transporter 1; TH1 cell, T helper 1 cell.
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functions of TASCs in patients with cancer is, therefore, 
needed to understand the extrinsic regulation of human 
tumour vascularization, in particular in the context of 
metastatic disease and/or under therapeutic pressure. 
The clinical testing of an expanding arsenal of drugs 
targeting specific cellular components of the TME, such 
as TAMs85,212,213, pericytes113,114,195,217 and T cells210,221–223, 
may provide clues about the roles played by these cells 
in the regulation of human tumour angiogenesis. For 
example, recent clinical studies have revealed unexpec
ted roles for adaptive immune cells in the regulation of 
human TABVs221–223. Tumour vascular destruction and 
important humoral (IgG-mediated) reactions against 
ANGPT2 and VEGFA were observed in long-term 
responding patients who had received a cancer vaccine222. 
Further studies illustrated that tumour regressions after 

immune checkpoint blockade with antibodies targeting 
cytotoxic T lymphocyte-associated antigen 4 (CTLA4) 
or programmed cell-death protein 1 (PD1) were associ
ated with heightened titres of anti‑ANGPT2 serum 
IgG, whereas therapy refractoriness or resistance were 
associated with higher pre- or on‑treatment ANGPT2 
serum levels223. These provocative findings suggest that 
tumour responses to immunotherapy may involve, or 
even require, immune-mediated anti-angiogenic mech-
anisms. Therefore, if combined with the analysis of the 
molecular, morphological, and functional properties 
of TABVs, either on tumour biopsies or through non-
invasive imaging tools27,33,63,220, the clinical deployment 
of TME-targeted drugs may help to shed new light 
on the vascular-modulatory functions of TASCs in 
human cancer.
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