## QUANTUM PHYSICS III

Appendix A: the Fresnel integral formula

We know the value of the Gaussian integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x e^{-\frac{a x^{2}}{2}}=\sqrt{\frac{2 \pi}{a}}, \quad a>0 . \tag{1}
\end{equation*}
$$

Here we prove that this result can be extended to the case of imaginary $a$, that is

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x e^{-\frac{i \alpha x^{2}}{2}}=\sqrt{\frac{2 \pi}{i \alpha}}, \quad \alpha \in \mathbb{R} . \tag{2}
\end{equation*}
$$

The proof is based on Cauchy's theorem : the integral of an analytic function over a closed contour in the complex plane is zero.



Figure 1 - The contours
Consider the integral

$$
\begin{equation*}
I=\oint d z e^{-\frac{a^{2}}{2}}, \quad a>0 \tag{3}
\end{equation*}
$$

taken over one of the contours shown on figure 1. For example, we take the left contour first. Then,

$$
\begin{equation*}
I=I_{1}+I_{2}+I_{3}, \tag{4}
\end{equation*}
$$

where $I_{i}$ is the part of $I$ computed over the $i$ 'th part of the contour. In the limit of large $R$, the first term becomes the usual Gaussian integral,

$$
\begin{equation*}
I_{1}=\int_{0}^{R} d x e^{-\frac{a 1^{2}}{2}} . \tag{5}
\end{equation*}
$$

In the term $I_{2}$, one integrates over the arc of radius $R$. We change the variables as follows,

$$
\begin{equation*}
z=R e^{i \phi}, \quad d z=i \operatorname{Re} e^{i \phi} d \phi \tag{6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
I_{2}=i R \int_{0}^{\pi / 4} d \phi e^{-\frac{a}{2} R^{2}(\cos 2 \phi+i \sin 2 \phi)+i \phi} \tag{7}
\end{equation*}
$$

Finally, in $I_{3}$ the change of variables

$$
\begin{equation*}
z=y e^{\frac{i \pi}{4}} \tag{8}
\end{equation*}
$$

yields

$$
\begin{equation*}
I_{3}=-e^{\frac{i \pi}{4}} \int_{0}^{R} d y e^{-\frac{i a v^{2}}{2}} \tag{9}
\end{equation*}
$$

By Cauchy's theorem,

$$
\begin{equation*}
I_{1}+I_{2}+I_{3}=0 . \tag{10}
\end{equation*}
$$

Now, we want to show that in the limit $R \rightarrow \infty$, the integral $I_{2}$ vanishes. To this end, note first that

$$
\begin{equation*}
\left|I_{2}\right| \leqslant \int_{0}^{\pi / 4} d \phi\left|e^{-\frac{a}{2} R^{2}(\cos 2 \phi+i \sin 2 \phi)+i \phi}\right| \leqslant R \int_{0}^{\pi / 4} d \phi e^{-\frac{a}{2} R^{2} \cos 2 \phi} \tag{11}
\end{equation*}
$$

The integrand in the r.h.s. of this inequality vanishes exponentially fast at large $R$ unless $\phi$ is close to $\pi / 4$. To check the last region carefully, we split the integral

$$
\begin{equation*}
R \int_{0}^{\pi / 4} d \phi e^{-\frac{a}{2} R^{2} \cos 2 \phi}=R \int_{0}^{\beta}+R \int_{\beta}^{\pi / 4}, \quad 0<\beta<\frac{\pi}{4} \tag{12}
\end{equation*}
$$

and make an estimation for the second term,

$$
\begin{equation*}
R \int_{\beta}^{\pi / 4} d \phi e^{-\frac{a}{2} R^{2} \cos 2 \phi}<R \int_{\beta}^{\pi / 4} d \phi \frac{\sin 2 \phi}{\sin 2 \beta} e^{-\frac{a}{2} R^{2} \cos 2 \phi}=\frac{1}{a R \sin 2 \beta}\left[e^{-\frac{a}{2} R^{2} \cos 2 \phi}\right]_{\phi=\beta}^{\phi=\pi / 4} \sim \frac{1}{R} \tag{13}
\end{equation*}
$$

Thus, $I_{2}$ behaves as $1 / R$. From eq. (4) it then follows that

$$
\begin{equation*}
\lim _{R \rightarrow \infty}\left(I_{1}+I_{3}\right)=0 . \tag{14}
\end{equation*}
$$

Hence, from eqs. (1) and (9) we have

$$
\begin{equation*}
\int_{0}^{\infty} d y e^{-\frac{i a y^{2}}{2}}=e^{-\frac{i \pi}{4}} \sqrt{\frac{\pi}{2 a}}, \quad a>0 \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{-\infty}^{\infty} d y e^{-\frac{i(a)^{2}}{2}}=\sqrt{\frac{2 \pi}{i a}}, \quad a>0 \tag{16}
\end{equation*}
$$

This proves eq. (2) for $\alpha>0$. To prove it for $\alpha<0$, it suffices to repeat the steps above for the right contour on figure 1 .

