EPFL - Automne 2017
Introduction aux Variétés Différentiables
Cório 5

M. Troyanov
Solution Exercices
19 octobre

Exercice 5.1. Dans cet exercice, on s'intéresse aux matrices de rang exactement r.

- (a) Montrer que l'ensemble des matrices 2×2 de rang 1 est une sous-variété de dimension 3 de $\mathbb{R}^4 = M_2(\mathbb{R})$.
- (b) Montrer que l'ensemble des matrices $n \times m$ de rang r est une sous-variété de codimension (n-r)(m-r).

 Indication: Quitte à appliquer une suite de difféomorphismes dans $M_{n\times m}(\mathbb{R})$, une matrice A de rang r peut toujours s'écrire sous la forme

 $A = \begin{pmatrix} X & Y \\ Z & T \end{pmatrix},$

avec $X \in M_{r \times r}(\mathbb{R})$ une matrice inversible, et $Y \in M_{r \times (m-r)}(\mathbb{R})$, $Z \in M_{(n-r) \times r}(\mathbb{R})$ et finalement $T \in M_{(n-r) \times (m-r)}(\mathbb{R})$. A partir de cette forme, montrer que rang(A) = r si et seulement si $T - ZX^{-1}Y = 0$

Solution 5.1. Pour cet exercice, notons $M^r_{n\times m}(\mathbb{R})$ l'ensemble des matrices $n\times m$ de rang r dans $M_{n\times m}(\mathbb{R})$.

(a) On veut montrer que $M_2^1(\mathbb{R})$ est une sous-variété de dimension 3 dans $M_2(\mathbb{R})$. Considérons une fois de plus l'application déterminant

$$\det: M_2(\mathbb{R}) \setminus \{0\} \longrightarrow \mathbb{R}.$$

Alors si on montre que cette application est une submersion on pourra utiliser le critère de l'exercice 3.1 puisque

$$M_2^1(\mathbb{R}) = \det^{-1}(0).$$

Or, on a calculé à l'exercice 2.2 (d) que la différentielle du déterminant est donnée par

$$d \det_A(H) = \operatorname{Tr}(\operatorname{Cof}(A)^T H),$$

ainsi si $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2(\mathbb{R})\setminus\{0\},$ alors $\mathrm{Cof}(A)^T=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$ d'où

$$d\det_A(H) = h_{11}d - h_{12}c - h_{21}b + h_{22}a, \quad \text{où} \quad H = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}.$$

Ainsi, comme l'un des coefficients de A est non nul, disons d sans perte de généralité, on a que tout nombre $\alpha \in \mathbb{R}$ s'obtient comme $d \det_A(H)$, avec $H = \begin{pmatrix} \frac{\alpha}{d} & 0 \\ 0 & 0 \end{pmatrix}$. Ce qui achève de démontrer que det est une submersion sur $M_2(\mathbb{R}) \setminus \{0\}$ et donc (via l'exercice 3.1) que $\det^{-1}(\{0\}) = M_2^1(\mathbb{R})$ est une sous-variété de dimension 4 - 1 = 3 de $M_2(\mathbb{R}) = \mathbb{R}^4$.

(b) On considère donc une matrice $A \in M^r_{n \times m}(\mathbb{R})$ (avec r < n) que l'on suppose (quitte à appliquer des difféomorphismes) de la forme

$$A = \begin{pmatrix} X & Y \\ Z & T \end{pmatrix}$$

avec X, Y, Z et T comme dans l'indication. Comme rang(A) = r, toutes les colonnes de A après la r-ème colonne sont combinaisons linéaires des r premières. Ainsi, il existe une matrice $R \in M_{r \times (m-r)}(\mathbb{R})$ telle que

$$\left(\begin{array}{c} X \\ Z \end{array}\right)R = \left(\begin{array}{c} Y \\ T \end{array}\right) \Longleftrightarrow \left\{\begin{array}{c} XR = Y \\ ZR = T \end{array}\right.$$

Or X est inversible, donc $R = X^{-1}Y$ et ainsi $T = ZR = ZX^{-1}Y$. On a donc que

$$A$$
 est de rang $r \iff T = ZX^{-1}Y$.

On souhaite montrer que A admet un voisinage ouvert $U \subset \mathbb{R}^{nm} = M_{n \times m}(\mathbb{R})$ et qu'il existe un ouvert $V \subset \mathbb{R}^{nm}$ et un difféomorphisme $\varphi : U \to V$ tel que

$$\varphi\left(U\cap M_{n\times m}^r(\mathbb{R})\right)=V\cap\left(\mathbb{R}^{nm-(n-r)(m-r)}\times\{0\}\right).$$

Observons tout d'abord qu'il suffit de démontrer que A est contenu dans une sous-variété de dimension d = nm - (n-r)(m-r) de $M_{n\times m}^r(\mathbb{R})$. Pour trouver cette sous-variété, on va utiliser le critère de l'exercice 3.1, i.e. on va trouver une submersion $\varphi: U_A \to M_{(n-r)\times(m-r)}(\mathbb{R})$, où U_A est un ouvert de $M_{n\times m}^r(\mathbb{R})$ autour de A, ainsi $\varphi^{-1}(0)$ sera une sous-variété contenant A.

Pour ce faire, on considère l'ouvert U_A autour de A dans $M^r_{n\times m}(\mathbb{R})$ donné par

$$U_A = \left\{ \begin{pmatrix} X + \epsilon X_1 & Y + \epsilon Y_1 \\ Z + \epsilon Z_1 & T + \epsilon T_1 \end{pmatrix} \middle| X + \epsilon X_1 \in GL_r(\mathbb{R}) \right\} \cap M_{n \times m}^r(\mathbb{R})$$

ainsi que l'application

$$\Phi: U_A \longrightarrow M_{(n-r)\times(m-r)}(\mathbb{R}), \quad \Phi(A) = T - ZX^{-1}Y.$$

Montrons à présent que Φ est une submersion en calculant sa différentielle. Soit $H = \begin{pmatrix} H_1 & H_2 \\ H_3 & H_4 \end{pmatrix}$ avec les blocs de mêmes dimensions que X,Y,Z et T. Alors

$$d\Phi_A(H) = \frac{d}{dt}\Big|_{t=0} \Phi(A+tH)$$

$$= \frac{d}{dt}\Big|_{t=0} \left((T+tH_4) - (Z+tH_3)(X+tH_1)^{-1}(Y+tH_2) \right)$$

$$= H_4 - H_3 X^{-1} Y + Z X^{-1} H_1 X^{-1} Y - Z X^{-1} H_2.$$

Maintenant, étant donnée une matrice $M \in M_{(n-r)\times(m-r)}(\mathbb{R})$, il suffit de poser $H_4 = M$ et $H_1 = H_2 = H_3 = 0$ pour avoir $d\Phi_A(H) = M$, d'où la surjectivité de la différentielle de Φ en tout point de U_A . Ainsi Φ est bien une submersion et $\Phi^{-1}(0)$ est bien une sous-variété de $M^r_{n\times m}(\mathbb{R})$ contenant A. Finalement, on a donc montré que tout point $A \in M^r_{n\times m}(\mathbb{R})$ admet un voisinage qui est une sous-variété de $M^r_{n\times m}(\mathbb{R})$ de codimension (n-r)(m-r).

Exercice 5.2. (a) On note u, v les coordoonées dans \mathbb{R}^2 et x, y, z les coordoonées dans \mathbb{R}^3 . Montrer qu'une application $f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ de classe C^1 est une immersion si et seulement si

$$\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v} \neq \mathbf{0}$$

pour tout $(u, v) \in U$ où \times désigne le produit vectoriel dans \mathbb{R}^3 .

(b) Vérifier que l'application $f:[0,2\pi]\times[-1,1]\to\mathbb{R}^3$ définie par

$$f(u,v) = \left(2\cos(u) + v\cos(u)\cos\left(\frac{u}{2}\right), 2\sin u + v\cos(u)\cos\left(\frac{u}{2}\right), v\sin\left(\frac{u}{2}\right)\right)$$

est une immersion (une application définie sur un fermé de \mathbb{R}^m est une immersion si c'est la restriction d'une immersion définie sur un voisinage de ce fermé).

- (c) Prouver que l'image de $S = f([0, 2\pi] \times [-1, 1])$ est une variété.
- (d) Montrer que S est homéomorphe au ruban de Möbius.

Indication. Pour chaque $v \in [-1, 1]$ identifier la courbe $u \mapsto f(u, v)$ puis pour chaque $u \in [0, 2\pi]$ identifier la courbe $v \mapsto f(u, v)$.

Solution 5.2. (a) Rappelons que deux vecteurs $x, y \in \mathbb{R}^3$ sont linéairement dépendants si et seulement si $x \times y = 0$. On a alors

f est une immersion \iff df_p est injective pour tout $p \in U$

$$\iff$$
 rang_f $(p) = 2$ pour tout $p \in U$

 \iff Les colonnes de la matrice jacobienne de f sont linéairements indépendantes

$$\iff \frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v} \neq 0.$$

Remarquons que dans le cas présent, les composantes de $\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}$ sont données par

$$\left(\frac{\partial f^2}{\partial u}\frac{\partial f^3}{\partial v} - \frac{\partial f^3}{\partial u}\frac{\partial f^2}{\partial v}, \frac{\partial f^3}{\partial u}\frac{\partial f^1}{\partial v} - \frac{\partial f^1}{\partial u}\frac{\partial f^3}{\partial v}, \frac{\partial f^1}{\partial u}\frac{\partial f^2}{\partial v} - \frac{\partial f^2}{\partial u}\frac{\partial f^1}{\partial v}\right),$$

qui sont exactement les déterminants des mineurs 2×2 de la matrice jacobienne de f.

(b) Pour cette paramétrisation, on a

$$\frac{\partial f}{\partial u} = \left(-2\sin u - v\sin u\cos\frac{u}{2} - \frac{v}{2}\cos u\sin\frac{u}{2}, 2\cos u - v\sin u\cos\frac{u}{2} - \frac{v}{2}\cos u\sin\frac{u}{2}, \frac{v}{2}\cos\frac{u}{2}\right)$$

$$\frac{\partial f}{\partial v} = \left(\cos u\cos\frac{u}{2}, \cos u\cos\frac{u}{2}, \sin\frac{u}{2}\right)$$

Donc

$$\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v} = \left(-v\sin u + \left(2 + v\cos\frac{u}{2}\right)\cos u\sin\frac{u}{2}, v\cos u + \left(2 + v\cos\frac{u}{2}\right)\sin u\sin\frac{u}{2}, -2\cos\frac{u}{2}\left(2 + v\cos\frac{u}{2}\right)\right).$$

La troisième composante de ce vecteur s'annule si et seulement si $\cos \frac{u}{2} = 0$ car pour $v \in [-1, 1]$ on a $v \cos \frac{u}{2} > -1$. Or

$$\cos \frac{u}{2} = 0 \Leftrightarrow u = \pi + k \cdot 2\pi, \quad k \in \mathbb{Z},$$

donc $u=\pi$. Mais pour $u=\pi$, la première composante de $\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}$ vaut

$$-v\sin\pi + + \left(2 + v\cos\frac{\pi}{2}\right)\cos\pi\sin\frac{\pi}{2} = -2 \neq 0,$$

d'où $\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v} \neq 0$ pour tout $(u,v) \in [0,2\pi] \times [-1,1]$. Comme on peut trouver un voisinage de $[0,2\pi] \times [-1,1]$ sur lequel $\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}$ ne s'annule pas, il suit que f est la restriction d'une immersion définie sur un voisinage ouvert de $[0,2\pi] \times [-1,1]$.

(c) On remarque tout d'abord que cette paramétrisation est construite en partant du segment de droite entre les points (1,-1,0) et (3,1,0) (ces points sont obtenus en prenant u=0 et $v=\pm 1$) et en le faisant tourner à la fois autour de l'axe Oz (d'un tour complet: paramètre $u\in [0,2\pi]$) et sur lui-même (d'un demi-tour: paramètre $\frac{u}{2}\in [0,\pi]$). La surface S s'écrit donc comme une union disjointe de segments qui sont tous obtenus à partir d'un segment initial par rotation. Une telle surface est dite $r\`egl\'ee$.

On introduit la relation d'équivalence suivante sur $A = [0, 2\pi] \times [-1, 1]$:

$$(0,t)\sim (2\pi,-t), \quad \text{pour tout } t\in [-1,1],$$

et on note $M=A/\sim$ le quotient par cette relation d'équivalence. Par la propriété universelle du quotient, il existe une unique application continue $\tilde{f}:M\longrightarrow S$ telle que $f=\tilde{f}\circ q$, où $q:A\longrightarrow M$ est l'application quotient. Il est clair d'après la construction de la paramétrisation que S et M sont en bijection (on a "éliminé" les points qui posaient problème pour l'injectivité en quotientant). De plus, M est compact puisque f est continue et A compact, et S est séparé, ainsi par un résultat standard de topologie (c.f. cours de topologie), \tilde{f} est fermée. Or une application bijective et fermée est aussi ouverte, donc \tilde{f} est un homéomorphisme. Il suffit donc de montrer que M est une variété topologique. Or,

- (i) Comme M est muni de la topologie quotient, on obtient qu'un sous-ensemble $U \subset M$ est ouvert si et seulement si $q^{-1}(U) = V \cap A$, avec V un ouvert de \mathbb{R}^2 . Ainsi on peut séparer les points de M avec des boules euclidiennes suffisamment petites.
- (ii) A nouveau, comme M est muni de la topologie quotient et que A est à base dénombrable d'ouverts, M l'est aussi.
- (iii) On cherche des voisinages de chaque point de M qui soient homéomorphes à \mathbb{R}^2 ou $\overline{\mathbb{H}}^2$. Soit $x \in M$. Alors, si $q^{-1}(x) \in \operatorname{int}(A)$, il suffit de prendre une boule euclidienne autour de x suffisamment petite pour qu'elle n'intersecte pas le bord de A. Si $x \in \partial A$, alors deux cas sont possibles. Si $q^{-1}(x) \in [0, 2\pi] \times \{\pm 1\}$, alors il suffit de prendre l'intersection d'une boule euclidienne B (suffisamment petite pour qu'elle n'intersecte pas $\{0, 2\pi\} \times [-1, 1]$) et de A pour que $q(B \cap A)$ soit homéomorphe à $\overline{\mathbb{H}}^2$. Finalement, si $q^{-1}(x) \subset \{0, 2\pi\} \times [-1, 1]$, alors $q^{-1}(x)$ est constitué de deux points de la forme $\{(0, t), (2\pi, -t)\}$ avec $t \in [-1, 1]$. On considère alors les deux ouverts de A suivants:

$$B_1 = B((0,t),r) \cap A$$
 et $B_2 = B((2\pi,-t),r) \cap A$, $r < \min\{|1-t|,|1+t|\}$

On a alors que $q(B_1 \cup B_2) \cong B(0,1) \cong \mathbb{R}^2$.

(d) Au point précédent, nous avons montré que $S \cong A/\sim$. Or le ruban de Möbius est obtenu topologiquement en identifiant deux côtés du carrés $[0,1] \times [0,1]$ via la relation $(0,t) \sim (1,-t)$, ce qui est précisément la relation par laquelle nous avons quotienté A.

Exercice 5.3. Montrer que les espaces $\overline{\mathbb{B}}^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ et $\overline{\mathbb{I}}^n = [0,1]^n$ sont homéomorphes.

Solution 5.3. On a un homéomorphisme $\overline{\mathbb{B}}^n \to \overline{\mathbb{I}}^n$ donné par

$$x \mapsto \begin{cases} \frac{\|x\|}{\|x\|_{\infty}} \cdot x & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Exercice 5.4. Soient U, V deux ouverts de

$$\overline{\mathbb{H}}^n = \{ x \in \mathbb{R}^n \, | \, x_n \ge 0 \}$$

(pour la topologie relative) et $f: U \to V$ un homéomorphisme. Alors $f(U \cap \partial \mathbb{H}^n) \subset \partial \mathbb{H}^n$.

Solution 5.4. Supposons que non. Alors il existe un point $p \in U \cap \mathbb{R}^{n-1}$ tel que $q = f(p) \notin \mathbb{R}^{n-1}$ Donc il existe un voisinage $W \subset f(U)$ de q ne rencontrant pas $\mathbb{R}^{n-1} \subset \overline{\mathbb{H}}^n$. Mais le théorème d'invariance du domaine appliqué à $f^{-1}|_W$ nous dit que $f^{-1}(W) \subset U$ est un ouvert de \mathbb{R}^n . Donc $p \in f^{-1}(W)$ est un point intérieur de $\overline{\mathbb{H}}^n$.

Exercice 5.5. Soient M et N deux variétés topologiques à bord de dimension m et n respectivement. Montrer que $M \times N$ est une variété topologique. Trouver sa dimension et déterminer son bord $\partial(M \times N)$ (proposer d'abord un exemple).

Solution 5.5. Montrons que $M \times N$ est une variété topologique à bord. L'espace topologique $M \times N$ est clairement de Hausdorff et possède une base dénombrable d'ouverts puisque M et N sont des variétés topologiques. Il faut donc montrer que tout pout $(p,q) \in M \times N$ possède un voisinage homéomorphe à un ouvert de \mathbb{R}^d ou $\overline{\mathbb{H}}^d$ pour un certain d fixé.

(1) si $p \in \text{int}(M)$ et $q \in \text{int}(N)$, alors il une carte locale $\varphi : U \to \mathbb{R}^m$ (resp. $\psi : V \to \mathbb{R}^n$) puisque M et N sont des variétés topologiques. Ainsi,

$$\varphi \times \psi : U \times V \longrightarrow \mathbb{R}^m \times \mathbb{R}^n \cong \mathbb{R}^{m+n}.$$

Cette application est clairement un homéomorphisme local.

(2) si $p\partial M$ et $q \in \text{int}(N)$, alors il existe une carte locale $\varphi: U \to \overline{\mathbb{H}}^m$ (resp. $\psi: V \to \mathbb{R}^n$). A nouveau, l'application

$$\varphi \times \psi : U \times V \longrightarrow \overline{\mathbb{H}}^m \times \mathbb{R}^n \cong \overline{\mathbb{H}}^{m+n}$$

est un homémorphisme local. Le cas $p \in \text{int}(M)$ et $q \in \partial N$ est similaire.

(3) si $p \in \partial M$ et $q \in \partial N$, alors la même construction qu'avant produit un homéomorphisme local

$$\varphi \times \psi : U \times V \longrightarrow W$$
,

où W est un ouvert de $\{(x_1,\ldots,x_m,y_1,\ldots,y_n)\in\mathbb{R}^{m+n}\mid x_1,y_1\geq 0\}$. Or, ce dernier espace est homéomorphe à $\overline{\mathbb{H}}^{m+n}$. En effet, l'application

$$f: \{(x_1, \dots, x_m, y_1, \dots, y_n) \in \mathbb{R}^{m+n} \mid x_m, y_n \ge 0\} \to \overline{\mathbb{H}}^{m+n}$$

définie par

$$f(x_1, \dots, x_m, y_1, \dots, y_n) = \begin{cases} (x_1 - \frac{x_1 - y_1}{\sqrt{4}}, x_2, \dots, x_m, y_1 - \frac{x_1 - y_1}{\sqrt{4}}, y_2, \dots, y_n) & \text{si } x_1 \ge y_1 \\ (x_1 - \frac{y_1 - x_1}{\sqrt{4}}, x_2, \dots, x_m, y_1 - \frac{y_1 - x_1}{\sqrt{4}}, y_2, \dots, y_n) & \text{si } y_1 \ge x_1 \end{cases}$$

est clairement un homéomorphisme (faire un dessin de cette application pour comprendre d'où elle vient! On "déplie" un quadrant sur un demi-plan).

On a donc montré que $M \times N$ est une variété topologique à bord de dimension m+n. Par construction des cartes locales ci-dessus, on constate que l'ensemble des points de bord de $M \times N$ est donné par

$$\partial(M \times N) = (M \times \partial N) \cup (N \times \partial M).$$

Exercice 5.6. Un espace non séparé localement homéomorphe à \mathbb{R} .

Soit X la droite réelle avec l'origine dédoublée, c'est à dire $X = \mathbb{R} \coprod \{\alpha\}$. Les ouverts de X sont les réunions d'ouverts de \mathbb{R} et d'ensembles de la forme $U \setminus \{0\} \cup \{\alpha\}$ avec U un voisinage ouvert de 0 dans \mathbb{R} . Vérifier que l'on a bien défini une topologie sur X, que tout point de X est contenu dans un ouvert homéomorphe à \mathbb{R} mais que cette topologie n'est pas séparée.

Solution 5.6. Pour montrer que X est un espace topologique, il suffit de vérifier les axiomes. Appelons \mathcal{T} la topologie usuelle de \mathbb{R} (c'est-à-dire les réunions d'intervalles ouverts), et \mathcal{T}' la collection définie dans la donnée.

- (i) Tout d'abord, vérifions que l'ensemble vide \emptyset ainsi que l'ensemble total $\mathbb{R} \cup \{\infty\}$ sont dans \mathcal{T}' . Ceci est clair pour \emptyset . En effet, \emptyset est dans \mathcal{T} , et donc il se trouve également dans \mathcal{T}' car de manière évidente $\mathcal{T} \subset \mathcal{T}'$. Voyons maintenant le cas de l'ensemble total. Soit $V \in \mathcal{T}$ un voisinage ouvert de l'origine pour la topologie \mathcal{T} . L'ensemble $\mathbb{R}\setminus\{0\}\cup\{\alpha\}$ est dans \mathcal{T}' car \mathbb{R} est un voisinage de \mathbb{C} . Ainsi, $U\cup\mathbb{R}\setminus\{0\}\cup\{\alpha\}$ est dans \mathcal{T}' comme réunion de deux éléments de \mathcal{T}' . Mais cet ensemble vaut $\mathbb{R}\cup\{\alpha\}$ tout entier.
- (ii) Montrons maintenant qu'une réunion d'élements de \mathcal{T}' est encore un élément de \mathcal{T} . Un élément typique de \mathcal{T}' est de la forme $U_i \cup (V_i \setminus \{0\} \cup \{\alpha\})$ où U_i est un ouvert de \mathbb{R} et V_i est un voisinage de 0 dans \mathbb{R} . Une réunion quelconque indicée par un ensemble I d'ensembles de cette forme est donc de la forme

$$\bigcup_{i \in I} U_i \cup (V_i \setminus \{0\} \cup \{\alpha\}) = \left(\bigcup_{i \in I} U_i\right) \cup \left(\left(\bigcup_{i \in I} V_i\right) \setminus \{0\} \bigcup_{i \in I} \cup \{\alpha\}\right)$$

Notons $U = \bigcup_{i \in I} U_i$ et $V = \bigcup_{i \in I} V_i$, qui sont des ouverts de \mathbb{R} car ce sont des réunions d'ouverts de \mathbb{R} . Alors légalité au dessus s'écrit

$$\bigcup_{i \in I} U_i \cup (V_i \setminus \{0\} \cup \{\alpha\}) = U \cup (V \setminus \{0\} \cup \{\alpha\}).$$

C'est un élement de \mathcal{T}' par définition.

(iii) Il faut encore montrer qu'une intersection finie d'éléments de \mathcal{T} reste dans \mathcal{T} . C'est similaire au point précédent.

Pour trouver deux points qui ne sont pas séparés par des ouverts disjoints, on prend 0 et α .

Exercice 5.7. Trouver un exemple de variété topologique pour laquelle la frontière et le bord ne coïncident pas.

Solution 5.7. Il suffit de prendre un ouvert de $\overline{\mathbb{H}}^n$ de la forme $U=B(x,r)\cap\overline{\mathbb{H}}^n$, où B(x,r) est une boule ouverte centrée en un point $x\in\mathbb{R}^{n-1}=\partial\overline{\mathbb{H}}^n$ de rayon r>0. On a alors que la frontière de U est donnée par $\overline{U}\setminus\mathring{U}=\partial B(x,r)\cap\overline{\mathbb{H}}^n=S(x,r)\cap\overline{\mathbb{H}}^n$, où S(x,r) est la sphère centrée en x de rayon r, alors que le bord de U est donnée par $B(x,r)\cap\partial\overline{\mathbb{H}}^n=B(x,r)\cap\mathbb{R}^{n-1}$.