Exercice 7.1. Montrer que

- (a) La sphère \mathbb{S}^n munie de l'atlas à deux cartes obtenu à l'exercice 6.7 est une variété différentiable.
- (b) L'espace projectif réel \mathbb{RP}^n est une variété différentiable.

Solution 7.1. (a) Rappelons que les deux cartes (U, φ) et (V, ψ) données par la projection stéréographique sont

$$U = \mathbb{S}^n \setminus \{N\}, \quad \varphi(x) = \left(\frac{x^1}{1 - x^{n+1}}, \dots, \frac{x^n}{1 - x^{n+1}}\right),$$
$$V = \mathbb{S}^n \setminus \{S\}, \quad \psi(x) = -\varphi(-x),$$

où $N=(0,\ldots,0,1)$ et S=-N. De plus, l'inverse de φ est donné par

$$\varphi^{-1}(y) = \left(\frac{2y^1}{\|y\|^2 + 1}, \dots, \frac{2y^n}{\|y\|^2 + 1}, \frac{\|y\|^2 - 1}{\|y\|^2 + 1}\right)$$

Nous devons vérifier que $\psi \circ \varphi^{-1} : \varphi(U \cap V) \longrightarrow \psi(U \cap V)$ est une application lisse. Ainsi

$$\psi \circ \varphi^{-1}(y) = -\varphi \left(-\frac{2y^1}{\|y\|^2 + 1}, \dots, -\frac{2y^n}{\|y\|^2 + 1}, -\frac{\|y\|^2 - 1}{\|y\|^2 + 1} \right)$$
$$= \left(\frac{y^1}{\|y\|^2}, \dots, \frac{y^n}{\|y\|^2} \right)$$
$$= \frac{y}{\|y\|^2},$$

qui est une composition d'applications lisses sur $\varphi(U \cap V) = \mathbb{R}^n \setminus \{0\}$ et est donc lisse elle-même. D'autre part, son inverse est donné par la même formule. L'explication géométrique ce phénomène est que l'application $\psi \circ \varphi^{-1} : \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^n \setminus \{0\}$ représente l'inversion à travers la sphère $\mathbb{S}^n \subset \mathbb{R}^n$ et est donc son propre inverse.

(b) On reprenant les notations de l'exercice 6.2, il faut montrer que les cartes (V_i, φ_i) sont C^{∞} -compatibles. Si i > j, on trouve

$$\varphi_j \circ \varphi_i^{-1}(u_1, \dots, u_n) = \left(\frac{u_1}{u_j}, \dots, \frac{u_{j-1}}{u_j}, \frac{u_{j+1}}{u_j}, \dots, \frac{u_{i-1}}{u_j}, \frac{1}{u_j}, \frac{u_i}{u_j}, \dots, \frac{u_n}{u_j}\right),$$

qui est clairement un difféomorphisme de $\varphi_i(U_i \cap U_j)$ dans $\varphi_j(U_i \cap U_j)$. Le raisonnement est similaire si i < j.

Exercice 7.2. Le but de cet exercice est de montrer que pour toute variété différentiable M de dimension n, il existe une application lisse et surjective de M vers \mathbb{S}^n . On procède en plusieurs étapes.

- (a) Montrer que le compactifié d'Alexandrov $\hat{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$ de \mathbb{R}^n est une variété différentiable.
- (b) Montrer que $\hat{\mathbb{R}}^n$ est difféomorphe à \mathbb{S}^n .
- (c) Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction telle que

- (i) $h \in C^{\infty}(\mathbb{R})$,
- (ii) h'(r) < 0 pour tout r > 0,
- (iii) $h(r) = 1 \text{ si } 0 \le r \le 1 \text{ et } h(r) = 0 \text{ si } r \ge 2,$

i.e. une fonction plateau. Définissons ensuite $f: \mathbb{R}^n \longrightarrow \hat{\mathbb{R}}^n$ par

$$f(x) = \begin{cases} \frac{x}{h(\|x\|)} & \text{si } \|x\| < 2, \\ \infty & \text{si } \|x\| \ge 2. \end{cases}$$

Montrer que f est lisse.

- (d) Montrer que pour toute variété différentiable M de dimension n et pour tout $p \in M$, il existe une application $f: M \longrightarrow \mathbb{S}^n$ lisse, surjective et qui soit un difféomorphisme local au voisinage de p.
- **Solution 7.2.** (a) On rappelle que la topologie sur $\hat{\mathbb{R}}^n$ est donnée par les ouverts de la topologie standard de \mathbb{R}^n auxquels on rajoute les ensembles de la forme

$$\{\hat{\mathbb{R}}^n \setminus K \mid K \subset \mathbb{R}^n \text{ compact}\}.$$

Ainsi la topologie de $\hat{\mathbb{R}}^n$ est engendrée par les boules euclidiennes et le complémentaire (dans $\hat{\mathbb{R}}^n$) des boules euclidiennes fermées, et donc en particulier, $\hat{\mathbb{R}}^n$ est de Hausdorff et à base dénombrable. On a le système de cartes suivant:

$$U = \mathbb{R}^n, \quad \varphi = \mathrm{id}_{\mathbb{R}^n}$$

$$V = \hat{\mathbb{R}}^n \setminus \{0\} \cong \mathbb{R}^n, \quad \psi(x) = \begin{cases} \frac{x}{\|x\|^2} & x \in \mathbb{R}^n, \\ 0 & x = \infty. \end{cases}$$

Sur $U \cap V = \hat{\mathbb{R}}^n \setminus \{0, \infty\} \cong \mathbb{R}^n \setminus \{0\}$, on peut observer que ψ est son propre inverse et donc $\varphi \circ \psi^{-1} = \psi$ qui est différentiable en tant qu'application d'un ouvert de $\mathbb{R}^n \setminus \{0\}$ dans \mathbb{R}^n . On a évidemment aussi que $\psi \circ \varphi^{-1} = \psi$ et on a donc montré que $\hat{\mathbb{R}}^n$ est une variété différentiable.

(b) On note $\sigma: \mathbb{S}^n \setminus \{N\} \longrightarrow \mathbb{R}^n$ la projection stéréographique (c.f. exercice 6.7) et on définit une application de la sphère vers $\hat{\mathbb{R}}^n$ par

$$f: \mathbb{S}^n \longrightarrow \hat{\mathbb{R}}^n, \quad f(x) = \left\{ \begin{array}{ll} \sigma(x) & x \neq N, \\ \infty & x = N. \end{array} \right.$$

Pour montrer que cette application est un difféomorphisme, il faut montrer que $f \in C^{\infty}(\mathbb{S}^n, \hat{\mathbb{R}}^n)$ et $f^{-1} \in C^{\infty}(\hat{\mathbb{R}}^n, \mathbb{S}^n)$ et donc il faut regarder ces applications dans les cartes de \mathbb{S}^n et $\hat{\mathbb{R}}^n$. On a deux cartes sur \mathbb{S}^n que l'on écrit $(U_N = \mathbb{S}^n \setminus \{N\}, \sigma)$ et $(U_S = \mathbb{S}^n \setminus \{S\}, \rho)$, avec $\rho(x) = -\sigma(-x)$. Il y a quatre changements de cartes à vérifier:

- (i) $id_{\mathbb{R}^n} \circ f \circ \sigma^{-1} : \sigma(f^{-1}(U) \cap U_N) \longrightarrow id_{\mathbb{R}^n}(U);$
- (ii) $\psi \circ f \circ \sigma^{-1} : \sigma(f^{-1}(V) \cap U_N) \longrightarrow \psi(V);$
- (iii) $\operatorname{id}_{\mathbb{R}^n} \circ f \circ \rho^{-1} : \rho(f^{-1}(U) \cap U_S) \longrightarrow \operatorname{id}_{\mathbb{R}^n}(U);$
- (iv) $\psi \circ f \circ \rho^{-1} : \rho(f^{-1}(V) \cap U_S) \longrightarrow \psi(V).$

Or, si $x \in \sigma(f^{-1}(U) \cap U_N) = \mathbb{R}^n$, alors $f \circ \sigma^{-1} = \mathrm{id}_{\mathbb{R}^n}$ est donc dans les cas (i) et (ii) la composition est bien lisse (puisque $\mathrm{id}_{\mathbb{R}^n}$ et ψ sont différentiables). Dans les cas (iii) et (iv), la composition $f \circ \rho^{-1}$ correspond à l'inversion à travers la sphère \mathbb{S}^{n-1} dans \mathbb{R}^n , i.e.

$$f \circ \rho^{-1}(x) = \begin{cases} \frac{x}{\|x\|^2} & x \neq 0, \\ \infty & x = 0. \end{cases}$$

et en composant avec $\mathrm{id}_{\mathbb{R}^n}$ ou ψ on obtient à nouveau soit l'identité soit l'inversion qui sont différentiables, ce qui montre que $f \in C^\infty(\mathbb{S}^n, \hat{\mathbb{R}}^n)$. Le raisonnement pour f^{-1} est analogue.

- (c) A nouveau, on regarde f dans les cartes. Comme \mathbb{R}^n est une variété différentiable avec une seule carte $(\mathbb{R}^n, \mathrm{id}_{\mathbb{R}^n})$, il suffit de regarder les compositions suivantes:
 - (i) $\mathrm{id}_{\mathbb{R}^n} \circ f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$;
 - (ii) $\psi \circ f : \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^n$

Dans le premier cas, la composition avec les applications de cartes donne simplement $f(x) = \frac{x}{h(||x||)}$ qui est une composition d'applications lisses. Dans le cas (ii), on a

$$\psi \circ f(x) = \frac{f(x)}{\|f(x)\|^2} = h(\|x\|) \frac{x}{\|x\|^2}$$

qui est à nouveau une composition d'applications lisses sur $\mathbb{R}^n \setminus \{0\}$ puisque h est lisse.

(d) Soit $p \in M$ est soit (U, φ) une carte au voisinage de p telle que $\varphi(p) = 0$ et $\varphi(U) \cong \mathbb{R}^n$. On construit alors l'application $F: M \longrightarrow \hat{\mathbb{R}}^n$ comme suit:

$$F(q) = \begin{cases} f(\varphi(q)) & q \in U, \\ \infty & q \notin U. \end{cases}$$

Cette application est lisse par le point précédent et il n'est pas difficile de voir que f est surjective.

Exercice 7.3. L'espace projectif complexe \mathbb{CP}^n est construit de la même façon que l'espace projectif réel: on quotiente $\mathbb{C}^{n+1} \setminus \{0\}$ par la relation d'équivalence suivante

$$z \sim w \iff z = \lambda w$$
 pour un certain $\lambda \in \mathbb{C}^*$,

- i.e. $\mathbb{CP}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$. Montrer que
- (a) \mathbb{CP}^n une variété différentiable de dimension 2n.
- (b) \mathbb{CP}^1 n'est pas difféomorphe à \mathbb{RP}^2 . Indication: Montrer que \mathbb{CP}^1 est difféomorphe à \mathbb{S}^2 .

Solution 7.3. (a) On effectue la même construction de cartes que dans le cas réel.

(b) On montre d'abord que \mathbb{CP}^1 est difféomorphe à la sphère \mathbb{S}^2 . Soit l'application suivante:

$$f: \mathbb{CP}^1 \longrightarrow \mathbb{C} \cup \{\infty\}, \quad f([z_1:z_2]) = \left\{ \begin{array}{ll} \frac{z_1}{z_2} & \text{si } z_2 \neq 0, \\ \infty & \text{si } z_2 = 0. \end{array} \right.$$

Son inverse est donnée par $f^{-1}(z) = [z:1]$ si $z \neq \infty$ et $f^{-1}(\infty) = [1:0]$. Pour montrer la différentiabilité, il faut regarder f et f^{-1} dans les cartes. On a les cartes suivantes sur \mathbb{CP}^1 et sur $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ (c.f. exercice 7.2):

$$\begin{aligned} &U_1 = \{ [1:z] \in \mathbb{CP}^1 \mid z \in \mathbb{C} \}, \quad \varphi_1([1:z]) = z, \quad \varphi_1^{-1}(w) = [1:w], \\ &U_2 = \{ [z:1] \in \mathbb{CP}^1 \mid z \in \mathbb{C} \}, \quad \varphi_2([z:1]) = z, \quad \varphi_2^{-1}(w) = [w:1], \\ &V_1 = \mathbb{C}, \quad \psi_1(z) = \mathrm{id}_{\mathbb{C}}, \\ &V_2 = \hat{\mathbb{C}} \setminus \{0\}, \quad \psi_2(z) = \frac{z}{|z|^2}. \end{aligned}$$

Il faut alors montrer que les compositions $\psi_j \circ f \circ \varphi_i^{-1}$ sont différentiables, pour $1 \le i, j \le 2$.

(i) On a

$$\psi_1 \circ f \circ \varphi_1^{-1} : \underbrace{\varphi_1(f^{-1}(V_1) \cap U_1)}_{\mathbb{C}^*} \longrightarrow \underbrace{\psi_1(V_1)}_{\mathbb{C}}$$

qui vaut $\psi_1 \circ f \circ \varphi_1^{-1}(w) = \frac{1}{w} = \frac{\overline{w}}{|w|^2}$ qui est différentiable sur \mathbb{C}^* (attention, ici on parle ici de différentiabilité en tant qu'application de $\mathbb{R}^2 \setminus \{0\}$ dans \mathbb{R}^2 où l'on a identifié \mathbb{C} à \mathbb{R}^2 et non au sens complexe).

(ii) Ensuite,

$$\psi_2 \circ f \circ \varphi_1^{-1} : \underbrace{\varphi_1(f^{-1}(V_2) \cap U_1)}_{\mathbb{C}} \longrightarrow \underbrace{\psi_2(V_2)}_{\mathbb{C}}$$

vaut $\psi_2 \circ f \circ \varphi_1^{-1}(w) = \begin{cases} 0 & w = 0, \\ \overline{w} & w \neq 0, \end{cases}$ qui est bien différentiable sur \mathbb{C} .

(iii) Puis,

$$\psi_1 \circ f \circ \varphi_2^{-1} : \underbrace{\varphi_2(f^{-1}(V_1) \cap U_2)}_{\mathbb{C}} \longrightarrow \underbrace{\psi_1(V_1)}_{\mathbb{C}}$$

est donnée par $\psi_1 \circ f \circ \varphi_2^{-1}(w) = w$ qui est différentiable sur \mathbb{C} .

(iv) Et enfin

$$\psi_2 \circ f \circ \varphi_2^{-1} : \underbrace{\varphi_2(f^{-1}(V_2) \cap U_2)}_{\mathbb{C}^*} \longrightarrow \underbrace{\psi_2(V_2)}_{\mathbb{C}},$$

qui vaut $\psi_2 \circ f \circ \varphi_2^{-1}(w) = \frac{w}{|w|^2}$ sur \mathbb{C}^* et donc qui est bien différentiable.

Le raisonnement pour f^{-1} est analogue. Comme $\hat{\mathbb{C}}$ est difféomorphe à \mathbb{S}^2 par l'exercice 7.2(b), on a bien montré que \mathbb{CP}^1 est difféomorphe à \mathbb{S}^2 . On conclut en utilisant par exemple le théorème de classification des surfaces énoncé au cours pour voir que \mathbb{CP}^1 n'est pas difféomorphe (en fait même pas homéomorphe) à \mathbb{RP}^2 .

Exercice 7.4. Soient M, N deux variétés différentiables et soit $F: M \to N$ une application. Montrer que F est différentiable si et seulement si

$$F^*(C^{\infty}(N)) \subset C^{\infty}(M),$$

où on rapelle que $F^*(h) = h \circ F$ pour toute fonction $h \in C^{\infty}(N)$.

Solution 7.4. Le sens direct est presque immédiat: si F est supposée lisse et si $h \in C^{\infty}(N)$, alors $F^*(h) = h \circ F$ est une composition d'applications lisses et est donc lisse elle-même, i.e. $F^*(h) \in C^{\infty}(M)$. Pour l'autre implication, on suppose que $h \circ F$ est lisse pour toute fonction lisse $h : N \to \mathbb{R}$ et on veut montrer que F est $C^{\infty}(M,N)$ au sens du cours, i.e. pour toutes cartes (U,φ) dans M et (V,ψ) dans N l'application composée

$$\psi \circ F \circ \varphi^{-1} : \varphi(F^{-1}(V) \cap U) \longrightarrow \psi(V)$$

est C^{∞} en tant qu'application d'un ouvert de \mathbb{R}^m dans \mathbb{R}^n . Tout d'abord, commençons par rappeler qu'une application de \mathbb{R}^m dans \mathbb{R}^n est C^{∞} si et seulement si chacune de ses composantes est C^{∞} en tant qu'application de \mathbb{R}^m dans \mathbb{R} . Ainsi, il suffit de montrer que $\psi_i \circ F \circ \varphi$ est C^{∞} pour tout $1 \leq i \leq \dim N$, où ψ_i désigne la i-ème composante de ψ . On aimerait appliquer l'hypothèse, mais en l'état la fonction ψ_i n'est définie que sur V et non sur tout N, c'est pourquoi il faut être un peu précautionneux. Afin d'étendre ψ_i à N, on considère une fonction $\eta_i : N \longrightarrow \mathbb{R}$ qui soit C^{∞} et telle que $\eta_i(q) = 1$ pour tout $q \in V'$, avec $V' \subset V$ un ouvert autour de F(p) tel que $\overline{V'} \subset V$, et $\eta_i(q) = 0$ pour tout $q \notin V$ (i.e. une fonction plateau à support compct dans V). On obtient alors une extension lisse de ψ_i dans un voisinage de F(p) en posant

$$\psi_i'(q) = \begin{cases} \eta_i(q)\psi_i(q) & \text{si } q \in V, \\ 0 & \text{si } q \notin V \end{cases}$$

On a alors en appliquant l'hypothèse que $\psi'_i \circ F \in C^{\infty}(M)$ et donc la restriction de cette application à $F^{-1}(V') \cap U$ est aussi C^{∞} , or comme $\eta_i \equiv 1$ sur V' on a

$$(\psi_i' \circ F)|_{F^{-1}(V') \cap U} = (\psi_i \circ F)|_{F^{-1}(V') \cap U},$$

d'où la différentiabilité de $\psi_i \circ F$ et donc de $\psi_i \circ F \circ \varphi$.

Exercice 7.5. Soit M une variété différentiable. Montrer, en utilisant les fonctions plateaux, que $C_0^{\infty}(M)$ et $C^{\infty}(M)$ sont des espaces vectoriels de dimension infinie sur \mathbb{R} .

Rappel: L'ensemble $C_0^{\infty}(M)$ est l'ensemble des fonctions lisses à support compact dans M.

Solution 7.5. Let $\eta: \mathbb{R} \to \mathbb{R}$ be a plateau function satisfying

$$h(x) = 1 \text{ for } x \le 1/8$$
 $h(x) = 0 \text{ for } x \ge 1/4.$

For every $n \in \mathbb{Z}$ we introduce the function $f_n(x) = h(|x-n|^2)$. Then the support of f_n is given by $\overline{B(n,1/2)}$ which is compact, and as the composition of two smooth functions is smooth. Now suppose $g(x) = \sum_{i=1}^k a_i f_i(x) = 0$. Because the interior of the supports do not intersect if g(x) = 0 in the interior of the support of f_i then $a_i = 0$. Consequently the collection $\{f_i : i \in \mathbb{Z}\}$ is a linearly independent set, so $C_0^{\infty}(\mathbb{R})$ is infinite dimensional. For \mathbb{R}^n consider $\xi \in \mathbb{Z}^n \subset \mathbb{R}^n$, and let $f_{\xi} = h(|x-\xi|^2)$. Once again this family is linearly independent. Finally let $\varphi : U \subset M \to \mathbb{R}^n$ be a chart in the smooth atlas. Without loss of generality we may assum that φ is a homeomorphism onto \mathbb{R}^n . Then consider the family $f_{\xi} \circ \varphi$ and define

$$g_{\xi} = \begin{cases} f_{\xi} \circ \varphi(x) & x \in U \\ 0 & x \in M \setminus U \end{cases}.$$

This is smooth by construction as it is zero in any neighbourhood of $x \in Fr(U)$ as well as $x \in M \setminus U$, and once again the family is linearly independent and infinite, so $C_0^{\infty}(M)$ is infinite dimensional.