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1 Loading data

First you want to load the data into R. The read.table command will load text
files into a data frame that is similar to a excel workbook. The parameters are
header=T to indicate that the first line of the file contains the variable names,
and sep="\t" to indicate that the columns are separated by tabulators. If your
file is separated by commas, simply use sep=",". The <- operator assigns the
result of reading the text to a variable named d.

> d <- read.table("Cars93.txt", header=T, sep="\t")

Now we can look at the column names of the dataframe that we created. The
data frame contains quantitative variables that were measured on different cars
(See Lock, R. H. (1993) 1993 New Car Data. Journal of Statistics Education
1(1)).

> names(d)

[1] "Manufacturer" "Model" "Type"

[4] "Min.Price" "Price" "Max.Price"

[7] "MPG.city" "MPG.highway" "AirBags"

[10] "DriveTrain" "Cylinders" "EngineSize"

[13] "Horsepower" "RPM" "Rev.per.mile"

[16] "Man.trans.avail" "Fuel.tank.capacity" "Passengers"

[19] "Length" "Wheelbase" "Width"

[22] "Turn.circle" "Rear.seat.room" "Luggage.room"

[25] "Weight" "Origin" "Make"

Note that in R, variable names can contain a dot or underscores.

2 Descriptive statistics

We can get simple descriptive statistics about the dataframe by using the sum-
mary method.

> summary(d)
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If we were interested only in one variable, we would write the same command
but separate the name of the data frame and the name of the variable with
a $ sign. The summary for quantitative variables (e.g. Price) includes, the
minimum, the maximum, mean, median as well as the first and third quartiles
(same as 25th and 75th percentiles). The median is the value that splits the
sample into two equal parts. This means that half the observations are smaller
than the median and half the observations are larger than the median. Following
the same lines, 1/4 of the observations are smaller than the first quartile and
3/4 of the observations are smaller than the third quartile.

> summary(d$Price)

Min. 1st Qu. Median Mean 3rd Qu. Max.

7.40 12.20 17.70 19.51 23.30 61.90

For nominal variables (e.g. Type), the summary command displays a table
with the number of cases in the dataset for each distinct value of the factor.

> summary(d$Type)

Compact Large Midsize Small Sporty Van

16 11 22 21 14 9

2.1 Standard deviation

The standard deviation indicates how much the obsevations vary around the
mean. If in our sample, all observations had the same value, the standard
deviation would be equal to zero. The variance is the square of the standard
deviation. To compute the standard deviation in R, we use the sd command.

> sd(d$Price) # Computes the standard deviation

[1] 9.65943

If the variable is normally distributed, 68% of the observations lie within
one standard deviation of the mean and 95% of the observations lie within two
standard deviations of the mean. In our cars example, this means that 95% of
the cars will cost between 0.191 (19.5 − 2 ∗ 9.66) and 38.8 (19.5 + 2 ∗ 9.66).

2.2 Confidence interval

We have 93 cars in our sample. These 93 cars do by no means correspond
to all possible cars in the universe (the population). Statistics allow us to
make inferences about this hypothetical population based on the sample that
we have. The most basic of these statistics is the confidence interval of the
mean, which corresponds to the range in which the mean of the population lies
with a probability of 95% (or 99% if the confidence level is 99%). The confidence
interval is computed from the standard deviation.

ci = sd√
N

∗ 1.96

The confidence interval is based on the standard error, which is the stan-
dard deviation divided by the square root of the number of observations. This
means that the larger the sample, the smaller the confidence interval, the more
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confident we are about the true value of the mean. The standard error is then
multiplied by 1.96 (which is the value of the normal distribution that corre-
sponds to a 95% confidence interval). Note that typing the name of the variable
(the second line below) prints its value.

> conf.int <- (sd(d$Price) / sqrt(length(d$Price))) * 1.96

> conf.int

[1] 1.963207

2.3 Graphs

Finally, let’s plot the histogram and save the plot into a file.

> png("price.png", width=600, height=600) # Opens the file

> hist(d$Price, breaks=50) # Produces the plot

> dev.off() # Closes the file

null device

1

If you only type the hist command at the command line, the plot will appear
on the screen rather than being saved to a file.

> hist(d$Price)

Histogram of d$Price
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The boxplot is another useful descriptive plot that summarizes the distribu-
tion of a variable. The boxplot shows the median (the dark line in the box), as
well as the first and thrird quartiles (the boundaries of the box).
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> boxplot(d$Price, horizontal=TRUE, varwidth=TRUE)

10 20 30 40 50 60

Boxplots also can be used to compare different categories. For example, we
wonder whether the different car types in the sample have the same price range.
The tilde (∼) sign is used in R formulas as a sign for ”depends” or ”given”. For
example, the fomula below means ”Price given Type”.

> boxplot(d$Price ~ d$Type, horizontal=TRUE, varwidth=TRUE)
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Let’s also plot the means and confidence intervals with plotmeans. First we
load the plotting library and then plot. Note that we added some nice titles
and labels to the plot by using parameters.
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> library(gplots)

> plotmeans(d$Price ~ d$Type,

+ main="Price by Type",

+ xlab="Type", ylab="Price [thousands of dollars]")
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n=16 n=11 n=22 n=21 n=14 n=9

3 One factor analysis of variance

Analysis of variance (ANOVA) tests the null hypothesis that the mean of a
variable is the same in several subsets of the sample that are defined by a
categorical variable. In our example, we want to know whether the Price of
cars is the same across different types of cars. We have a quantitative variable
(Price) and a categorical variable (Type).

H0 : µ1 = µ2 = ... = µn

H1 : µ1! = µ2! = ...! = µn

The command oneway.test does the ANOVA calculation for us. If we
can reject the null hypothesis, then we would conclude that the mean Price is
different across the Types of cars. Note that we tell it that the variances in the
groups are equal with the var.equal=T parameter, but this has to be tested
beforehand (see section below).

The difference is statistically significant !

> oneway.test(d$Price ~ d$Type, var.equal=T)

One-way analysis of means
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data: d$Price and d$Type

F = 11.532, num df = 5, denom df = 87, p-value = 1.477e-08

The test output informs about:

� F (the ratio of variance between groups over the variance within the
groups). F-values below 1 are a strong indicator that there is no difference
between the groups.

� numerator degrees of freedom: the number of categories that are compared
(df = 5 => 6 categories -1)

� denominator degrees of freedom: the number of observations (df = 87 =>
93 cars - 6 categories)

� the p-value, the probability to be wrong by affirming that we reject H0.
The limit for p-values in social science is .05. This means that if the p-
value is smaller than .05, we reject H0 and accept H1 (and hence conclude
that the means are different in the groups). If the p-value is larger than
.05, we cannot reject H0 (and hence we conclude that the means are the
same in the groups).

3.1 Computing a new factor from categories

The price of a car obviously depends on the Manufacturer. Asian cars for
instance are known to be cheaper than other cars.

Let’s compute a new variable called Asian that groups the Asian car man-
ufacturers into a new category of “Asian” cars and the others as “non-Asian”.
This operation combines three commands.

First, we do a if/else test. The first argument is the test (the vertical bar
means “or” and == tests equality). The second argument is the value returned
by the test if it is true (“Asian”) and the second argument is the value returned
by the test if it is false (“non-Asian”).

Second, we transform the output of the test into a categorical variable with
the factor command.

Finally we assign the new values to a new column of the data frame called
“Asian”.

> d$Asian <- factor(ifelse(d$Manufacturer == "Honda" |

+ d$Manufacturer == "Hyundai" |

+ d$Manufacturer == "Mazda" |

+ d$Manufacturer == "Mitsubishi" |

+ d$Manufacturer == "Nissan" |

+ d$Manufacturer == "Suzuki" | d$Manufacturer == "Toyota"

+ , "Asian", "non-Asian")

+ )

> tapply(d$Price, d$Asian, mean)

Asian non-Asian

15.71739 20.75571

> tapply(d$Price, d$Asian, sd)

6



Asian non-Asian

6.295789 10.266417

>

Let’s see if the price of the cars depends on their asian origin ! And yes it
does, as the F-value is quite large and the p-value is smaller than .05. We would
report the difference in a report as follows: A one-way analysis of variance with
the asian origin of the car as independent variable and the price as dependent
variable was conducted. Asian cars (M=15.7, sd=6.3) are less expensive than
non-asian cars (M=20.8,sd=10.3) (F[1,91]=4.9, p=.03).

> oneway.test(d$Price ~ d$Asian, var.equal=T)

One-way analysis of means

data: d$Price and d$Asian

F = 4.9101, num df = 1, denom df = 91, p-value = 0.02919

And we accompany the analysis with a figure that shows the mean and the
confidence intervals

> plotmeans(d$Price ~ d$Asian,

+ main="Price given the Asian origin of the car",

+ xlab="Origin", ylab="$$")
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3.2 Computing a new factor based on a median cut

Imagine we want to split the cars depending on their gas consumption (a combi-
nation of MPG.city and MPG.highway). The operations are very similar to the
previous case, except that this time the test involves the median.

> d$Guzzler <- factor(ifelse(d$MPG.city > median(d$MPG.city),"GUZZLER","ECONOMY"))

We could now look at the number of asian and non-asian cars by consumption
category and do a chi-square test to see if these are equally distributed. For a
valid and significant test, expected values should be larger than 5 and some
residuals larger than 1.96. We see from this analysis that there is a tendency
for asian cars to be guzzling more than non-asian cars. The residuals indicate
that the guzzlers are over-represented in the Asian category (which is by the
way rather surprising).

> table(d$Asian, d$Guzzler)

ECONOMY GUZZLER

Asian 7 16

non-Asian 42 28

> c <- chisq.test(table(d$Asian, d$Guzzler))

> c

Pearson's Chi-squared test with Yates' continuity correction

data: table(d$Asian, d$Guzzler)

X-squared = 4.9424, df = 1, p-value = 0.02621

> c$expected # These should be larger than 5

ECONOMY GUZZLER

Asian 12.11828 10.88172

non-Asian 36.88172 33.11828

> c$residuals # These should be larger than 1.96

ECONOMY GUZZLER

Asian -1.4702918 1.5515837

non-Asian 0.8427881 -0.8893857

4 More than one factor analysis of variance

Let’s now do a two factor analysis with the Price as a dependent variable and
the Asian and Guzzler variables as categories. We use the command aov to
compute the analysis and separate the factors with the * sign to indicate that we
are interested in simple effects for each of the factors as well as in the interaction
effect. The f1 * f2 operator is a short hand for f1 + f2 + f1:f2 where the
: sign means “interaction”. The summary command shows the details of the
analyis.
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> summary(aov(d$Price ~ d$Asian * d$Guzzler))

Df Sum Sq Mean Sq F value Pr(>F)

d$Asian 1 439 439.5 7.894 0.0061 **

d$Guzzler 1 3140 3139.7 56.396 4.35e-11 ***

d$Asian:d$Guzzler 1 50 50.0 0.898 0.3459

Residuals 89 4955 55.7

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We would report the results as follows: A two way analysis of variance was
conducted with the Price as dependent variable and Asian origin and Gas con-
sumption as independent variables. There were simple effects of the Asian origin
(F[1,90]=7.9, p<.01) as well as of the Gaz consumption factor (F[1,90]=56.4,
p<.001). There was not interaction effect. We see from table 1 and figure 3
that Non-Asian cars are more expensive that Asian cars and that Economy cars
are more expensive than Guzzler cars.

To present the results nicely in LATEX, we can also present the details of the
analysis as a table as well as the means and standard deviations in a separate
table by using the xtable command.

> library(xtable)

> xtable(summary(aov(d$Price ~ d$Asian * d$Guzzler)))

Df Sum Sq Mean Sq F value Pr(>F)
d$Asian 1 439.46 439.46 7.89 0.0061
d$Guzzler 1 3139.73 3139.73 56.40 0.0000
d$Asian:d$Guzzler 1 49.98 49.98 0.90 0.3459
Residuals 89 4954.85 55.67

> xtable(tapply( d$Price, list(d$Asian, d$Guzzler),

+ function(x) {

+ paste(round(mean(x),2)," (",round(sd(x),2),")", sep="")

+ }),

+ label="tab:asian-guzzler",

+ caption="Car prices by asian origin and gas consumption.

+ Numbers represent means and standard deviation in parentheses.")

ECONOMY GUZZLER
Asian 22.13 (5.92) 12.91 (4.07)

non-Asian 25.9 (9.84) 13.04 (4.42)

Table 1: Car prices by asian origin and gas consumption. Numbers represent
means and standard deviation in parentheses.

There are several ways to plot the results. By using plotmeans and the
interaction.plot method. If we plot the price by asian origin (see figure 1)
and by whether the car is a gaz guzzler (see figure 2) we see that the difference
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> plotmeans(d$Price ~ d$Asian, ylim=c(10,30))
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Figure 1: Price by Asian origin.
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> plotmeans(d$Price ~ d$Guzzler, ylim=c(10,30))
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Figure 2: Price by Guzzler category.

> plotmeans(d$Price ~ interaction(d$Asian, d$Guzzler), connect=list(c(1,2),c(3,4)))
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Figure 3: Price by Asian origin and Gas consumption.
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> interaction.plot(d$Asian, d$Guzzler, d$Price, ylim=c(10,30))
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Figure 4: Price by Asian origin and Gas consumption.

between asian and non-asian cars is smaller than between economy and gas
guzzlers.

It is also possible to plot both categories in the same plot.
The second way uses interaction.plot and does not include confidence

intervals but crosses the categories instead.

5 Linear Models

Linear models, often called linear regressions, allow to predict the variations of a
quantitative dependent variable with a linear combination of other quantitative
variables. For example, we could try to explain the price of a car (the dependent
variable) by a combination of the power of the car (Ferraris with 300 HP are
ususally more expensive than Fiat 500 with 50 HP) and the size of the car (e.g.
via the wheelbase which is the distance between the rotational centers of the
wheels).

5.0.1 Fitting linear models

In R, you can build linear models with the lm command (lm stands for linear
model). A linear model estimates the β parameters in the equation y = β0 +
β1 ∗ x + ε. This equation defines a line where β0 is the intercept and β1 is the
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slope of the line. Because a linear combination of predictors only aproximates
the observed data, there is an residual error ε which remains unexplained. These
residuals ε are required to follow a normal distribution with mean 0.

The simplest regression model is be the null model that predicts the outcome
with a constant (y = β0). As a convention in R, the term ∼1 refers to the
intercept. Hence the simplest model predicts that the Price best predicted by
it’s average value: 19.51. This corresponds to the horizontal line in figure 5.

> mean(d$Price)

[1] 19.50968

> m0 <- lm(Price ~ 1, data=d)

> m0

Call:

lm(formula = Price ~ 1, data = d)

Coefficients:

(Intercept)

19.51

The next step consists of adding predictors to the simple m0 model, for ex-
ample, a model (m1) where the Horsepower variable predicts the Price variable.
The m1 model is of the form y = ax+ b.

Inspection of the model (simply typing m1) shows that the Price is equal to
a constant (the intercept) -1.4 plus 0.15 points for each additional Horsepower.
Oddly enough, a car with zero horsepower would have a negative cost !

> m1 <- lm(Price ~ Horsepower, data=d)

> m1

Call:

lm(formula = Price ~ Horsepower, data = d)

Coefficients:

(Intercept) Horsepower

-1.3988 0.1454

We can plot the data and the result in a simple scatterplot as follows (see
figure 5). The xlim and ylim parameters set the range of the axes that have to
be drawn. The main parameter refers to the title of the graph and the xlab and
ylab parameters set the labels for the axes.

> plot(d$Price ~ d$Horsepower,

+ main="Price given Horsepower",

+ xlab="Horsepower", ylab="Price")

> abline(lm(d$Price ~ 1), lty=2, lwd=2)

> abline(lm(d$Price ~ d$Horsepower))

> legend("topleft", legend=c("m0","m1"), lty=c(2,1))
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Figure 5: Scatterplot of price give horsepower.
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5.1 Diagnosing linear models

The quality of a fit can be assessed by plotting diagnosis plots. These plots allow
to check whether the residuals are more or less equally variable for the range of
predicted values (residuals versus fitted) and that the residuals are distributed
normally (Normal Q-Q plot of the residuals). The Scale-Location and Residuals
vs Leverage plots indicate whether some observations affect the estimates of the
model too strongly.

> par(mfrow=c(2,2))

> plot(m1)
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In the first plot, the red line represents a “local summary” of the residuals
given the predictions of the model. We see that the red line stays more or
less horizontal at zero. This is a good sign since it indicates that the errors of
the models’ prediction are as much positive and negative and that they do not
increase with the predicted values.

The second plot shows whether the errors are normally distributed. If the
errors were normally distributed they should follow the diagonal dotted line.
We see that observation 28 and 59 are outliers, which means that the error is
particularly large for these two cars. Car 28 is a Dodge Stealth. For this car, the
residual is especially large and negative, which means that the model predicts a
much too high price (since residual = observed− predicted). On the contrary,
for car 59, a Mercedes-Benz 300E, the model predicts a price which is too low.

> # Residual for car 28

> d$Price[28] - fitted(m1)[28]
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28

-16.4126

> # Residual for car 59

> d$Price[59] - fitted(m1)[59]

59

31.75321

It appears clearly from the third plot (Scale-Location plot) that observations
28 and 59 appear as outliers in the graphs. Their standardized residuals are
much larger than those of most of the cars. Also, the red line shows a tendency
for the square root of standardized residuals is increasing with the fitted values.

Lastly, the leverage plot shows that observations 28 and 59 exert a large
influence on the parameters estimated by the model. Cook’s distance is an
indication of how much the prediction of the model changes for a point once
this point is removed from the model. Points which are too influencial merit
closer examination. Points with large values of Cook’s distance (larger than 1)
may be deleted from the sample to compute a better estimate.

5.2 Evaluating linear models

There are two ways to evaluate linear models. First we may be interested to
know which of the βi parameters in the equation y = β0 + β1 ∗ x are different
from zero. The summary function uses t-tests to test whether each parameter of
the function is significantly different from zero. We see in the tests below that
the intercept does not statistically differ from zero (it’s p-value is larger than
.05) and that the Horsepower variable significantly contributes to influence the
contributions.accepted variable (p-value is smaller than .05).

> summary(m1)

Call:

lm(formula = Price ~ Horsepower, data = d)

Residuals:

Min 1Q Median 3Q Max

-16.413 -2.792 -0.821 1.803 31.753

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.3988 1.8200 -0.769 0.444

Horsepower 0.1454 0.0119 12.218 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.977 on 91 degrees of freedom

Multiple R-squared: 0.6213, Adjusted R-squared: 0.6171

F-statistic: 149.3 on 1 and 91 DF, p-value: < 2.2e-16

The second way to evaluate our models is to compare them with each other.
The question that we ask in this case is to know whether adding predictors
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significantly reduces the residual error. The anova method allows to compare
several models. The result of the comparison shows that the model m1 better
describes the data than the m0 model (the RSS term indicates residuals sum of
squares and should be as small as possible).

> anova(m0,m1)

Analysis of Variance Table

Model 1: Price ~ 1

Model 2: Price ~ Horsepower

Res.Df RSS Df Sum of Sq F Pr(>F)

1 92 8584.0

2 91 3250.9 1 5333.1 149.29 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5.3 Model selection

The more variables we add to a model, the smaller the residual error. But this
does not satisfy the requirement of parcimony in building explanatory models.
Also, the inclusion of variables that are highly correlated among each other (e.g.
the number of cylinders and the horsepower) introduces biases in the parameter
estimates.

Model selection is an iterative process where we either start with a complex
model and remove variables (backwards elimination) or we start with a simple
mode and add variables (forward selection). The criteria for inclusion or removal
of variables are first of all theoretical (you should add variables only if you have
a clear hypothesis about it’s effect), based on an significant improvement of the
model (the residual sum of square RSS is smaller) or based on statistical criteria
(e.g. AIC Akaike Information Criterion).

For example, adding the weight variable to the model for the price does not
improve the prediction.

> m2 <- lm(Price ~ Horsepower + Weight, data=d)

> anova(m0,m1,m2)

Analysis of Variance Table

Model 1: Price ~ 1

Model 2: Price ~ Horsepower

Model 3: Price ~ Horsepower + Weight

Res.Df RSS Df Sum of Sq F Pr(>F)

1 92 8584.0

2 91 3250.9 1 5333.1 151.3469 <2e-16 ***

3 90 3171.4 1 79.5 2.2554 0.1367

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Let’s see whether the Wheelbase (empattement) is a better predictor. We
suppose that there are as well small cars that have big motors and big bars that
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have smaller motors. Indeed the correlation between Horsepower and Wheelbase
is not too large. But even though the model m2 is significantly better than m1,
we see that the gain in Resuduals is rather small and that the increase in R2 is
not spectacular either.

> cor.test(d$Horsepower, d$Wheelbase)

Pearson's product-moment correlation

data: d$Horsepower and d$Wheelbase

t = 5.317, df = 91, p-value = 7.483e-07

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.3143189 0.6282546

sample estimates:

cor

0.4868542

> m2 <- lm(Price ~ Horsepower + Wheelbase, data=d)

> summary(m2)

Call:

lm(formula = Price ~ Horsepower + Wheelbase, data = d)

Residuals:

Min 1Q Median 3Q Max

-12.7498 -3.1960 -0.2457 1.9887 31.4455

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -22.01636 9.89771 -2.224 0.0286 *

Horsepower 0.13159 0.01337 9.844 6.03e-16 ***

Wheelbase 0.21742 0.10266 2.118 0.0369 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.866 on 90 degrees of freedom

Multiple R-squared: 0.6393, Adjusted R-squared: 0.6312

F-statistic: 79.75 on 2 and 90 DF, p-value: < 2.2e-16

> anova(m0,m1,m2)

Analysis of Variance Table

Model 1: Price ~ 1

Model 2: Price ~ Horsepower

Model 3: Price ~ Horsepower + Wheelbase

Res.Df RSS Df Sum of Sq F Pr(>F)

1 92 8584.0

2 91 3250.9 1 5333.1 155.0051 < 2e-16 ***

3 90 3096.6 1 154.3 4.4852 0.03695 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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An automatic selection procedure is offered by the step function which takes
the most complex model as a start and removes variables based on the AIC
criteria. However, caution is required in using such automatic procedures, as
they do not guarantee accurate predictions, nor models that make sense from
the theoretical point of view.

We can choose whether the step method searches the space of potential
models by following a backward (removing the variable which explains the least
variance), forward (adding the variable which adds most explanatory power to
the model) or both directions (starting from the full model and checking both
whether the model gets better by removing or adding a variable). By default,
R steps in both directions.

> step(lm(Price ~ Horsepower + Cylinders + EngineSize + RPM + Fuel.tank.capacity + Length + Wheelbase + Turn.circle + Rear.seat.room + Luggage.room,data=na.omit(d)))

The model that is retained by the step procedure is:

> summary(lm(formula = Price ~ Horsepower + Wheelbase + Turn.circle, data = na.omit(d)))

Call:

lm(formula = Price ~ Horsepower + Wheelbase + Turn.circle, data = na.omit(d))

Residuals:

Min 1Q Median 3Q Max

-14.3355 -2.6228 -0.1341 2.3187 26.9886

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -24.44673 12.50910 -1.954 0.05425 .

Horsepower 0.13857 0.01733 7.994 9.67e-12 ***

Wheelbase 0.54653 0.16463 3.320 0.00137 **

Turn.circle -0.83325 0.31428 -2.651 0.00971 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.833 on 78 degrees of freedom

Multiple R-squared: 0.6697, Adjusted R-squared: 0.657

F-statistic: 52.72 on 3 and 78 DF, p-value: < 2.2e-16

It is possible to force the direction of the stepping by using the direction
parameter. When you formulate a “forward” direction it is necessary to provide
the starting model with lower and the most complex model with upper.

> step(lm(Price ~ 1, data=na.omit(d)),

+ scope=list(

+ lower=Price ~ 1,

+ upper=Price ~ MPG.city + Cylinders + EngineSize + Horsepower + RPM + Length + Width + Weight

+ ),

+ direction="forward",

+ )

From running the above command we notice that the resulting model is
slightly different from stepping in both directions, since it replaced Wheelbase
and Turn.Circle with Weight and Width.
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> summary(lm(Price ~ Horsepower + Weight + Width, data=na.omit(d)))

Call:

lm(formula = Price ~ Horsepower + Weight + Width, data = na.omit(d))

Residuals:

Min 1Q Median 3Q Max

-15.0106 -2.6641 -0.6295 2.2425 28.6247

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.379692 18.340663 3.074 0.002910 **

Horsepower 0.093544 0.024829 3.767 0.000318 ***

Weight 0.013084 0.003283 3.985 0.000150 ***

Width -1.297441 0.354446 -3.660 0.000456 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.673 on 78 degrees of freedom

Multiple R-squared: 0.6876, Adjusted R-squared: 0.6756

F-statistic: 57.22 on 3 and 78 DF, p-value: < 2.2e-16

6 Categorical variables

6.1 Chi-square test of independance

The relationship between two categorical variables can be assessed by a cross-
tabulation and a chi-square test.

For example, we can answer the question whether the asian origin of a car is
related to the fact that the car belongs to the economic cars. In chi-square terms,
the question is whether the Guzzler variable (either ECONOMY or GUZZLER)
is independent of the Asian (Asian versus non-Asian) variable.

The cross-tabulation is either obtained through the table command or through
the xtabs command as follows:

> # xtabs( ~ Asian + Guzzler, data=d)

> tt <- table(d$Asian,d$Guzzler)

> tt

ECONOMY GUZZLER

Asian 7 16

non-Asian 42 28

Under the hypothesis that these variables are independent, we would expect
the following counts. We see that in our sample there are less (7) Asian Economy
cars than expected (12.11) but theat there are more Asian Guzzlers (16) than
expected (10.88). The expected value for a cell is obtained by multiplying the
column total and the row total of the cell and dividing the result by the grand
total of the table.

> chi <- chisq.test(tt)

> chi$expected
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ECONOMY GUZZLER

Asian 12.11828 10.88172

non-Asian 36.88172 33.11828

The decision variable that is used to measure the deviance from independence
is given by the following formula:

χ2 =

n∑
i=1

(Oi − Ei)
2

Ei

where O are the observed tallies and E are the expected values.
The chi-square tests whether the deviation between the observed and the

expected distribution is larger than a theoretical χ2 value for a given α value.
In our case we see that the χ2 deviation (4.94) is large enough to yield to a p-
value of 0.02. We can therefore reject the null hypothesis that the variables are
independent (and therefore conclude that they are dependent). The residuals
show which cell in the table contribute most to the difference. On our case, the
largest deviation from independence comes from the Asian Guzzlers (residual is
1.55).

> chi

Pearson's Chi-squared test with Yates' continuity correction

data: tt

X-squared = 4.9424, df = 1, p-value = 0.02621

> chi$residuals

ECONOMY GUZZLER

Asian -1.4702918 1.5515837

non-Asian 0.8427881 -0.8893857

The conditions for validity of a chi-square test are that the expected counts
are larger than 5. Also, the observations (the tallies) should be independent.
It is questionable for instance to do chi-square anaylses if the same person was
measured on repeated occasions (e.g. to compare the types of dialogue inter-
ventions across levels of expertise).

6.2 Linear Discriminant Analysis

This technique allows to predict which linear combination of quantitative vari-
ables best predicts a nominal variable. A useful documentation is available here:
http://www.statmethods.net/advstats/discriminant.html. The grouping factor
with n categories is known in advance (for example the type of the car) and we
want to know which linear combination of quantitative variables best predicts
the belonging of observations to a given category. The approach is quite similar
to stepping a linear model, except that the outcomes is categorical.

Here we see a model that identifies which variables best predict the car type.
The lda function from the MASS package allows to fit the linear discriminant
model. The analysis results in n− 1 dimensions.
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> library(MASS)

> fit <- lda(Type ~ Price + Horsepower + EngineSize +

+ RPM + Fuel.tank.capacity + Length +

+ Wheelbase + Turn.circle , data=d, na.action="na.omit")

> fit

Call:

lda(Type ~ Price + Horsepower + EngineSize + RPM + Fuel.tank.capacity +

Length + Wheelbase + Turn.circle, data = d, na.action = "na.omit")

Prior probabilities of groups:

Compact Large Midsize Small Sporty Van

0.17204301 0.11827957 0.23655914 0.22580645 0.15053763 0.09677419

Group means:

Price Horsepower EngineSize RPM Fuel.tank.capacity Length

Compact 18.21250 131.0000 2.331250 5362.500 16.06875 182.1250

Large 24.30000 179.4545 4.209091 4672.727 19.09091 204.8182

Midsize 27.21818 173.0909 3.059091 5336.364 18.45000 192.5455

Small 10.16667 91.0000 1.595238 5633.333 12.61905 167.1905

Sporty 19.39286 160.1429 2.492857 5392.857 15.95000 175.2143

Van 19.10000 149.4444 3.200000 4744.444 20.94444 185.6667

Wheelbase Turn.circle

Compact 102.75000 38.25000

Large 113.27273 42.63636

Midsize 107.40909 40.18182

Small 96.57143 35.14286

Sporty 98.14286 38.85714

Van 112.44444 41.77778

Coefficients of linear discriminants:

LD1 LD2 LD3 LD4

Price 0.0095530829 0.0616598313 0.066809254 0.0896251099

Horsepower -0.0045789017 -0.0034053059 0.021699231 -0.0210707828

EngineSize -0.2216308017 0.7078967664 -1.944313856 -0.7816175935

RPM -0.0003475812 0.0006157647 -0.001357877 0.0009418157

Fuel.tank.capacity 0.2728224967 -0.3650896711 0.209439744 0.1946771720

Length -0.0248211417 0.1285703509 0.019580153 0.0354913507

Wheelbase 0.2735770122 -0.1178441341 -0.203806062 0.0321248432

Turn.circle 0.1469508142 -0.0891722678 0.287268511 -0.0520805933

LD5

Price 0.054268965

Horsepower -0.012536241

EngineSize 1.629440398

RPM 0.001575098

Fuel.tank.capacity -0.042310383

Length -0.083823078

Wheelbase 0.063049205

Turn.circle -0.017640794
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Proportion of trace:

LD1 LD2 LD3 LD4 LD5

0.7401 0.1339 0.0911 0.0324 0.0025

From the “Proportion of trace” we see that the two first dimensions already
account for 87% of the variation between classes (this is similar to the R2 mea-
sure of variance explained in regression). The dimensions of the discriminant
model can be interpreted based on the “Coefficients of linear discriminants”.
The larger a coefficient, the more the variable contributes to the discriminant
function. Attention, these coefficients are not standardized and depend on the
unit used in the variables.

It is possible to check the model’s ability to discriminate between groups
by running a cross-validation (add CV=TRUE) and comparing the predicted
class (fit.predict$class) with the original class (d$Type). The table command
below displays the confusion matrix for the discriminant model. When items are
placed on the diagonal, it means that the model has correctly classified them and
when the items are off the diagonal, they are mis-classified. We can compute the
percentage of correctly classified elements by adding up the diagonal elements
of the confusion matrix. As a rule of thumb, correct classification proportions
below 80% are not really satisfactory.

> fit.predict <- lda(Type ~ Price + Horsepower + EngineSize +

+ RPM + Fuel.tank.capacity + Length +

+ Wheelbase + Turn.circle,

+ data=d, na.action="na.omit", CV=TRUE)

> confusion <- table(d$Type, fit.predict$class)

> prop.table(confusion)

Compact Large Midsize Small Sporty Van

Compact 0.13978495 0.00000000 0.02150538 0.00000000 0.01075269 0.00000000

Large 0.00000000 0.09677419 0.01075269 0.00000000 0.00000000 0.01075269

Midsize 0.04301075 0.03225806 0.16129032 0.00000000 0.00000000 0.00000000

Small 0.02150538 0.00000000 0.00000000 0.19354839 0.01075269 0.00000000

Sporty 0.02150538 0.00000000 0.00000000 0.04301075 0.08602151 0.00000000

Van 0.00000000 0.01075269 0.01075269 0.00000000 0.00000000 0.07526882

> correct.pct <- 100 * sum(diag(prop.table(confusion)))

> correct.pct

[1] 75.26882

In our model, we have 75.27% cases correctly classified. From the confusion
table, we see for example that Midsize cars are confused with Compact and Large
cars, that Vans are confused with Large and Midsize cars, and that Compact
cars are confused with Midsize and Sporty cars.

To explore a bit more the quality of an lda model as a method to categorize
observations, the partimat command from the klaR package command plots a
matrix of variables taken two by two.

> # Run if the package is not installed

> # install.packages("klaR")
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> library(klaR)

> partimat(Type ~ Price + Horsepower + EngineSize +

+ RPM + Fuel.tank.capacity + Length +

+ Wheelbase + Turn.circle,

+ data=d,

+ method="lda",

+ plot.matrix=TRUE)
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7 Resources

� Quick R ... http://www.statmethods.net/

� Nice graphics ... http://had.co.nz/ggplot2/
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