EPFL - Automne 2017
Introduction aux Variétés Différentiables
Série 12

M. Troyanov **Exercices** 07 décembre

Exercice 12.1. Soit M une variété différentiable. On note

$$\operatorname{End}(\Gamma(M)) = \{ A : \Gamma(M) \to \Gamma(M) \mid A \text{ est } C^{\infty}(M)\text{-lin\'eaire} \}.$$

Montrer que $\operatorname{End}(\Gamma(M)) = \operatorname{Tens}_1^1(M)$.

Exercice 12.2. Montrer la proposition suivante vue au cours:

L'application d'alternisation

Alt:
$$\operatorname{Tens}_k(M) \to \Omega^k(M)$$
, $\operatorname{Alt}(T) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_k} \operatorname{sgn}(\sigma)^{\sigma} T$,

vérifie les conditions suivantes:

- (a) Si $T \in \text{Tens}_k(M)$, alors $\text{Alt}(T) \in \Omega^k(M)$, c'est-à-dire, Alt est bien définie;
- (b) Si $\alpha \in \Omega^k(M)$, alors Alt $(\alpha) = \alpha$;
- (c) Alt est un projecteur, c'est-à-dire, Alt o Alt = Alt;
- (d) Si $T \in \operatorname{Tens}_k(M)$ et $S \in \operatorname{Tens}_l(M)$, alors on a

$$\begin{aligned} \operatorname{Alt}(\operatorname{Alt}(T) \otimes S) &= \operatorname{Alt}(T \otimes \operatorname{Alt}(S)) \\ &= \operatorname{Alt}(T \otimes S) \\ &= \operatorname{Alt}(\operatorname{Alt}(T) \otimes \operatorname{Alt}(S)). \end{aligned}$$

Exercice 12.3. Soient M^m, N^n deux variétés différentiables et $F: M \to N$ une application C^{∞} . Etant donnée une forme différentielle $\omega \in \Omega^k(N)$, on peut la "rappeler" sur M pour obtenir une k-forme différentielle sur M, notée $F^*\omega \in \Omega^k(M)$ que l'on appelle le rappel de ω par F (ou pullback en anglais). Cette forme est définie par

$$(F^*\omega)_p(v_1,\ldots,v_k) = \omega_{F(p)}(dF_p(v_1),\ldots,dF_p(v_k)),$$

pour $v_1, \ldots, v_k \in T_pM$. Montrer les propriétés suivantes du rappel:

- (a) Si $h \in C^{\infty}(N) = \Omega^{0}(N)$, alors $F^{*}h = h \circ F$;
- (b) L'application $F^*: \Omega^k(N) \to \Omega^k(M)$ est \mathbb{R} -linéaire;
- (c) Pour $\omega \in \Omega^k(N)$ et $\eta \in \Omega^l(N)$ on a $F^*(\omega \wedge \eta) = (F^*\omega) \wedge (F^*\eta)$;
- (d) Soient (U, x^1, \ldots, x^m) est une carte de M et (V, y^1, \ldots, y^n) une carte de N, alors si

$$\alpha_y = a(y)dy^{j_1} \wedge \ldots \wedge dy^{j_k} \in \Omega^k(V),$$

on a (pour
$$F(x) = y$$
)

$$(F^*\alpha)_x = a(F(x))dF^{j_1} \wedge \ldots \wedge dF^{j_k} \in \Omega^k(U),$$

où
$$F = (F^1, ..., F^n)$$

Exercice 12.4. Notons par (x, y, z) les coordonnées cartésiennes usuelles de \mathbb{R}^3 et (u, v) celles de \mathbb{R}^2 . Soit $F: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $F(u, v) = (u, v, u^2 - v^2)$ et soit la 2-forme définie par

$$\omega = ydx \wedge dz + xdy \wedge dz \in \Omega^2(\mathbb{R}^3).$$

Calculer le rappel de ω par F.

Exercice 12.5. Notons par (x, y, z) les coordonnées cartésiennes usuelles de \mathbb{R}^3 et (v, w) celles de \mathbb{R}^2 . Soit $\varphi : \mathbb{R}^3 \to \mathbb{R}^2$ la fonction lisse définie par $\varphi(x, y, z) = (x + z, xy)$ et soient $\alpha = e^w dv + v dw$ et $\beta = v \ dv \wedge dw$ deux formes sur \mathbb{R}^2 . Calculer les formes suivantes.

$$\alpha \wedge \beta$$
, $\varphi^*(\alpha)$, $\varphi^*(\beta)$ et $\varphi^*(\alpha) \wedge \varphi^*(\beta)$.

Exercice 12.6. On introduit pour cet exercice la définition de différentielle extérieure qui généralise la différentielle aux tenseurs. Soit U un ouvert de \mathbb{R}^n et soit $\omega \in \Omega^k(U)$ une k-forme sur U. Si (x^1, \ldots, x^n) est un système de coordonnées sur U, la k-forme ω s'écrit $\omega = \omega_I dx^I$, où $I = (i_1, \ldots, i_k), 1 \le i_1 < \ldots < i_k \le n$, $dx^I = dx^{i_1} \wedge \ldots \wedge dx^{i_k}$ et $\omega_I \in C^{\infty}(U)$. On définit la différentielle extérieure $d\omega$ de ω comme étant la (k+1)-forme suivante (sur U):

$$d\omega = \sum_{I} d\omega_{I} \wedge dx^{I} = \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} d\omega_{i_{1} \dots i_{k}} \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}}.$$

On verra plus tard une définition de la différentielle extérieure pour les formes différentielles sur une variété quelconque. Montrer les propriétés suivantes:

- (a) d est \mathbb{R} -linéaire;
- (b) Si $\omega \in \Omega^k(U)$ et $\eta \in \Omega^l(U)$, alors $d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$;
- (c) $d \circ d = 0$;
- (d) Si V est un ouvert de \mathbb{R}^m , $F:U\to V$ est une application différentiable et ω est une k-forme sur V, alors $F^*(d\omega)=d(F^*\omega)$.

Exercice 12.7. Considérons les formes différentielles suivantes sur \mathbb{R}^3 :

$$\alpha = xdx - ydy$$
, $\beta = zdx \wedge dy + xdy \wedge dz$, $\gamma = e^{2xy}dz$.

Calculer $d\alpha$, $d\beta$, $d\gamma$ et $\alpha \wedge \beta$ et $\alpha \wedge \beta \wedge \gamma$.