
Quantum Transport 
 
 
 

1. Introduction 
 
In conventional electronic devices such as field-effect transistors (FETs) or diodes, the 
size of the device is usually quite large, so that the wave nature of the electron or its 
discrete charge do not influence the behavior of the device. Furthermore, all individual 
components of these devices are of a size much larger than an individual atom. However, 
with the continuous shrinking of integrated circuits, novel effects will arise at the 
nanoscale: Contemporary FETs are already now approaching the length scales in which 
some of the transistor’s parts are scaled down to atomic dimensions. For example, the 
width of the channel of a state-of-the art FET is 
only about 35 nm (Figure 1) and the thickness of 
the gate insulator is only few atoms thick (inset to 
Figure 1). The outlook what a commercial FET 
might look like is already in a development stage 
nowadays. For example Singh et al.2 could show 
that by process techniques that are also used in 
industry, working silicon nanowires FETs with 
channels composed only of a 3 nm silicon 
nanowire can be fabricated (Figure 2a). At low 
temperatures, they were able to see significant 
fluctuations in the current flowing through the 
transistor (Figure 2b) as a function of the gate-
source voltage. These fluctuations are due to 
single-electron charging effects, as will be 
explained in the remainder of this chapter. Before 
we come to the description of phenomena in 
electric transport that only appear when electrons 
are confined to small dimension, we will discuss 
the basics of the conventional FET, as it is the 
basis for many of the phenomena described in the 
following. 

Figure 1:  Scanning electron 
microscopy (SEM) image of a 
contemporary field-effect transistor 
(FET). (Inset) Transmission electron 
microscopy (TEM) image of a gate 
insulator (source: Intel).  

 
 
2. Basics of field-effect transistors (FETs) 
 
A transistor is a semiconductor device commonly used to amplify or switch electronic 
signals. A transistor is made from a solid piece of semiconducting material, with at least 
three terminals for connection to an external circuit. A voltage or current applied to one 
pair of the transistor's terminals changes the current flowing through another pair of 
terminals. Because the controlled (output) power can be much larger than the controlling 
(input) power, the transistor provides amplification of a signal. The transistor is the 
fundamental building block of modern electronic devices, and is used in radio, telephone, 
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computer and other electronic systems. Modern transistors are usually so called field-
effect transistors (FETs) in which the transistor action is steered via an electric field, 
hence the name. The first metal-oxide-semiconductor FET (MOSFET) was realized in 
1960 by Kahng and Atalla8. The schematic structure of a MOSFET is shown in Figure 3. 
The semiconducting channel is connected to two terminals (labeled source (S) and drain 
(D)) that are used to apply a voltage along the channel, whereas the third terminal 
(labeled gate (G)) is electrically insulated from the semiconducting channel. It serves to 
control the electrostatic potential at the semiconductor/insulator interface. The so called 
gate capacitor is formed by the gate insulator (for 
example SiO2) and two electrodes namely the 
metallic gate electrode on the one side and the 
semiconductor on the other. A phenomenological 
explanation of the operation of a FET is that by the 
application of for example a positive voltage to the 
gate electrode, electrons are accumulated on the 
other side of the gate capacitor, that is in the 
semiconductor. The accumulated electrons can be 
pushed through the channel from source to drain by the drain-source voltage. However, 
in order to for example understand the exponential increase of the current of a FET as the 
gate voltage is changed, we have to go a bit deeper into semiconductor physics, which we 
will briefly do in the following. 

Figure 2:(a) SEM image of a nanowire FET fabricated with conventional CMOS-compatible 
techniques (scale bar 500 nm). The diameter of the nanowire is only 3 nm. (inset) TEM image 
of the channel showing the nanowire (scale bar 4 nm), the wrap-around gate dielectric (SiO2). 
(b) Transfer curve of the FET showing confinement of the charge carries effects at low 
temperatures (Figure adopted from Ref 2). 

Figure 3 Schematic depiction of a 
FET.  

 
Doping of a semiconductor  
 
The charge carrier density of the semiconducting material used for the fabrication of the 
FET can be tailored by appropriate manufacturing techniques according to the necessities 
of the application. This modification, known as doping of the semiconductor is the 
process of intentionally introducing impurities into an extremely pure (also referred to as 
intrinsic) semiconductor to change its electrical properties. The impurities are dependent 
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upon the type of semiconductor. In order to obtain a p-type semiconductor one has to 
dope the intrinsic semiconductor using acceptor atoms like boron (when Silicon is used 
as semiconductor) which take up an electron from the semiconductor and leaves an extra 
hole. This results in a shift of the Fermi level close to the valence band. By doping the 
intrinsic semiconductor with donor atoms like arsenic (when Silicon is used as 
semiconductor), one can shift the Fermi level close to the conduction band thus creating 
an n-type semiconductor. 
 
 
Operation principle of a FET 

 FETs, the current through the channel (called the drain current ID) is modulated by 
 
In
controlling the electrostatic potential of the channel via the application of a voltage 
between the gate and the source terminal (VGS). In order for this potential change to 
affect the current through the channel, it has to alter the concentration of charge carriers 
in the channel. This can easily be seen from the Drude model in which the current is 
given by 

DSDSD VenVI ��� �v PV  (2.1) 

Here, V is the conductivity of the channel, n the density of charge carriers in the channel, 

with W the time between two scattering events ( laxa e) and m* the effective mass 

µ the mobility of the charge carriers, VDS the voltage applied between the source and 
drain electrode and e the electron’s charge. The current ID flows because of the potential 
difference VDS between the source and the drain electrode. µ is given by  

*/ me WP �   (2.2) 

re tion tim
of the charge carriers. Since µ is usually not affected by the electrostatic potential applied 
to the gate terminal, the modulation of the drain current results from the modulation of 
the charge carrier density in the semiconducting channel. To understand this, we consider 
the change of the charge carrier density in the semiconductor of a FET in the vicinity of 
the semiconductor/gate insulator interface on the application of a potential I to the gate 
electrode. In a p-doped semiconductor for example, the density of holes p in the valence 
band depends exponentially on I and is given at low temperatures by 9 
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Here, NV is the effective density of states in the valence band, Ea the activation energy of 
the dopants, kb Boltzmann’s constant, nA (nD) the concentration of acceptors (donors) and 
T the temperature. As can be derived via the Poisson equation, the drain current then 
depends exponentially on the gate voltage10 
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as explained in the class, it is not the fermi level that shifts but the band structure that changes with doping
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where the gate coupling factor D is defined in 
Equation 5.5. We would like to emphasize that the 
switching of the FET works without the need of 
current flowing through the gate insulator but 
merely by the application of a potential to the gate 
electrode. This “powerless switching” is one of the 
reasons why FETs are used in modern electronic 
devices.  
When the maximal density of charges is 
accumulated, the maximum drain current ID flows, 
and the FET is in its on state (Figure 4, at -3 V). 
Whether it is energetically more favorable for holes 
or electrons to accumulate in the channel depends 
on the sign and magnitude of the applied gate 
voltage as well as on the band gap and doping level 
of the semiconductor. In turn, obviously if the 
charge density is minimal, the current through the channel is small and the FET is turned 
off (-0.2 V in Figure 4). For a more detailed explanation of the operation principle of 
FETs, please refer to references 9, 10. 

Figure 4 Transfer curve of a field 
effect transistor. The exponential 
increase of the drain current between 
-0.3 and -1 V as well as the 
vanishing gate current can be seen. 
In this transistor the semiconducting 
channel has been fabricated from 
pentacene molecules [H. Klauk, 
personal communication]. 

However, the operation of a FET is not only determined by the density of accumulated 
charges in the channel. In order for a large current ID to flow through the device, charges 
have to be injected into the channel from the source contact. For example, the successful 
injection of charge carriers from the source electrode into the channel depends on the 
alignment of the conduction (in the case of an electron channel) or valence (in the case of 
a hole channel) band with the Fermi level of the metal used for the drain contact. The 
contact of a metal and a semiconductor leads to a potential barrier (Schotty barrier) that 
can hinder charge transport across this interface 9. In case that the channel is composed of 
an inorganic material, the thickness of the Schottky barrier can be tuned by selective 
(degenerate) doping of the contacts. In contrast, when organic materials are used, doping 
is typically not straightforward and special care has to be directed to the choice of the 
combination of semiconductor and contact metal. 
 
In FETs that are nowadays used in commercial electronic devices, the size of the 
individual parts of the transistor is beginning to enter into the regime where the wave-
nature of the electron is beginning to play a role. For example, the gate insulator of FETs 
is on the order of few nanometers (Figure 1 inset) so that one can expect tunneling 
phenomena of the charge carriers through this insulator already to start playing a role 
here. In the next chapters we will elucidate the unexpected phenomena that start to appear 
when electrons get confined to small spaces. We will see that both the wave-nature of the 
electron as well as the discreteness of the electric charge will strongly be noticeable in the 
transport processes trough such devices. 
 
 

 4



3. Transport through a one-dimensional wire 
 
Before we describe the transport of charges trough a one-dimensional wire, let us recall 
what one dimensional (1D) means. Electrons can be described by wave packages with a 
wave length given by their energy. In electric transport only the electrons at the Fermi 
edge (EF) take part; their wavelength is consequently called Fermi wavelength and is 
given by Of = h/(2m*EF)0.5. If one or more measurement of the device under investigation 
is smaller than the Fermi wavelength, one can expect the charge carrier to not be able to 
move into this direction any longer, it gets confined. Typical Of in metals are below one 
nanometer, while they can be up to several tens of nanometers in semiconductors. This is 
why confinement effects can be seen much easier in semiconductors. Another very 
crucial value when investigating transport at the nanoscale is the mean free path le of the 
charge carrier. It expresses the distance across which a charge carrier can travel without 
scattering. As we will see, if the size of a sample is below this size, interesting effects 
will come about. 
 
The conductivity of a macroscopic sample is typically derived from the Boltzmann 
equation11. It reads 
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With n the charge carrier density, e the electron’s charge m* the effective mass of the 
charge carriers and vF the Fermi velocity. For copper at room temperature le = 30 nm.  
 
What now happens to the conductance of a sample with dimensions significantly smaller 
than the mean free path? The charge transport then should take place without scattering 
(this phenomenon is called ballistic transport) and therefore the conductance should rise 
infinitely. However, experimentally it is found, that the conductance approaches a finite 
value, the so called conductance quantum G=e2/h. This value does not depend on the 
material under investigation. 
 
 
Landauer Formula 
 
The surprising finding that the conductance of a ballistic sample does not rise to infinity 
can be described with the Landauer formula. This theoretical derivation of the 
conductance through a ballistic wire holds for non-interacting charge carriers in a ballistic 
conductor for small biases VDS (called linear response) at zero temperature. Consider a 
ballistic one dimensional conductor (for this to be true, its width and height should be 
smaller than the Fermi wavelength of the charge carriers) coupled to two metallic 
contacts (Figure 5a). This means that the allowed energies in y and z-direction are 
quantized. We consider the conductor to only have one of these quantized energy levels, 
called a channel, as depicted in Figure 5b. A finite bias VDS is applied across this 
conductor. Since the wire is one dimensional, electrons can only move through the wire 
from contact 1 to contact 2 in x-direction. The energy of an electron in the lead is given 
by 12 
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where ED is the quantized energy of the electron with respect to its transversal motion. 
The longitudinal velocity vD of the charge carriers moving in the x-direction is given by 
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In order to derive the square-root dependence of vD we used Equation 3.2. 
 
The current through one channel ID is then given by 
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Here, TD is the probability that a charge carrier is transmitted through the contact into the 
wire. This transmission probability takes account for a contact resistance like for example 
a Schottky barrier. The density of states reads 
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which can be derived by using the expression for kD given in Equation 3.2. The Fermi 
functions f at the end of the formula extract that part of the density of states from which 
charge carriers can travel from the left to the right lead, as marked in light grey in 
Figure 5b. The current can then be written as 
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Here we used the difference quotient of the Fermi function  
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Figure 5 (a) Schematic drawing of a one dimensional wire between two contacts. The length L 
of the wire is much smaller than the mean free path le of the charge carriers, its width is 
smaller than the Fermi wavelength of the charge carriers. (b) Schematic drawing of the 
corresponding energy diagram. Shown are the electrochemical potentials of the left (µ) and 
the right lead (µ-eVDS) across which a voltage VDS has been applied. 
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(a)                (b) 

(c)                           (d) 

Figure 6 (a) Schematic view of a n-type AlGaAs/intrinsic GaAs interface. (b) Band diagram of 
the interface region between the two layers. The two dimensional electron gas is formed at the 
contact between the two layers. (c) Schematic of the experimental realization of a quantum 
point contact. By application of a negative voltage to the gates, the width of the quantum point 
contact can be defined (adopted from Ref 1). (d) Conductance through the quantum point 
contact as a function of the gate voltage (adopted from Ref 6). 

Since the integral over the derivative of the Fermi function in Equation 3.6 equals unity 
for small VDS, the conductance through one channel of the one dimensional wire can be 
expressed by 

D
D T

h
e

V
IG
DS

2

22 � �   (3.8). 

 Here we added a factor of 2 to account for the spin of the electron. In the case that the 
wire is composed of m channels, G increases by a factor m. This derivation showed, that 
the conductance through a ballistic one dimensional wire is not infinite, but – at a 
maximal transmission TD of the contacts of one – an upper limit of e2/h, the so called 
conductance quantum. This conductance quantum can be understood as a contact 
resistance between the ballistic wire and the three-dimensional contact. One can argue 
that the electrons have to scatter into the one-dimensional channels in order to enter into 
the wire. In a 4-terminal measurement, the resistance of the ballistic wire really would be 
zero, as we shall see later when discussing the quantum Hall effect.  
 
 
Experimental realization of a one dimensional wire 
 
Experimentally, such one dimensional wires can be realized by different methods. One 
very popular method is the electrostatic confinement of a 2-dimensional electron gas 
(2DEG, or sometimes called 2 dimensional electron system, 2DES) by electrostatic 
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gating. A 2DEG is formed at the interface of a AlGaAs/GaAs heterostructure (Figure 6a) 
that is typically grown by molecular beam epitaxy (MBE) methods. The different 
bandgaps and Fermi levels in the n-doped AlGaAs and the intrinsic GaAs layer lead to 
the transfer of electrons from the AlGaAs to the GaAs which results in a band bending as 
shown in Figure 6b. The electrons are confined to a very narrow region in the plane of 
the sample (i.e. the z-direction), which leads to a quantization of the energy in this 
direction. Typically electrons only occupy the lowest level, so that the motion of the 
electrons is confined to the xy-plane.  
Ohmic contacts can be made to the 2DEG, and two metal gate electrodes with a typical 
distance of about 250 nm can be patterned on the AlGaAs layer that are electrically 
insulated from the 2DEG (Figure 6c). On the application of a negative voltage to the 
gates, the 2DEG underneath them is depleted, and as indicated in Figure 6c, only a small 
strip of the 2DEG between the gates is not depleted. The width of the not depleted part of 
the 2DEG between the gates (the quantum point contact) changes with the magnitude of 
the applied voltage. As the width of the quantum point contact becomes comparable to 
the Fermi wavelength of the electrons the density of states in the quantum point contact 
get quantized and if the size of the level quantization is significantly smaller than the 
thermal broadening, the current is carried by few one-dimensional channels. Since the 
quantum point contact fabricated such that it is significantly shorter than the mean free 
path of the electrons transport through the point contact is ballistic. As the potential 
applied to the gates is increased, the constriction gets narrower and the number of 
channels get fewer. This means, that the conductance decreases in a step-like fashion as 
less and less channels become available for transport (Figure 6d).  
 
 
4. Coulomb blockade 
 
Up to now the interaction between electrons has been neglected and we have considered 
the contacts to the ballistic wires to be highly transmissive. This chapter will deal with 
interacting electrons confined to small dimensions and only coupled via tunneling 
processes to the leads.  
In order to understand at which length scales the Coulomb interaction becomes a 
dominant factor, it is instructive to consider a small metallic particle of diameter D. The 
capacitance of this dot C is given by C = 4SH0HrD/2. The energy of one additional 
electron brought onto this dot is given by 

D
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22
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When dealing with macroscopic capacitors, this energy is too small to be measured. As 
an example, Ec is only about 1x 10-12 eV for a 1 µF capacitor. However, as the capacitor 
gets smaller, Ec increases to measurable values as shown in Figure 7b. In order to study 
the addition and removal of electrons onto such a metallic island, it is frequently coupled 
via tunneling barriers to metallic leads, as schematically shown in Figure 7a. Charges 
can tunnel onto the dot from the leads and vice-versa with a tunneling rate given by !/* . 
In order for single-electron charging events to be visible, the dot has to be weakly 
coupled to the leads (called the weak-coupling regime). An additional electron can only 
enter the dot if the Coulomb repulsion is overcome. This is the reason, why for certain 
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values of VDS no current can flow through the quantum dot due to the Coulomb blockade 
(Figure 7c). Since for each additional electron that wants to enter, the Coulomb repulsion 
has to be overcome again, it is instructive to visualize the density of states in the quantum 
dot as discrete values. This has been done in Figure 7c. Please note that this level spacing 
within the dot does not stem from the level quantization due to the quantum mechanical 
confinement of the charge carriers. However, the quantum mechanical level splitting can 
lead to an additional splitting of the levels in small dots as we will see later. 
 
 
When can the Coulomb blockade be seen? 
 
There are two major factors that determine if the Coulomb blockade can be observed in a 
system under investigation: Firstly, the temperature at which the system is investigated 
should be sufficiently low so that the thermal broadening is much smaller than the energy 
of one charge on the quantum dot, that is 

TkE Bc !!  (4.2) 
with T the temperature and kb the Boltzmann constant. As we have seen from Figure 7b, 
Ec can be much larger than kbT at room temperature (25 meV). However, this is only true 
for very small quantum dots, so that almost all investigations on quantum dots are 
performed at cryogenic temperatures between 40 mK and 4 K in a Helium cryostat. The 
second condition in order for the Coulomb blockade to be visible is that the electron is 
stable in the dot within the time that it is observed. The timescale is given by 't = RtC 

Figure 7 (a) Schematics of a metallic quantum dot coupled via tunneling barrires to 
metallic leads (b) Energy of one electron on a spherical capacitor Ec and the level splitting 
' plotted against the diameter of the capacitor for two different values Hr of the surrounding 
insulating medium. (c) Current flowing through the quantum dot. Current can only flow if 
an allowed level lies within the bias window opened by eVDS. A schematic energy diagram 
of the dot in the blockade and in the transport region is shown. Images adopted from J. 
Weis personal communication 
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Figure 8 Ec and level broadening ' for different material systems. Figure adopted from Ref 4. 

with Rt the resistance of the tunnel junction. The condition for an electron to be stable on 
the dot within 't is obtained by Heisenberg’s uncertainty principle 

hCR
C
etE t !|''

2

 (4.3). 

This means, that Coulomb blockade effects will be visible if the resistance of the 
tunneling junction fulfills the following relation 

: !! k
e
hRt 8.252  (4.4) 

 
When does the size quantization play a role? 
 
Typical realizations of quantum dots involve small metal islands or quantum dots defined 
with the aid of electrostatic gates in semiconductor heterostructures. The question then 
arises, whether the quantum mechanical nature of the electron will lead to a further 
splitting of the levels in the dot. This is the case when the Fermi wavelength of the 
electrons is on the order of the lateral dimension of the quantum dot. To a good 
approximation the potential confining the electrons can be assumed to be parabolic. This 
yields a level splitting ' of '=h2/2m*D2. It depends on the nature of the dot whether Ec or 
' will be dominant, as shown in Figure 7b. Examples of Ec and ' for different material 
systems are given in Figure 8. In the case that Ec >> ' one speaks of a classical dot. 
 
 
5. Single Electron Transistor (SET) 
 
The position of the energy levels within the quantum dot with respect to the 
electrochemical potential of the leads can be influenced just like in a conventional field 
effect transistor by an electrostatically coupled gate electrode. This three terminal device 
(Figure 9a) is called a single electron transistor (SET), since this device can be operated 
in such a manor that only one electron at a time can pass the quantum dot. 
 
Constant interaction (CI) model 
 
Transport through a quantum dot can be best analyzed within the constant interaction 
model. For the CI model to be valid, two assumptions have to be made. For one, we 
assume that the capacitance among the electrons in the quantum dot and those in the 
environment (e.g. those in the leads) can be described by a single capacitance C. 
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(a)             (b) 

Figure 9 (a) Schematic drawing of a single electron transistor (SET). Image adopted from J. 
Weis, personal communication (b) Equivalent circuit diagram of a SET. The quantum dot is 
indicated in yellow. 

Furthermore, we assume that C is independent of the number of electrons on the dot. 
Second, we assume that the single-particle energy-level spectrum as given by ' is 
independent of the number of electrons on the dot. In Figure 9b the equivalent-circuit 
diagram of a QD is shown. Cl, Cr and Cg stand for the capacitances between the dot and 
the drain, the source and the gate respectively. The total capacitance is then given by  

Grl CCCC ��  (5.1). 

The total energy of a dot with N electrons and the voltages Vl, Vr, Vg applied to the 
respective terminals of the dot is then given by 
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Here, the first term stands for the sum over the single particle energies En that arise due to 
the size quantization, N0 is the charge on the dot compensating for positive background 
charges that might be present in the substrate. Q0 stands for the effective induced charge 
on the dot that change its electrostatic potential. It is given by 

GGrrll VCVCVCQ �� 0  (5.3). 

The electrochemical potential of N electrons on the dot is then given by 
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Here, the gate coupling factor D is given by 

C
CG D  (5.5). 

The gate coupling factor determines the magnitude of the influence of an external voltage 
on the electrochemical potential of the dot. The energy difference between two adjacent 
levels is given by the difference in electrochemical potential between them  
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where we used the level spacing ' = EN+1-EN. The level spacing can also be zero, if two 
electrons are added to the same spin degenerate level.  
 
Electron transport trough the quantum dot depends on the alignment of the 
electrochemical potential within the dot with the electrochemical potential of the leads. 
The alignment can be established by either applying an appropriate gate or drain-source 
voltage, as schematically shown in Figure 10. In the case that the electrochemical 
potential levels of the dot do not align with the electrochemical potentials of the lead, the 
current through the dot is blocked, this is called Coulomb blockade since the electrons do 
not have suficcient energy to compensate for the Coulomb repulsion that has to be 
overcome to ener the dot. The blocking of the current is even called Coulomb blockade if 
the level spacing ' is dominating e2/C. If a finite drain-source bias is applied and a level 

enters the bias window that is opened by eVDS, current can flow through the dot, the dot is 
in resonacne. This process is called sequential tunneling since one electron at a time 
enters the dot from the drain and leavs it towards the drain. The current increases in a 
step-like manor (the so-called Coulomb staircase) as a second transport level enters the 
bias window. While the application of a drain-source voltage only has a very small 
influence on the chemical potential of the levels on the dot, the gate-source voltage can 
be used to shift the energy levesl on the dot in energy across wide areas. At small VDS the 
gate voltage can thus be used to push a energy level into or out of the bias window 
leading to a high or a supressed current through the dot. These oscillations in the current 
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Figure 10 Schematic representation of the electrochemical potential levels of a quantum dot 
connected via tunnelling barriers to drain and source contacts. Transport through the quantum 
dot can be realized in two ways: (1) By changing the drain-source voltage (shown on the left) so 
that a level lies within the bias window opened by eVDS. The current trace is shown in the bottom 
(image adopted from D. Ralph et al. Cornell University). Each time a further level enters the bias 
window the drain current suddenly increases. (2) By changing the gate-source voltage so that a 
level lies within the bias window. (shown on the right) The conductivity then oscillates between a 
finite value and close do zero, as shown in the bottom (image adopted from Ref 5). These 
oscillations are called Coulomb oscillations.  
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(a)                  (b) 

fully filled shell

are called Coulomb oscillations. The periodcity of the Coulomb oscillations with the 
gate-source voltage can be easily calculated from Equation 5.4. If the drain-source 
voltage is kept constant, the periodicity can be calculated from the following condition  

),1(),( GSGSGS VVNµVNµ '��  (5.7) 
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If the current through the dot is plotted in a two dimensional diagram as a function of the 
gate-voltage and the drain-voltage, the so called coulomb diamonds emerge, as 
schematically shown in Figure 11a. Each resonance creates two straight lines in the 
plane that separate the conductive from the non-conductive regions. In the white regions 
the dot is stable with N, N+1.. electrons and no current flows through the dot. In the 
colored region current can flow through the dot. The addition energies can be obtained 
from the height of the coulomb diamonds as well as from the width of the diamonds as 
shown in Figure 11a. In Figure 11b an experimental stability diagram from a carbon 
nanotube quantum dot is shown. The blockade region is shown in pink. The addition of 
multible electrons to the dot can be clearly seen.  

half filled shell

fully filled shell

half filled shell

(c)                  (d) 

Figure 11 (a) Schematic representation of a Coulomb diamond (stability diagram). For small 
bias the current only flows in the places indicated (called degeneracy points) (b) Stability 
diagram for a carbon nanotube quantum dot. Images adopted from Ref 4, (c) Coulomb 
oscillations as a function of gate voltage for circular semiconductor quantum dot. (d) Addition 
energy for an additional electron if N electrons are on the dot. Images adopted from Ref 7. 
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So far we have only considered linear first-order elastic transport processes in which the 
electrons do not interact with electronic or vibrational excitations. However transport 
through a quantum dot is also a powerful tool for spectroscopic investigations in order to 
reveal interactions between vibrations in the system and the conduction electrons. These 
ineastic tunnel processes have a very distinct signature in the stability diagram4. It is 
noticable in Figure 11b, that the addition energy is not the same for all electrons. This is 
due to the so called shell-filling of the electrons.  
 
 
Shell structure of a quantum dot –artifical atoms 
 
The difference in addition energy for the Coulomb oscillations shown in Figure 11c is 
depicted in Figure 11d. It is clearly visible that the addition of an extra electron to the dot 
when it is filled with a ceartin number of electrons (N = 2, 6, 12, …) requires a higher 
amount of energy than for other values of N. This can be understood by remembering that 
the quantum dot’s confining potential can be described by a harmonic potential. This 
system then is highly symmetric which leads to sets of degenerate single-particle states 
that form a shell structure just like in an atom. This is why quantum dots are sometimes 
referred to as artificial atoms. The single-particle energy levels can be calculated from 
Schrödinger’s equation by assuming a harmonic confinement potential given by 

2
0

*

2
1)( rmrV Z  (5.9) 

The stationary Schrödinger equation has the following solutions for the eigenenergies 

0, )1||2( Z!�� lnE ln   (5.10) 

with the radial quantum number n = 0,1,2,… and the angular momentum quantum 
number l = 0,+-1,+-2,…Each shell is filled for the N=2, 6, 12,… for wich the addition 
energy to add an extra elecron to the dot is maximal. 
 
 
Experimental realization of a semiconductor quantum dot 
 
A very popular method nowdays of fabricating quantum dots from inorganic materials is 
a method based on semiconductor heterostructures. The same method as was also used 
for the fabrication of quantum point contacts is utilized: An AlGaAs/GaAs 
heterostructure is used as basis material. The 2DEG is depleted electrostatically with the 
aid of multiple gate electrodes as shown in Figure 12. 
 
 
Applications of single electron transistors 
 
There are a number of applications of SETs, of which three will be briefly mentioned in 
the following: 
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Figure 12 (a) Schematic representation of a quantum dot and (b) an artificially colored 
scanning electron microscopy image of the experimental realization of a electrostatically 
defined quantum dot. The tunneling of the electrons into and out of the dot is indicated by the 
red arrows. 

SET as an electrostatic potential probe 
The electrochemical potential of the electrons on the dot is very sensitive to electrostatic 
fields in the close vicinity of the dot. This is why a SET mounted to the tip of a scanning 
probe microscope can be used to map the electrostatic landscape of a sample with high 
spatial as well as high energy resolution. For example the potential distribution of a 
2DEG in a GaAs sample13 or the localization of the electrons in the quantum hall effect14 
have been measured with this technique. 
 
SET as a thermometer 
Our description of the SET relied on the fact that the temperature of the SET was much 
lower than the charging energy. However, the width of a Coulomb peak depends 
critically on the temperature.  The width at half maximum of a Coulomb peak depends on 
the temperature with no adjustable parameters according to the following approximation 
V1/2 ~ 5.429kbT/e [Ref 15] Based on this relation, the temperature can be extracted 
without the need of any system dependent parameters. Temperatures in the range 
between 20 mK and 1 K can be measured with this technique. 
 
SET for the representation of physical units 
The potential use of SETs in metrology stems from the hope to be able to establish a 
current standard via connecting the electrical charge with the frequency f (and therefore 
the time) via the relation I = fe. Such a relation could be established in a so called single 
electron pump comprising a SET. The magnitude of the current would be determined via 
the frequency f. Up to date a working device giving such a current standard has not been 
realized.16, 17 
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6. Integer Quantum Hall effect (IQHE) zz
 
In this chapter the basics of the integer quantum 
Hall effect will be discussed. This effect was 
discovered in 1980 by Klaus von Klitzing. For his 
works he received the Nobel Prize in 1985. It is a 
further physical effect in which the confinement of 
electrons to small dimension has surprising effects 
on the conductivity of a sample under unvestigation. 
 
Classical  Hall effect 
 
Before turning to the IQHE, let us briefly revisit the 
classical Hall effect, as it is the basis for the unerstanding of the IQHE. If a conductor 
through wich a current is driven in the x-direction (Figure 13) is brought into a magetic 
field that is directed out of plane (in z-direction), the electrons experience in addition the 
Lorentz force which diverts them in the y-direction. The stationary Drude equation is 
then given by 
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 (6.1). 

Here the first term on the right side describes the drift of the electrons due to the electric 
field E and the second term is the Lorentz force due to the magnetic field B. m* is the 
effective mass of the electrons, vD their drift velocity and W  their relaxation time (the 
mean time between two scattering events). By using the current density 
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for vD we can write 6.1 as an expression for the electric field 
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 (6.3). 

For the calculation of the magnetoresitivity Vxx and the Hall resistivity Vxy it is viable to 
express 6.3 in a vector notation 
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 (6.4). 

For the general case the conductivity tensor should also include Vyy and Vyx. However, for 
an isotropic medium and for the applied direction of the magnetic field, Vyy   Vyy and 
Vxy   -Vyx. The resistivity in x and y direction are then given by 
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Here, we used the cyclotron frequency Zc given by 
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Figure 13 Schematic depiction of 
typical sample geometry for the 
measurement of the Hall effect. 
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The corresponding conductivities are given by 
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Please note that as both the conductivity as well as the resistivy are tensors, Vxx is not 
equal to 1/Uxx and so forth. In the case of a Hall measurement, no current can flow in the 
y-direction (jy = 0) and therefore Equation 6.4 can be simplified to yield 
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     (6.8), 

where RH stands for the Hall coeficient. With the Hall effect the charge carrier density n 
and the type of charge carriers of a sample can be determined. 
 
 
Landau quantization of a 2DEG in a magnetic field 
 
The integer quantum Hall effect is observed in 2-dimensional electron gases (2DEG) at 
low temperatures and high magnetic fields. If a 2DEG is brought into a magnetic field, 
the density of states (which is constant for charge carriers that are confined to two 
dimensions) splits up into discrete subbands, the so called Landau levels. Their energy 
can be easily derived from the Schrödinger equation for a free electron that is confined in 
the z-direction 
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 (6.9). 

A is the vector potential. Following Landau’s ansatz for the wave function we use 

)exp()(~ yikx y\\   (6.10). 

This yields for the energy of the electrons 

Figure 14 Two dimensional density of states without (left) and with (right) magnetic field. In a 
magnetic field the density of states condenses onto discrete levels, the Landau levels. The 
magnitude of the magnetic field increases from (a) to (c). The different shades of blue indicate 
which states condense onto the same Landau level. 
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where we used Equation 6.6 in order to express the so called cyclotron frequency Z0. 
This means, that in a magnetic field a two dimensional electron gas will split up into 
discrete levels spaced by 0Z!  (Figure 14a). The degeneracy of each Landau level is 
given by 

h
eBnL    (6.12). 

Since the degeneracy as well as the spacing between the Landau levels increases with 
increasing magnetic field, we can expect that with increasing magnetic field less and less 
Landau levels will be occupied. This effect can be seen in Figure 14. The number of 
filled Landau levels is expressed by the filling factor v that is given by 

eB
hn

n
nv e

L

e    (6.13). 

Here, ne stands for the charge density of the 2DEG.  
 
 
Integer quantum Hall effect – experimental realization and phenomenology 
 
A schematic of a typical sample geometry for the measurements of the IQHE is shown in 
Figure 15a. The Hall bar consists of a AlGaAs/GaAs heterostructure that was also used 
for the fabrication of quantum dots. The 2DEG is confined at the AlGaAs/GaAs interface 
in the x-y plane of the hallbar. The heterostructure is patterned by etching techniques into 
the shown hallbar geometry. A light microscopy image of a hallbar structure is shown in 
Figure 15b. The resistances Rxy = Uxy/I (Hall resistance) and Rxx = Uxx/I (magneto-

Figure 15 (a) Schematic of a Hall bar geometry. (b) Light microscopy image of a Hall bar. The 
current ist applied between the contacts labeled by S and D, the Hall voltage (that is 
proportional to the Hall resitance Rxy is measured between the points labeled with H, the 
longitudinal resistance between points P. (c) Hall and longitudinal resistance of a 2DEG in as 
a function of applied magnetic field. Images (b) and (c) adopted from Ref 3. 
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resistance) as a function of the magnetic field is shown in Figure 15c. As was derived for 
the classical Hall effect (Equation 6.7), we can see in Figure 15c that for small B Rxx 
depends linear on B and Rxy is independent of B.  
However, for B higher than a few hunderts of mT, we notice significant deviations from 
what we would expect for the classical Hall effect: The Hall resistance has distinct 
plateaus for which the the resistance is a multiple of h/e2. This is the signature of the 
integer quantum Hall effect. Since the resistance of the plaeaus can be determined with 
an exceptional accuracy of 10-8, the quantum Hall effect is used as a resistance standard. 
Whithin one of the plateaus of the Hall resistance, the magnetoresistance vanishes across 
a wide region of the magetic field. These oscillations in the longitudinal magneto 
resistance are called Shubnikov-de-Haas oscillations 12, 18.  
 
The observation that the magneto resistnace vanishes at certain values of the magnetic 
field can be understood when recalling that the density of states splits up into the Landau 
levels. With increasing magnetic field the spacing between the individual levels gets 
larger and their degeneracy also rises. As a consequence with increasing magnetic field 
more and more Landau levels get depopulated, as was shown in Figure 14. Every time 
all Landau levels are fully occupied (e.i. at integer filling factor) the electrons can move 
across the sample without scattering, foW  and therefore according to Equation 6.7 also 
Rxx=0. The reason is, that there are no states for the electrons in the vicinity of the Fermi 
energy to scatter into. However, this phenomenological explanation can not justifiy why 
the magneto resistance would vanish across a wide range of the magnetic field. The 
reason is, that if at integer filling factor the magnetic field is increased, the energetically 
highest Landau level immediately gets depopulated  and therefore empty states that 
electrons could scatter into would be available. Furthermore, it can not be explained 
within the now described model why at all current can flow through the sample as there 
are no empty states at the Fermi level. 
 
 
Disorder within the sample 
 
The resistance plateaus as well as the extended Shubnikov-de-Haas oscillations can be 
understood when taking into account that the sample is not free of charged impurities. 
The effect of these impurities is to broaden the Landau levels as schematically shown in 
Figure 16a. The Landau levels now are divided into localized states in which the 
electrons are confined to a ceartin area of the sample and can not move across the sample 
and extended states in the center of the Landau level in which the electrons can move 
across the sample. The localized states therefore do not contribute to the current but have 
a influence of the position of the Fermi level. As the magnetic field is increased, the 
Fermi level can not jump from Landau level to Landau level as it would be the case if the 
levels were discrete, but remains pinned due to the localized states between the levels. 
This means, that for an extended region of the magnetic field there exist only fully 
ocupied extended states but no extended states at the Fermi edge (as the Fermi edge lies 
within the localized states). This is the reason why the resistance vanishes over wide 
regions of the magnetic field. 
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Figure 16 (a) Density of states of a 2 dimensional electron gas in a magnetic field without (left) 
and with (right) disorder. The presence of disorder within the sample leads to a broadening of 
the Landau levels. Within one Landau level states exist in which the electrons can move through 
the sample (extended states) and levels in which the electrons are confined to a certain space of 
the sample and not free to move through the sample (localized states) (b) Energy landscape of 
a Hall bar in y-direction. The edges of the sample lead to a strong increase of the energy of the 
Landau levels at the edges. Within the hall bar the energy landscape has variations due to the 
disorder within the sample. 
However, up to now we still have not explained how the current I flows through the 
sample and why the Hall resistance takes quantized values. Here the edges of the sample 
come into play. The edges of the sample can be viewed as an energetic barrier for the 
electrons. This is why the energy of the Landau levels curves upward in energy at the 
edges of the sample as depicted in Figure 16b. The consequence of this is, that now in 
each of the Landau levels there is a finite density of states at the Fermi energy at the 
edges of the sample. Due to the magnetic field the electrons in each of these one 
dimensional channels are propagating into opposite direction as schematically shown in 
Figure 17. The transport in each of theses channels is ballistic since the spatial division 
of the two current direction leads to a strong reduction of 
backscattering of the electrons. This is due to the fact that 
scattering events that lead to a finite resistance must 
change the direction of the k-vector of the electrons. 
However, at each side of the sample there are only states 
available for one k-vector so that scattering is strongly 
supressed.  In the case that the Fermi energy in the bulk 
of the sample is pinned to the localized states and the 
current only propagates via the edge channels across the 
sample, the Hall as well as the magnetoresistance can be 
analyzed in terms of the Landauer formula12. Since 
transport is ballistic within the edge channels, the 
chemical potentials of the electrodes as marked in 
Figure 17 are given by 

652 µµµ      and  431 µµµ     (6.13). 

For the respective voltage drops this means 
Figure 17 Hallbar in the 
quantum hall regime. Two 
edge channels carrying the 
current are shown. 

011  � µµeU xx   and  21 µµeU xy �  (6.14). 

The current in a ballistic conductor with n one 
dimensional current carrying paths is given by 
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which then leads the values for the Hall and magnetoresistance of 

ne
hRxy 2   and  0 xxR  (6.16). 

This picture with the localized and extended states as well as the edge channels can 
explain the observation of the long range of magnetic field where the Hall resistance 
remains constant and the magnetoresistance disappears as long as the Fermi level in the 
bulk remains in the localized states. As soon as the Fermi level enters the extended the 
electrons can scatter and the magnetoresistance takes a finite value and the Hall 
resistance makes a jump to a further quantized value.  
 
The IQHE can be also investigated if the magnetic field is kept constant but the charge 
carrier density is changed, for example by an electrostatically coupled back gate. In fact, 
the experiments that lead to the discovery of the quantum Hall effect were performed in 
this manor.  
 
Finally, it is noteworthy, that interactions between the charge carriers have been 
completely been neglected up to now. However, at high electron densities and high 
magnetic fields the interaction between electrons gets very strong and leads to the 
appearance of the fractional quantum Hall effect for which also non-integer steps in the 
Hall resistance are seen. For a detailed description of this many-body effect the reader is 
referred to specialized literature19. 
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