Radiation Biology, Protection and Applications (PHYS-450)

EXERCISES

Week 14

Problem 1:

Ingestion of ¹³⁷Cs eating reindeer meat

In reindeer meat, a concentration of 500 Bq/kg of ¹³⁷Cs has been measured. What committed effective dose does a person receive on eating 250 grams of this meat?

Solution:

The committed effective dose for an adult: $E = A_{ing} \cdot e_{ing}(50)$

The ingested radioactivity: $A_{ing} = 500 \text{ Bq/kg} \cdot 0,25 \text{ kg} = 125 \text{ Bq}$

The committed effective dose equivalent (CEDE) of ¹³⁷Cs for ingestion for an adult: $e_{ing}(50) = 1,30e-8$ Sv/Bq (from "ORaP", Annexe 4)

Therefore, the committed effective dose is $E = 125 \text{ Bq} \cdot 1,30\text{e-}8 \text{ Sv/Bq} = 1,6 \mu \text{Sv}$

Problem 2:

Inhalation of ^{131}I

The measured concentration of ¹³¹I in a laboratory is 55 Bq/m³. What committed effective dose a person receives during 15 minutes light activity in this laboratory?

Hint: During light work, a reference person inhales 20 liters (0.02 m³) of air per minute. This corresponds to 60 mins. \cdot 0.02 m³/min. = 1.2 m³ per hour. The volume of air inhaled in 15 mins. is then V = 1.2 m³/h \cdot 0.25 h = 0.3 m³.

Solution:

The committed effective dose for an adult: $E = A_{inh} \cdot e_{inh}(50)$

The inhaled activity of 131 I: A_{inh} = 55 Bq/m³ · 0.3 m³ = 16 Bq The committed effective dose equivalent (CEDE) of 131 I for inhalation for an adult: e(50) = 7.4e-9 Sv/Bq (from "ORaP", Annexe 4)

Therefore, the committed effective dose is $E = 16 \text{ Bq} \cdot 7.4\text{e-}9 \text{ Sv/Bq} = 1,2 \mu \text{Sv}$

Problem 3:

Inhalation of ⁷Be due to BeO from atmosphere

Due to cosmic ray interactions with nitrogen $({}^{14}N)$ in the upper atmosphere, each cubic meter of air on the Earth has a concentration of 1 mBq/m³ of radionuclide ⁷Be in the form of BeO (beryllium oxide). What is the annual committed effective dose a person receives through this source?

Hint: The inhalation volume of air daily $V_d = 23 \text{ m}^3/\text{day}$ or $V_y = 8400 \text{ m}^3/\text{year}$.

Solution:

The committed effective dose for an adult: $E = A_{inh} \cdot e_{inh}(50)$

The inhalation volume of air daily: $V_d = 23 \text{ m}^3/\text{day}$ or $V_v = 8400 \text{ m}^3/\text{year}$

The inhaled activity of ⁷Be: $A_{inh} = 8400 \cdot 0.001 = 8.4$ Bq/year

The committed effective dose equivalent (CEDE) for ⁷B for inhalation for an adult: 5.50e-11 Sv/Bq (from the ICRP 72, using another data sources this value vary slightly)

Therefore, the committed effective dose is $E = 8.4 \text{ Bq/year} \cdot 5.50\text{e-}11 \text{ Sv/Bq} = 0.4 \text{ nSv/year}$